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ABSTRACT

Spoken content in languages of emerging importance needs to be
searchable to provide access to the underlying information. In this
paper, we investigate the problem of extending data fusion method-
ologies from Information Retrieval for Spoken Term Detection on
low-resource languages in the framework of the IARPA Babel pro-
gram. We describe a number of alternative methods improving key-
word search performance. We apply these methods to Cantonese,
a language that presents some new issues in terms of reduced re-
sources and shorter query lengths. First, we show score normaliza-
tion methodology that improves in average by 20% keyword search
performance. Second, we show that properly combining the outputs
of diverse ASR systems performs 14% better than the best normal-
ized ASR system.

Index Terms— spoken term detection, keyword search, data fu-
sion, system combination, score normalization

1. INTRODUCTION

The rapidly increasing amount of spoken data calls for solutions to
index and search this data. In 2006, the U.S. National Institute of
Standards and Technology (NIST) created the STD (Spoken Term
Detection) evaluation [1] initiative to facilitate research and devel-
opment of technology for retrieving information from archives of
speech data. However, this work was performed on large-resource
languages and most of the effort focused on clean speech. It has re-
cently been demonstrated that significant improvement on STD task
can be obtained by deliberately designing diverse and complemen-
tary ASR components (i.e., front ends, acoustic models, etc) [2]. We
show that similar approach works on noisy speech for lowresource
languages with low target false alarm rate. The contribution of the
paper is twofold. First, we show the value of combining results from
diverse ASR systems that employ different front ends in order to
provide reliable Keyword Search (KWS) results, using and extend-
ing state-of-the-art Information Retrieval (IR) data fusion method-
ologies. Techniques for data fusion are used extensively in many
different application areas, and IR is one of them. By combining
results from diverse ASR systems, we show good robustness across
a wide variety of talkers, channels, environments, and target terms.
Second, we compare score normalization approaches for STD. The
score normalization is relevant to data fusion since those scores pro-
vided by the different systems are not comparable. Therefore, score

normalization is often performed as a preliminary step to data fusion.
In our context, the scores are output by ASR systems and represent
posterior probability estimates. For this reason, for STD, the normal-
ization is not necessarily required as a preprocessing step. However,
according to the metric used for the task, the Actual Term-Weighted
Value (ATWV), the benefit of correctly finding a term is inversely
proportional to the term frequency while the cost of a false alarm is
almost independent to the term frequency. In other words, ATWV
metric emphasizes recall of rare terms. For this reason, score nor-
malization may contribute to the optimization of the search perfor-
mance of a single system independently of the system combination.
In this paper, we investigate different score normalization and sys-
tem combination methodologies and show their impact on ATWV
metric. The basic processing flow is as follows. The audio data is
transcribed using diverse ASR systems. Each ASR system output
is indexed separately. Each query is searched against the different
indices. The scores of the hits are possibly normalized. The hit lists
returned by the different indices are merged to form a single meta-hit
list for the query and a score is attributed to the meta-hit. The pa-
per is organized as follows. After presenting the task (Section 2), we
describe our KWS approach (Section 3). Next, we present score nor-
malization methods (Section 4) and system combination approaches
(Section 5). We relate these methodologies to prior work (Section 6).
Experiments and analysis are presented on Cantonese spoken data
(Section 7). Finally, we conclude (Section 8).

2. TASK DESCRIPTION

The present work addresses the STD task defined by NIST for
the 2006 STD Evaluation with some modifications introduced by
IARPA‘s Babel program [3]. The task consists in finding all the ex-
act matches of a specific query in a given corpus of speech data. A
query is a textual phrase containing one or several terms. We focus
in the task where the system components and word indices are frozen
before the queries are provided. KWS performance is measured by
the ATWV metric, which combines missed detection and false alarm
error types [1]. More precisely, Term-Weighted Value (TWV) is 1
minus the weighted sum of the term-weighted probability of missed
detection and the term-weighted probability of false alarms. ATWV
is the TWV attained by the system as a result of the system output
and the binary decision output for each putative occurrence assigned
according to a global detection threshold. MTWV is the maximum
TWV over the range of all possible values of the detection threshold.
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3. KEYWORD SEARCH

In this section, we describe our KWS system; it exploits the flexi-
bility of a weighted finite state transducer (WFST) based indexing
system [4, 5]. The indexing and search components are presented.
Note that the same indexing and search process are run for each ASR
system independently.

