Augmented Statistical Models for Speech Recognition

Mark Gales & Martin Layton

31 August 2005

Cambridge University Engineering Department

Trajectory Models For Speech Processing Workshop

Overview

- Dependency Modelling in Speech Recognition:
 - latent variables
 - exponential family
- Augmented Statistical Models
 - augments standard models, e.g. GMMs and HMMs
 - extends representation of dependencies
- Augmented Statistical Model Training
 - use maximum margin training
 - relationship to "dynamic" kernels
- Preliminary LVCSR experiments

Dependency Modelling

- Speech data is dynamic observations are not of a fixed length
- Dependency modelling essential part of speech recognition:

$$p(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_T;\boldsymbol{\lambda})=p(\boldsymbol{o}_1;\boldsymbol{\lambda})p(\boldsymbol{o}_2|\boldsymbol{o}_1;\boldsymbol{\lambda})\ldots p(\boldsymbol{o}_T|\boldsymbol{o}_1,\ldots,\boldsymbol{o}_{T-1};\boldsymbol{\lambda})$$

- impractical to directly model in this form
- make extensive use of conditional independence
- Two possible forms of conditional independence used:
 - observed variables
 - latent (unobserved) variables
- Even given dependency (form of Bayesian Network):
 - need to determine how dependencies interact

Hidden Markov Model - A Dynamic Bayesian Network

(b) HMM Dynamic Bayesian Network

Notation for DBNs:

circles - continuous variables shaded - observed variables squares - discrete variables non-shaded - unobserved variables

- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states.
- Poor model of the speech process piecewise constant state-space.

Dependency Modelling using Latent Variables

Switching linear dynamical system:

- discrete and continuous state-spaces
- observations conditionally independent given continuous and discrete state;
- approximate inference required
 - ⇒ Rao-Blackwellised Gibbs sampling.

Multiple data stream DBN:

- e.g. factorial HMM/mixed memory model;
- asynchronous data common:
 - speech and video/noise;
 - speech and brain activation patterns.
- observation depends on state of both streams

SLDS Trajectory Modelling

Frames from phrase: SHOW THE GRIDLEY'S ...

Legend

- True
- HMM
- SLDS

Unfortunately doesn't currently classify better than an HMM!

Dependency Modelling using Observed Variables

Commonly use member (or mixture) of the exponential family

$$p(\mathbf{O}; \boldsymbol{\alpha}) = \frac{1}{\tau} h(\mathbf{O}) \exp(\boldsymbol{\alpha}' \mathbf{T}(\mathbf{O}))$$

- $h(\mathbf{O})$ is the reference distribution; τ is the normalisation term
- α are the natural parameters
- the function T(O) is a sufficient statistic.
- ullet What is the appropriate form of statistics $(\mathbf{T}(\mathbf{O}))$ needs DBN to be known
 - for example in diagram, $T(\mathbf{O}) = \sum_{t=1}^{T-2} \mathbf{o}_t \mathbf{o}_{t+1} \mathbf{o}_{t+2}$

Constrained Exponential Family

- Could hypothesise all possible dependencies and prune
 - discriminative pruning found to be useful (buried Markov models)
 - impractical for wide range (and lengths) of dependencies
- Consider constrained form of statistics
 - local exponential approximation to the reference distribution
 - ρ^{th} -order differential form considered (related to Taylor-series)
- Distribution has two parts
 - reference distribution defines latent variables
 - local exponential model defines statistics (T(O))
- Slightly more general form is the augmented statistical model
 - train all the parameters (including the reference, base, distribution)

Augmented Statistical Models

Augmented statistical models (related to fibre bundles)

$$p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{\tau} \check{p}(\mathbf{O}; \boldsymbol{\lambda}) \exp \left(\boldsymbol{\alpha}' \begin{bmatrix} \nabla_{\lambda} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \\ \frac{1}{2!} \text{vec} \left(\nabla_{\lambda}^{2} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \right) \\ \vdots \\ \frac{1}{\rho!} \text{vec} \left(\nabla_{\lambda}^{\rho} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \right) \end{bmatrix} \right)$$

- Two sets of parameters
 - $-\lambda$ parameters of base distribution $(\check{p}(\mathbf{O}; \lambda))$
 - $-\alpha$ natural parameters of local exponential model
- Normalisation term τ ensures that

$$\int_{\mathcal{R}^{nT}} p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) d\mathbf{O} = 1; \qquad p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \overline{p}(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) / \tau$$

can be very complex to estimate

Augmented Gaussian Mixture Model

- Use a GMM as the base distribution: $\check{p}(\boldsymbol{o}; \boldsymbol{\lambda}) = \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$
 - considering only the first derivatives of the means

$$p(\mathbf{o}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{\tau} \sum_{m=1}^{M} c_m \mathcal{N}(\mathbf{o}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m) \exp\left(\sum_{n=1}^{M} P(n|\mathbf{o}; \boldsymbol{\lambda}) \boldsymbol{\alpha}_n' \boldsymbol{\Sigma}_n^{-1} (\mathbf{o} - \boldsymbol{\mu}_n)\right)$$

