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Augmented Statistical Models for Speech Recognition

Overview

• Dependency Modelling in Speech Recognition:

– latent variables
– exponential family

• Augmented Statistical Models

– augments standard models, e.g. GMMs and HMMs
– extends representation of dependencies

• Augmented Statistical Model Training

– use maximum margin training
– relationship to “dynamic” kernels

• Preliminary LVCSR experiments
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Dependency Modelling

• Speech data is dynamic - observations are not of a fixed length

• Dependency modelling essential part of speech recognition:

p(o1, . . . ,oT ; λ) = p(o1; λ)p(o2|o1; λ) . . . p(oT |o1, . . . , oT−1; λ)

– impractical to directly model in this form
– make extensive use of conditional independence

• Two possible forms of conditional independence used:

– observed variables
– latent (unobserved) variables

• Even given dependency (form of Bayesian Network):

– need to determine how dependencies interact
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Hidden Markov Model - A Dynamic Bayesian Network
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(a) Standard HMM phone topology
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(b) HMM Dynamic Bayesian Network

• Notation for DBNs:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states.

• Poor model of the speech process - piecewise constant state-space.
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Dependency Modelling using Latent Variables

Switching linear dynamical system:

• discrete and continuous state-spaces

• observations conditionally independent given
continuous and discrete state;

• approximate inference required
⇒ Rao-Blackwellised Gibbs sampling.
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Multiple data stream DBN:

• e.g. factorial HMM/mixed memory model;

• asynchronous data common:

– speech and video/noise;
– speech and brain activation patterns.

• observation depends on state of both streams
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SLDS Trajectory Modelling

Frames from phrase:
SHOW THE GRIDLEY’S ...

Legend

• True

• HMM

• SLDS
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• Unfortunately doesn’t currently classify better than an HMM!

Cambridge University
Engineering Department

Trajectory Models For Speech Processing Workshop 5



Augmented Statistical Models for Speech Recognition

Dependency Modelling using Observed Variables
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• Commonly use member (or mixture) of the exponential family

p(O; α) =
1
τ
h(O) exp (α′T(O))

– h(O) is the reference distribution; τ is the normalisation term
– α are the natural parameters
– the function T(O) is a sufficient statistic.

• What is the appropriate form of statistics (T(O)) - needs DBN to be known

– for example in diagram, T (O) =
∑T−2

t=1 otot+1ot+2
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Augmented Statistical Models for Speech Recognition

Constrained Exponential Family

• Could hypothesise all possible dependencies and prune

– discriminative pruning found to be useful (buried Markov models)
– impractical for wide range (and lengths) of dependencies

• Consider constrained form of statistics

– local exponential approximation to the reference distribution
– ρth-order differential form considered (related to Taylor-series)

• Distribution has two parts

– reference distribution defines latent variables
– local exponential model defines statistics (T(O))

• Slightly more general form is the augmented statistical model

– train all the parameters (including the reference, base, distribution)
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Augmented Statistical Models
• Augmented statistical models (related to fibre bundles)

p(O; λ, α) =
1
τ
p̌(O; λ) exp


α′




∇λ log(p̌(O; λ))
1
2!vec

(∇2
λ log(p̌(O; λ))

)
...

1
ρ!vec (∇ρ

λ log(p̌(O; λ)))







• Two sets of parameters

– λ - parameters of base distribution (p̌(O; λ))
– α - natural parameters of local exponential model

• Normalisation term τ ensures that
∫

RnT
p(O; λ, α)dO = 1; p(O; λ, α) = p(O; λ, α)/τ

– can be very complex to estimate
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Augmented Gaussian Mixture Model

• Use a GMM as the base distribution: p̌(o; λ) =
∑M

m=1 cmN (o; µm,Σm)

– considering only the first derivatives of the means

p(o; λ, α) =
1
τ

M∑
m=1

cmN (o; µm,Σm)exp

(
M∑

n=1

P (n|o; λ)α′nΣ
−1
n (o− µn)

)

• Simple two component one-dimensional example:
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Augmented Model Dependencies

• If the base distribution is a mixture of members of the exponential family

p̌(O; λ) =
∏T

t=1

∑M
m=1 cm exp

(∑J
j=1 λ

(m)
j T

(m)
j (ot)

)
/τ (m)

– consider a first order differential

∂

∂λ
(n)
k

log (p̌(O; λ)) =
T∑

t=1

P (n|ot; λ)

(
T

(n)
k (ot)− ∂

∂λ
(n)
k

log(τ (n))

)

• Augmented models of this form

– keep independence assumptions of the base distribution
– remove conditional independence assumptions of the base model

- the local exponential model depends on a posterior ...