Indexing: we assume that the audio to be indexed has been pro-
cessed with a large vocabulary continuous speech recognition sys-
tem and the corresponding word lattices are available. Phonetic lat-
tices are subsequently derived from these word lattices and are used
to build phonetic indices for out-of-vocabulary (OOV) search. The
timing information is pushed onto the output label of each arc in the
lattice. Let denote Q as a finite set of states. Every arc in the result-
ing WFST representing the lattice is a 5-tuple (p, i, o, w, q) where
p ∈ Q is the start state, q ∈ Q is the end state, i is the input label
(for example, a phone), o is the output label (start-time associated
with state p), and w is (negative logarithm of) posterior probabil-
ity associated with i. All silences and hesitations in the lattices are
converted to ε arcs in the WFST representation.

Search: each query is represented as a weighted acceptor. A
composition operation [6] with the index retrieves the lattice (utter-
ance) containing it. Each query is split into two categories: in and
out-of-vocabulary terms. The in-vocabulary (IV) terms are searched
through the word index and the OOV terms are searched through the
phonetic index derived from the word lattices. At query time, an
orthographic representation of the query is converted to a sensible
phonetic representation. This is typically done using grapheme-to-
phoneme conversion algorithms which may not work accurately for
all query terms. For Cantonese, which is an ideographic language,
we use a rule based approach to generate pronunciations. The two hit
lists (IV and OOV) are joined to generate the final hit list where each
hit is identified by its audio file, begin time, duration and score (pos-
terior probability estimate). The hit scores are possibly normalized
as described in the next section.

4. SCORE NORMALIZATION METHODOLOGIES

In this section, we investigate different score normalization method-
ologies that contribute to increase ATWV. This value is directly af-
fected by missed detections and false alarms. According to ATWV
definition, the cost of a missed detection of a query is inversely pro-
portional to its frequency while the cost of a false alarm is almost in-
dependent to its frequency. Score normalization methods have been
studied for data fusion in IR [7] and we present three methodologies
that improve KWS performance. Suppose that there are Nq hits for
the query q according to a given ASR system. Let sq,i denote the
score of the i-th hit for the query q.

Query Length Normalization (QL): in order to further re-
duce false alarms, we incorporate a query length (QL) normaliza-
tion based on the duration of the hits of the query. Since hits with
a longer duration are more likely to be correct, we define the QL
normalization as:

s

1
∆avg(q)

q,i

where ∆avg(q) is the average duration of all returned hits for the
query q. This approach is inspired from [8].

Sum-to-one Normalization (STO): sum-to-one normalization
computes new scores as

sq,i∑Nq

j=1 sq,j

For a given query, the sum of all the normalized hit scores is 1.0. For
the special case of a single hit, the normalized score is 1.0 by defi-
nition. This normalization scheme was proposed for IR data fusion
in [9] and showed improvement for meta-search. It was used suc-
cessfully for the first time in STD in [2]. A variant of scheme was
initially investigated for IR in [10]. For STD, the denominator is the
sum of the posterior estimates for all the hits; it represents an approx-
imation of the number of occurrences of the query. For rare terms,
the denominator will be low and therefore the normalized score will
be high and is likely to be above the decision threshold; therefore,
the probability of missed detection will be lower.

Regression-based Normalization (Pace): we describe a ma-
chine learning procedure for score normalization. We use the pace
regression algorithm [11] to learn a scoring function that combines
the following six features of a hit: its posterior probability, the num-
ber of occurrences of the query (it is approximated by the sum of
the posterior estimates for all the hits of the query), the duration of
the hit, the average duration of all the returned hits for the query, the
number of words and the number of characters in the query.