• Simple two component one-dimensional example:

Augmented Model Dependencies

• If the base distribution is a mixture of members of the exponential family

$$\check{p}(\mathbf{O}; \boldsymbol{\lambda}) = \prod_{t=1}^{T} \sum_{m=1}^{M} c_m \exp\left(\sum_{j=1}^{J} \lambda_j^{(m)} T_j^{(m)}(\boldsymbol{o}_t)\right) / \tau^{(m)}$$

consider a first order differential

$$\frac{\partial}{\partial \lambda_k^{(n)}} \log \left(\check{p}(\mathbf{O}; \boldsymbol{\lambda}) \right) = \sum_{t=1}^T P(n | \mathbf{o}_t; \boldsymbol{\lambda}) \left(T_k^{(n)}(\mathbf{o}_t) - \frac{\partial}{\partial \lambda_k^{(n)}} \log(\tau^{(n)}) \right)$$

- Augmented models of this form
 - keep independence assumptions of the base distribution
 - remove conditional independence assumptions of the base model
 - the local exponential model depends on a posterior ...
- Augmented GMMs do not improve temporal modelling ...

Augmented HMM Dependencies

- For an HMM: $\check{p}(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\{ \prod_{t=1}^{T} a_{\theta_{t-1}\theta_t} \left(\sum_{m \in \theta_t} c_m \mathcal{N}(\mathbf{o}_t; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m) \right) \right\}$
- Derivative depends on posterior, $\gamma_{jm}(t) = P(\theta_t = \{s_j, m\} | \mathbf{O}; \boldsymbol{\lambda})$,

$$T(\mathbf{O}) = \sum_{t=1}^{T} \gamma_{jm}(t) \mathbf{\Sigma}_{jm}^{-1} \left(\mathbf{o}_{t} - \boldsymbol{\mu}_{jm} \right)$$

- posterior depends on complete observation sequence, O
- introduces dependencies beyond conditional state independence
- compact representation of effects of all observations
- Higher-order derivatives incorporate higher-order dependencies
 - increasing order of derivatives increasingly powerful trajectory model
 - systematic approach to incorporating additional dependencies

Augmented Model Summary

- Extension to standard forms of statistical model
- Consists of two parts:
 - base distribution determines the latent variables
 - local exponential distribution augments base distribution
- Base distribution:
 - standard form of statistical model
 - examples considered: Gaussian mixture models and hidden Markov models
- Local exponential distribution:
 - currently based on ρ^{th} -order differential form
 - gives additional dependencies not present in base distribution
- Normalisation term may be highly complex to calculate
 - maximum likelihood training may be very awkward

Augmented Model Training

- Only consider simplified two-class problem
- Bayes' decision rule for binary case (prior $P(\omega_1)$ and $P(\omega_2)$):

$$\frac{P(\omega_1)\tau^{(2)}\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(1)},\boldsymbol{\alpha}^{(1)})}{P(\omega_2)\tau^{(1)}\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(2)},\boldsymbol{\alpha}^{(2)})} \lesssim 1; \qquad \frac{1}{T}\log\left(\frac{\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(1)},\boldsymbol{\alpha}^{(1)})}{\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(2)},\boldsymbol{\alpha}^{(2)})}\right) + b \lesssim 0$$

- $-b = \frac{1}{T}\log\left(\frac{P(\omega_1) au^{(2)}}{P(\omega_2) au^{(1)}}\right)$ no need to explicitly calculate au
- Can express decision rule as the following scalar product

$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}' \begin{bmatrix} \phi(\mathbf{O}; \boldsymbol{\lambda}) \\ 1 \end{bmatrix} \stackrel{\omega_1}{\underset{\omega_2}{\leq}} 0$$

- form of score-space and linear decision boundary
- Note restrictions on α 's to ensure a valid distribution.