• Augmented GMMs do not improve temporal modelling ...
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Augmented HMM Dependencies

• For an HMM: p̌(O; λ) =
∑

θ∈Θ

{∏T
t=1 aθt−1θt

(∑
m∈θt

cmN (ot; µm,Σm)
)}

• Derivative depends on posterior, γjm(t) = P (θt = {sj,m}|O; λ),

T (O) =
T∑

t=1

γjm(t)Σ−1
jm (ot − µjm)

– posterior depends on complete observation sequence, O
– introduces dependencies beyond conditional state independence
– compact representation of effects of all observations

• Higher-order derivatives incorporate higher-order dependencies

– increasing order of derivatives - increasingly powerful trajectory model
– systematic approach to incorporating additional dependencies
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Augmented Model Summary

• Extension to standard forms of statistical model

• Consists of two parts:

– base distribution determines the latent variables
– local exponential distribution augments base distribution

• Base distribution:

– standard form of statistical model
– examples considered: Gaussian mixture models and hidden Markov models

• Local exponential distribution:

– currently based on ρth-order differential form
– gives additional dependencies not present in base distribution

• Normalisation term may be highly complex to calculate

– maximum likelihood training may be very awkward
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Augmented Model Training

• Only consider simplified two-class problem

• Bayes’ decision rule for binary case (prior P (ω1) and P (ω2)):

P (ω1)τ (2)p(O; λ(1), α(1))
P (ω2)τ (1)p(O; λ(2), α(2))

ω1
>
<
ω2

1;
1
T

log
(

p(O; λ(1), α(1))
p(O; λ(2), α(2))

)
+ b

ω1
>
<
ω2

0

– b = 1
T log

(
P (ω1)τ

(2)

P (ω2)τ
(1)

)
- no need to explicitly calculate τ

• Can express decision rule as the following scalar product

[
w
b

]′ [
φ(O; λ)

1

] ω1
>
<
ω2

0

– form of score-space and linear decision boundary

• Note - restrictions on α’s to ensure a valid distribution.
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Augmented Model Training - Binary Case (cont)

• Generative score-space is given by (first order derivatives)

φ(O; λ) =
1
T




log
(
p̌(O; λ(1))

)− log
(
p̌(O; λ(2))

)
∇λ(1) log

(
p̌(O; λ(1))

)
−∇λ(2) log

(
p̌(O; λ(2))

)




– only a function of the base-distribution parameters λ

• Linear decision boundary given by

w′ =
[

1 α(1)′ α(2)′ ]′

– only a function of the exponential model parameters α

• Bias is represented by b - depends on both α and λ

• Possibly large number of parameters for linear decision boundary

– maximum margin (MM) estimation good choice - SVM training
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Support Vector Machines

support vector
support vector

width

decision
boundary

margin

• SVMs are a maximum margin, binary, classifier:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– may be kernelised - training/classification a function of dot-product (xi.xj).

• Can be applied to speech - use a kernel to map variable data to a fixed length.

Cambridge University
Engineering Department

Trajectory Models For Speech Processing Workshop 15



Augmented Statistical Models for Speech Recognition

Estimating Model Parameters

• Two sets of parameters to be estimated using training data {O1, . . . ,On}:
– base distribution (Kernel) λ =

{
λ(1), λ(2)

}
– direction of decision boundary (yi ∈ {−1, 1} label of training example)

w =
n∑

i=1

αsvm
i yiG−1φ(Oi; λ)

αsvm = {αsvm
1 , . . . , αsvm

n } set of SVM Lagrange multipliers
G associated with distance metric for SVM kernel

• Kernel parameters may be estimated using:

– maximum likelihood (ML) training;
– discriminative training, e.g. maximum mutual information (MMI)
– maximum margin (MM) training (consistent with α’s).
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SVMs and Class Posteriors

• Common objection to SVMs - no probabilistic interpretation

– use of additional sigmoidal mapping/relevance vector machines

• Generative kernels - distance from the decision boundary is the posterior ratio

1
w1

([
w
b

]′ [
φ(O; λ)

1

])
=

1
T

log
(

P (ω1|O)
P (ω2|O)

)

– w1 is required to ensure first element of w is 1
– augmented version of the kernel PDF becomes the class-conditional PDF

• Decision boundary also yields the exponential natural parameters




1
α(1)

α(2)


 =

1
w1

w =
1
w1

n∑

i=1

αsvm
i yiG−1φ(Oi; λ)
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Relationship to “Dynamic Kernels”

• Dynamic kernels popular for applying SVMs to sequence data

• Two standard kernels, related to generative kernels are:

– Fisher kernel
– Marginalised count kernel

• Fisher Kernel:

– equivalent to generative kernel with two base distributions the same

p̌(O; λ(1)) = p̌(O; λ(2))

and only using first order derivatives.
– Fisher kernel useful with large amounts of unsupervised data.

• Fisher kernel can also be described as a marginalised count kernel.
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Marginalised Count Kernel

• Another related kernel is the marginalised count kernel.