5. SYSTEM COMBINATION METHODOLOGIES

In this section, we investigate system combination methodologies
that contribute to increase KWS performance. Data fusion method-
ologies are widely used for document IR [9]. For example, in the
context of meta-search engines, a hit is identified by a document and
a score. Hits returned by different engines may be merged into a
single meta-hit if they refer to the same document. Determining the
score of the meta-hit is a key issue. Several fusion methods for com-
bining multiple scores for document retrieval have been proposed.
Some methods select one extreme end of the sample values to be the
representative score of a document in the fused results (e.g., Comb-
MIN and CombMAX), whereas the others use some form of the sum
of all sample values as the final score (e.g., CombSUM, CombANZ,
CombMNZ). Some methods also emphasize or de-emphasize those
documents that appear multiple times in the different results (e.g.,
CombANZ and CombMNZ). Experimental studies have been con-
ducted on these methods [12]; the conclusion is that CombSUM and
CombMNZ are the best among the five methods for document re-
trieval. Let denote hi the hit that contributes to the meta-hit H
from the i-th system among n systems, and s(hi) the score of the
hit hi. More precisely, CombSUM consists of computing the sum-
mation of the hit scores from the different indices and is computed
as

∑n
i=1 s(hi); CombMNZ consists of computing the summation

of the hit scores from the different indices and to multiply it by the
number of indices having a non-zero score for this meta-hit; it is
computed asmH ×

∑n
i=1 s(hi) wheremH is the number of indices

having a non-zero score for this meta-hit H . A natural extension of
CombSUM is the linear combination method where each component
system i is assigned a weightwi. It is computed as

∑n
i=1 wi · s(hi).

Determining the weights is a key issue. Linear regression is gener-
ally used to assign the weights. Another weighting policy is to as-
sociate weights with performance. For STD, a hit is identified by
its audio file, begin time, duration and score. Hits returned by the
diverse ASR systems are merged to form a single meta-hit if they
overlap in time. We identify the meta-hit by the audio file, the start
time and duration taken from the highest-scoring hit. KWS perfor-
mance of a system is estimated by its MTWV and ATWV. Therefore,
we propose the MTWV-weighted CombMNZ (WCombMNZ) fusion
methodology, which extends CombMNZ by incorporating MTWV-
based weighting. For each ASR system, the hit scores from that
system are weighted in proportion to the MTWV of that system for
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some tuning data. Let us denote MTWVi the MTWV of the i-th
system. The MTWV based weight on the i-th system, wMTWV

i is
defined by

MTWVi∑n
j=1MTWVj

For WCombMNZ, we define the score of the meta-hit H as

mH ×
n∑

i=1

wMTWV
i · s(hi)

.

6. RELATED WORK

Traditional STD approaches propose to combine word and phonetic
search (e.g., [8, 13, 14, 15, 16]); phonetic lattices are included in
the search in order to overcome the OOV issue. However, a query
term is searched against a single index according to its type (IV or
OOV) and the combination is not achieved at the query hit list level.
A term-specific detection threshold derived by maximizing the ex-
pected value of ATWV per query is proposed by [14]. However,
in the Babel task, we are required to work with a global detection
threshold. We can easily re-normalize the term-specific threshold to
a global threshold, e.g., by dividing the score by its term-specific
threshold. However, this approach seems less intuitive and does
not provide any gain comparing with STO normalization. In [17],
they propose to normalize scores by replacing each score sc with
1− pFA(sc); they present a methodology to estimate pFA(sc) on
a tuning set. We compare this approach to our methodologies in
Section 7.2. Combination of hit lists has been used for spoken docu-
ment retrieval in order to combine search resuls from transcripts that
are produced according to different word and sub-word decoding
methods in order to solve the OOV issue [18, 19]; the improvement
is measured by the precision and the recall of the KWS. The work
presented here shows that the combination strategy is useful on a
very different task with very different challenges. Recently, it has
been demonstrated, as part of the DARPA RATS program, that good
KWS performance on STD can be obtained by combining ASR sys-
tems [2]. However, in the RATS task, the main challenges are severe
noise and channel distortion, while in the Babel task, the main chal-
lenges are speaker variability and severely limited LM training data.
Moreover, to our knowledge, our paper is the first work investigating
state-of-the-art IR data fusion approaches for STD.