Augmented Model Training - Binary Case (cont)

Generative score-space is given by (first order derivatives)

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \frac{1}{T} \begin{bmatrix} \log \left(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) - \log \left(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \\ \boldsymbol{\nabla}_{\boldsymbol{\lambda}^{(1)}} \log \left(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) \\ - \boldsymbol{\nabla}_{\boldsymbol{\lambda}^{(2)}} \log \left(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \end{bmatrix}$$

- only a function of the base-distribution parameters λ
- Linear decision boundary given by

$$\mathbf{w}' = \begin{bmatrix} 1 & \boldsymbol{\alpha}^{(1)\prime} & \boldsymbol{\alpha}^{(2)\prime} \end{bmatrix}'$$

- only a function of the exponential model parameters lpha
- ullet Bias is represented by b depends on both $oldsymbol{lpha}$ and $oldsymbol{\lambda}$
- Possibly large number of parameters for linear decision boundary
 - maximum margin (MM) estimation good choice SVM training

Support Vector Machines

- SVMs are a maximum margin, binary, classifier:
 - related to minimising generalisation error;
 - unique solution (compare to neural networks);
 - may be kernelised training/classification a function of dot-product $(\mathbf{x}_i.\mathbf{x}_j)$.
- Can be applied to speech use a kernel to map variable data to a fixed length.

Estimating Model Parameters

- Two sets of parameters to be estimated using training data $\{O_1, \ldots, O_n\}$:
 - base distribution (Kernel) $oldsymbol{\lambda} = \left\{oldsymbol{\lambda}^{(1)}, oldsymbol{\lambda}^{(2)}
 ight\}$
 - direction of decision boundary $(y_i \in \{-1, 1\})$ label of training example)

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i^{ ext{svm}} y_i \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})$$

 $\alpha^{\text{svm}} = \{\alpha_1^{\text{svm}}, \dots, \alpha_n^{\text{svm}}\}$ set of SVM Lagrange multipliers G associated with distance metric for SVM kernel

- Kernel parameters may be estimated using:
 - maximum likelihood (ML) training;
 - discriminative training, e.g. maximum mutual information (MMI)
 - maximum margin (MM) training (consistent with α 's).

SVMs and Class Posteriors

- Common objection to SVMs no probabilistic interpretation
 - use of additional sigmoidal mapping/relevance vector machines
- Generative kernels distance from the decision boundary is the posterior ratio

$$\frac{1}{w_1} \left(\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}' \begin{bmatrix} \phi(\mathbf{O}; \boldsymbol{\lambda}) \\ 1 \end{bmatrix} \right) = \frac{1}{T} \log \left(\frac{P(\omega_1 | \mathbf{O})}{P(\omega_2 | \mathbf{O})} \right)$$

- w_1 is required to ensure first element of w is 1
- augmented version of the kernel PDF becomes the class-conditional PDF
- Decision boundary also yields the exponential natural parameters

$$\begin{bmatrix} 1 \\ \boldsymbol{\alpha}^{(1)} \\ \boldsymbol{\alpha}^{(2)} \end{bmatrix} = \frac{1}{w_1} \mathbf{w} = \frac{1}{w_1} \sum_{i=1}^n \alpha_i^{\text{svm}} y_i \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})$$

Relationship to "Dynamic Kernels"

- Dynamic kernels popular for applying SVMs to sequence data
- Two standard kernels, related to generative kernels are:
 - Fisher kernel
 - Marginalised count kernel
- Fisher Kernel:
 - equivalent to generative kernel with two base distributions the same

$$\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) = \check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(2)})$$

and only using first order derivatives.

- Fisher kernel useful with large amounts of unsupervised data.
- Fisher kernel can also be described as a marginalised count kernel.

Marginalised Count Kernel

- Another related kernel is the marginalised count kernel.
 - used for discrete data (bioinformatics applications)
 - score space element for second-order token pairings ab and states $\theta_{\tt a}\theta_{\tt b}$

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{t=1}^{T-1} \mathcal{I}(\mathbf{o}_t = \mathtt{a}, \mathbf{o}_{t+1} = \mathtt{b}) P(\theta_t = \theta_a, \theta_{t+1} = \theta_b | \mathbf{O}; \boldsymbol{\lambda})$$

compare to an element of the second derivative of PMF of a discrete HMM

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{t=1}^T \sum_{\tau=1}^T \mathcal{I}(\mathbf{o}_t = \mathtt{a}, \mathbf{o}_\tau = \mathtt{b}) P(\theta_t = \theta_a, \theta_\tau = \theta_b | \mathbf{O}; \boldsymbol{\lambda}) + \ldots$$

- higher order derivatives yields higher order dependencies
- generative kernels allow "continuous" forms of count kernels

ISOLET E-Set Experiments

- ISOLET isolated letters from American English
 - E-set subset {B,C,D,E,G,P,T,V,Z} highly confusable
- Standard features MFCC_E_D_A, 10 emitting state HMM 2 components/state
 - first-order mean derivative score-space for A-HMM