– used for discrete data (bioinformatics applications)
– score space element for second-order token pairings ab and states θaθb

φ(O; λ) =
T−1∑
t=1

I(ot = a,ot+1 = b)P (θt = θa, θt+1 = θb|O; λ)

compare to an element of the second derivative of PMF of a discrete HMM

φ(O; λ) =
T∑

t=1

T∑
τ=1

I(ot = a,oτ = b)P (θt = θa, θτ = θb|O; λ) + . . .

– higher order derivatives yields higher order dependencies
– generative kernels allow “continuous” forms of count kernels
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ISOLET E-Set Experiments

• ISOLET - isolated letters from American English

– E-set subset {B,C,D,E,G,P,T,V,Z} - highly confusable

• Standard features MFCC E D A, 10 emitting state HMM 2 components/state

– first-order mean derivative score-space for A-HMM

Classifier Training WER
Base (λ) Aug (α) (%)

HMM
ML — 8.7
MMI — 4.8

A-HMM
ML MM 5.0
MMI MM 4.3

• Augmented HMMs outperform HMMs for both ML and MMI trained systems.

– best performance using selection/more complex model - 3.2%
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Binary Classifiers and LVCSR

• Many classifiers(e.g. SVMs) are inherently binary:

– speech recognition has a vast number of possible classes;
– how to map to a simple binary problem?

• Use pruned confusion networks (Venkataramani et al ASRU 2003):

ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

TO IN DIDN’TIT ELABORATE

!NULLA

BUT

!NULL

!NULL

DIDN’T ELABORATE

!NULLIN

BUT IT

TO

!NULL

Word lattice Confusion Network Pruned confusion network

– use standard HMM decoder to generate word lattice;
– generate confusion networks (CN) from word lattice
∗ gives posterior for each arc being correct;

– prune CN to a maximum of two arcs (based on posteriors).
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LVCSR Experimental Setup

• HMMs trained on 400hours of conversational telephone speech (fsh2004sub):

– standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
– state-clustered triphones (∼ 6000 states, ∼ 28 components/state);
– maximum likelihood training

• Confusion networks generated for fsh2004sub

• Perform 8-fold cross-validation on 400 hours training data:

– use CN to obtain highly confusable common word pairs
– ML/MMI-trained word HMMs - 3 emitting states, 4 components per state
– first-order derivatives (prior/mean/variance) score-space A-HMMs

• Evaluation on held-out data (eval03)

– 6 hours of test data
– decoded using LVCSR trigram language model
– baseline using confusion network decoding
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8-Fold Cross-Validation LVCSR Results

Word Pair Classifier Training WER
(Examples/class) Base (λ) Aug (α) (%)

CAN/CAN’T HMM
ML — 11.0

(3761)
MMI — 10.4

A-HMM ML MM 9.5

KNOW/NO HMM
ML — 27.7

(4475)
MMI — 27.1

A-HMM ML MM 23.8

• A-HMM outperforms both ML and MMI HMM

– also outperforms using “equivalent” number of parameters
– difficult to split dependency modelling gains from change in training criterion
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Incorporating Posterior Information

• Useful to incorporate arc log-posterior (F(ω1),F(ω2)) into decision process

– posterior contains e.g. N-gram LM, cross-word context acoustic information

• Two simple approaches:

– combination of two as independent sources (β empirically set)

1
T

log
(

p(O; λ(1), α(1))
p(O; λ(2), α(2))

)
+ b + β (F(ω1)−F(ω2))

ω1
>
<
ω2

0

– incorporate posterior into score-space (β obtained from decision boundary)

φcn(O; λ) =
[ F(ω1)−F(ω2)

φ(O; λ)

]

• Incorporating in score-space requires consistency between train/test posteriors
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Evaluation Data LVCSR Results

• Baseline performance using Viterbi and Confusion Network decoding

Decoding trigram LM

Viterbi 30.8
Confusion Network 30.1

• Rescore word-pairs using 3-state/4-component A-HMM+βCN

SVM Rescoring #corrected/#pairs % corrected

10 SVMs 56/1250 4.5%

– β roughly set - error rate relatively insensitive to exact value
– only 1.6% of 76157 hypothesised words rescored - more SVMs required!

• More suitable to smaller tasks, e.g. digit recognition in low SNR conditions
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Summary

• Dependency modelling for speech recognition

– use of latent variables
– use of sufficient statistics from the data

• Augmented statistical models

– allows simple combination of latent variables and sufficient statistics
– use of constrained exponential model to define statistics
– simple to train using an SVM - related to various “dynamic” kernels

• Preliminary results of a large vocabulary speech recognition task

– SVMs/Augmented models possibly useful for speech recognition

• Current work

– maximum margin “kernel parameter” estimation
– use of weighted finite-state transducers for higher-order derivative calculation
– modified “variable-margin” training (constrains w1 = 1)
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