7. EXPERIMENTS

7.1. Experimental Setup

Results are reported using the above score normalization and system
combination methods on the Cantonese language collection from the
IARPA Babel Program (release babel101b-v0.4c); it corresponds to
the data for the “dry run” August 2012 evaluation. The data col-
lection covers multiple aspects of Cantonese spanning dialects, top-
ics, gender and age. The training data is basically telephone con-
versational data and some scripted data. It contains 200 hours of
training audio; approximately 50% of the training data is silence.
The test data is limited to only conversational data. The query set
includes 1000 queries, and are searched against the development
data that is split into a tuning set (13 hours of audio) and a val-
idation set (7 hours of audio). The repartition of the queries ac-
cording to query type (IV, OOV) and to query length (measured by
the number of characters) is respectively provided in Table 5 and

Model % CER lattice density
GMM 55.9 678
BSRS 53.0 1196
CU-HTK 52.9 4123
MLP 52.8 611
NN-GMM 52.7 2100
DBN 48.9 1224

Table 1. Performance of six ASR systems measured in terms of CER
and lattice density.

in Table 4. We consider a query as OOV if it contains at least one
OOV term. The KWS results are produced for six different ASR
systems: (1) GMM, the baseline GMM/HMM system which is a
discriminatively trained, speaker-adaptively trained acoustic model;
(2) BSRS, a Bootstrap and restructuring model [20] in which the
original training data is randomly re-sampled to produce multiple
subsets and the resulting models are aggregated at the state level
to produce a large, composite model; (3) CU-HTK, a TANDEM
HMM system from Cambridge University using cross-word, state-
clustered, triphone models trained with MPE, fMPE, and speaker-
adaptive training. For efficiency, the MLP features were incorpo-
rated in the same fashion as [21]; (4) MLP, a multi-layer perceptron
model [22] which is a GMM-based ASR system that uses neural-
network features; (5) NN-GMM, a speaker-adaptively and discrim-
inatively trained GMM/HMM system from RWTH Aachen Univer-
sity using bottle-neck neural network features [23] and a 4-gram
Kneser-Ney LM with optimized discounting parameters [24] using
a modified version of the RWTH open source decoder [25]; and (6)
DBN, a deep belief network hybrid model [26, 27] with discrimi-
native pertraining, frame-level cross-entropy training and state-level
minimum Bayes risk sequence training. GMM, BSRS, DBN and
MLP models are built with the IBM Attila toolkit [28]. A 3-gram
LM with modified Kneser-Ney smoothing [29] is applied for these
models. The ASR systems are described in more details in [30].
Our KWS system is implemented using the OpenFst toolkit [31].
ATWV and MTWV are evaluated using the F4DE NIST Evaluation
tool [32]. ATWV results for the KWS on the validation set are com-
puted using the optimal detection threshold obtained for the KWS
on the tuning set. If necessary, the decision threshold is rescaled
to take into account the size difference between the tuning and the
evaluation sets. We report the Character Error Rate (CER) and the
lattice density (in arcs per second of audio) of each ASR system on
the development data in Table 1.

7.2. Score Normalization

We compare KWS performance on the validation set for different
normalization methodologies and we present the results in Table 2.
In the baseline column, we report ATWV results with un-normalized
raw scores (posterior probabilities). We denote the approach pro-
posed by [17] and described in Section 6 as pFA; pFA values are esti-
mated on the tuning set. In contrast to pFA and regression-based ap-
proaches, STO and QL methods does not rely on learning the scoring
on a tuning set. Best KWS performance is obtained for DBN ASR
system with STO normalization methodology. We observe that, in
average, STO method provides a relative improvement of 20% over
the baseline, while the relative improvement is respectively 7%, 14%
and 15% for QL, Pace and pFA methods. Note that higher CER can
sometimes lead to higher KWS performance; it is explained by the
fact that the reported CERs are computed on the 1-best consensus
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Model baseline QL pFA Pace STO
GMM 0.300 0.345 0.335 0.360 0.375
BSRS 0.392 0.402 0.417 0.415 0.444
CU-HTK 0.368 0.410 0.443 0.434 0.453
MLP 0.362 0.381 0.410 0.407 0.416
NN-GMM 0.360 0.387 0.445 0.430 0.465
DBN 0.423 0.442 0.467 0.469 0.483

Table 2. ATWV results for six ASR systems according to different
score normalization methodologies.