Classifier	Trai	WER	
	Base (λ)	Aug $(lpha)$	(%)
HMM	ML		8.7
I IIVIIVI	MMI		4.8
A-HMM	ML	MM	5.0
A-1 11V11V1	MMI	MM	4.3

- Augmented HMMs outperform HMMs for both ML and MMI trained systems.
 - best performance using selection/more complex model 3.2%

Binary Classifiers and LVCSR

- Many classifiers(e.g. SVMs) are inherently binary:
 - speech recognition has a vast number of possible classes;
 - how to map to a simple binary problem?
- Use pruned confusion networks (Venkataramani et al ASRU 2003):

- use standard HMM decoder to generate word lattice;
- generate confusion networks (CN) from word lattice
 - * gives posterior for each arc being correct;
- prune CN to a maximum of two arcs (based on posteriors).

LVCSR Experimental Setup

- HMMs trained on 400hours of conversational telephone speech (fsh2004sub):
 - standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
 - state-clustered triphones (~ 6000 states, ~ 28 components/state);
 - maximum likelihood training
- Confusion networks generated for fsh2004sub
- Perform 8-fold cross-validation on 400 hours training data:
 - use CN to obtain highly confusable common word pairs
 - ML/MMI-trained word HMMs 3 emitting states, 4 components per state
 - first-order derivatives (prior/mean/variance) score-space A-HMMs
- Evaluation on held-out data (eval03)
 - 6 hours of test data
 - decoded using LVCSR trigram language model
 - baseline using confusion network decoding

8-Fold Cross-Validation LVCSR Results

Word Pair	Classifier	Training		WER
(Examples/class)		Base (λ)	Aug $(lpha)$	(%)
CAN/CAN'T (3761)	НММ	ML		11.0
		MMI		10.4
	A-HMM	ML	MM	9.5
KNOW/NO (4475)	НММ	ML		27.7
		MMI		27.1
	A-HMM	ML	MM	23.8

- A-HMM outperforms both ML and MMI HMM
 - also outperforms using "equivalent" number of parameters
 - difficult to split dependency modelling gains from change in training criterion

Incorporating Posterior Information

- Useful to incorporate arc log-posterior $(\mathcal{F}(\omega_1),\mathcal{F}(\omega_2))$ into decision process
 - posterior contains e.g. N-gram LM, cross-word context acoustic information
- Two simple approaches:
 - combination of two as independent sources (β empirically set)

$$\frac{1}{T} \log \left(\frac{\overline{p}(\mathbf{O}; \boldsymbol{\lambda}^{(1)}, \boldsymbol{\alpha}^{(1)})}{\overline{p}(\mathbf{O}; \boldsymbol{\lambda}^{(2)}, \boldsymbol{\alpha}^{(2)})} \right) + b + \beta \left(\mathcal{F}(\omega_1) - \mathcal{F}(\omega_2) \right) \stackrel{\omega_1}{\leq} 0$$

- incorporate posterior into score-space (β obtained from decision boundary)

$$m{\phi}^{ ext{cn}}(\mathbf{O};m{\lambda}) = \left[egin{array}{c} \mathcal{F}(\omega_1) - \mathcal{F}(\omega_2) \ m{\phi}(\mathbf{O};m{\lambda}) \end{array}
ight]$$

Incorporating in score-space requires consistency between train/test posteriors

Evaluation Data LVCSR Results

Baseline performance using Viterbi and Confusion Network decoding

Decoding	trigram LM	
Viterbi	30.8	
Confusion Network	30.1	

• Rescore word-pairs using 3-state/4-component A-HMM+ β CN

SVM Rescoring	#corrected/#pairs	% corrected	
10 SVMs	56/1250	4.5%	

- $-\beta$ roughly set error rate relatively insensitive to exact value
- only 1.6% of 76157 hypothesised words rescored more SVMs required!
- More suitable to smaller tasks, e.g. digit recognition in low SNR conditions

Summary

- Dependency modelling for speech recognition
 - use of latent variables
 - use of sufficient statistics from the data
- Augmented statistical models
 - allows simple combination of latent variables and sufficient statistics
 - use of constrained exponential model to define statistics
 - simple to train using an SVM related to various "dynamic" kernels
- Preliminary results of a large vocabulary speech recognition task
 - SVMs/Augmented models possibly useful for speech recognition
- Current work
 - maximum margin "kernel parameter" estimation
 - use of weighted finite-state transducers for higher-order derivative calculation
 - modified "variable-margin" training (constrains $w_1 = 1$)