Methodology ATWV
STO-LC 0.512
STO-CombMNZ 0.536
STO-WCombMNZ 0.540
WCombMNZ-STO 0.544
STO-WCombMNZ-STO 0.551

Table 3. ATWV results according to different system combination
methodologies.

network while the queries are searched on the whole lattices.

7.3. System Combination

We compare KWS performance according to different system com-
bination methodologies presented in Section 5. In IR, score nor-
malization is applied before the data fusion in order to make the
scores from the different systems comparable. However, in STD,
it is not necessary since scores represent posterior probability esti-
mates. Moreover, it can affect KWS performance in some cases, es-
pecially if the different ASR systems produce lattices having differ-
ent densities. We present in Table 3 the ATWV results on the valida-
tion set according to the following system combination methodolo-
gies: (1) STO-LC, STO normalized scores are combined according
to the linear combination methodology; the weights are determined
using the multinomial logistic regression model [33] on the tuning
set; (2) STO-CombMNZ, STO normalized scores are combined ac-
cording to CombMNZ methodology; (3) STO-WCombMNZ, STO
normalized scores are combined according to WCombMNZ method-
ology; (4) WCombMNZ-STO, raw scores are combined according
to WCombMNZ methodology; and (5) STO-WCombMNZ-STO,
STO normalized scores are combined according to WCombMNZ
methodology, and after the combination, the scores of the meta-
hits are normalized according to STO. The MTWV-based weights
of WCombMNZ approaches are estimated on the tuning set. We ob-
serve that the WCombMNZ approaches outperform the traditional
data fusion approaches (STO-LC and STO-CombMNZ) and provide
a relative improvement of up to 14% over the best normalized system
(DBN with STO normalization).

7.4. Analysis

We analyze the effect of STO normalization and system combina-
tion on KWS performance, both as a function of query length in
characters and a function of query type (IV or OOV). Theokse mea-
surements are made on the development data. Table 4 presents a
breakdown of results by query type. For each type, we provide the
rate of queries belonging to this type. Table 5 presents a breakdown
of results by query length. For each length, we provide the rate of
queries having this length and the rate of OOV queries among the

query % % STO % combination
type queries improv. improv.
IV 87 15 11
OOV 13 94 69

Table 4. STO normalization and STO-WCombMNZ-STO combina-
tion ATWV relative improvement as a function of query type.

query % % % STO % combination
length queries OOV improv. improv.

2 39 12 14 5
3 43 13 17 16
4 14 19 8 23
5 4 15 7 18

Table 5. STO normalization and STO-WCombMNZ-STO combina-
tion ATWV relative improvement as a function of query length.

queries of this length. For both tables, we report respectively in the
last columns the relative improvement of STO normalization over
the baseline for the best ASR system (DBN) and the relative im-
provement of STO-WCombMNZ-STO system combination over the
best normalized single ASR system (DBN with STO normalization).
We can draw a number of conclusions from these tables: (1) STO
normalization and STO-WCombMNZ-STO system combination im-
prove ATWV for both IV and OOV queries, with the effect being
strongest for OOV queries; (2) STO normalization improves ATWV
for all query lengths, with the effect being strongest for the shortest
queries; (3) STO-WCombMNZ-STO system combination improves
ATWV for all query lengths, with the effect being strongest for the
longer queries; and (4) the strong system combination improvement
for 4-character queries is due to both of these effects (long queries
with high OOV rate).

8. CONCLUSION

In this paper, we show the STO score normalization methodology
that improves in average by 20% KWS performance, achieving an
ATWV of 0.483 for DBN system, and the STO-WCombMNZ-STO
system combination approach that improves by 14% KWS perfor-
mance, achieving an ATWV of 0.551. As future work, we will apply
these approaches to other low-resource languages in the framework
of Babel program; we will investigate discriminative system combi-
nation algorithms including query and system specific features, and
other features like prosody and rich linguistic context information.
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