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ABSTRACT

For many challenging tasks there is often limited data to train the
systems in an end-to-end fashion, which has become increasingly
popular for deep-learning. However, these tasks can normally be
split into multiple separate modules, with significant quantities of
data associated with each module. Spoken language processing ap-
plications fit into this scenario, as they usually start with a speech
recognition module, followed by multiple task specific modules to
achieve the end goal. This work examines how the best use can
be made of limited end-to-end training for sequence-to-sequence
tasks. The key to improving the use of the data is to more tightly
integrate the modules via embeddings, rather than simply propa-
gating words between modules. In this work speech translation is
considered as the spoken language application. When significant
quantities of in-domain, end-to-end data is available, cascade ap-
proaches operate well. When the in-domain data is limited, how-
ever, tighter integration between modules enables better use of the
data to be made. One of the challenges with tighter integration is
how to ensure embedding consistency between the modules. A novel
form of embedding-passing between modules is proposed that shows
improved performance over both cascade and standard embedding-
passing approaches for limited in-domain data.

Index Terms— spoken language processing, speech translation,
embedding-passing, end-to-end training

1. INTRODUCTION

Modular systems are widely used for complex tasks when there is
limited data for end-to-end training. Having multiple separate mod-
ules allows each sub-task to be trained individually, with signifi-
cantly larger amount of data associated with each module. However,
there are draw-backs to this approach. Modular systems operate in
a sequential fashion which requires early decisions to be made, and
any error made in early stages will have a ripple effect on down-
stream modules. The challenge, therefore, lies in mitigating error
propagation through tightly integrated training and efficient use of
limited end-to-end data. In this work, speech translation (ST) is con-
sidered as an example task, and a novel embedding-passing approach
is proposed to allow tighter integration. This work is not intended to
compete against the state-of-the-art ST systems [1, 2], which adopt
ensembles, augmentation and much larger data sets. Instead, the fo-
cus is laid on exploring tighter integration in end-to-end training of
modular systems, especially under a restrictive data scenario.

Traditional cascaded approach brings together an automatic
speech recognition (ASR) module and a machine translation (MT)
module. Past work explored connections through 1-best words [3, 4],
n-best lists [5, 6] and lattices [7, 8]. Error propagation can be miti-
gated to some extent with an increasing level of complexity involved
in the connection point. However, maintaining a rich search space

for transcriptions is computationally expensive. Moreover, word-
based discrete connection cannot carry over prosody information,
and potentially incurs ambiguity in downstream MT. With recent
advances in attention-based encoder decoder models [9, 10], more
work has been done on integrating ASR and MT into a single
model. Direct end-to-end model [11, 12, 13] does not rely on in-
termediate speech recognition, but it requires significant quantities
of in-domain, end-to-end data to reach good performance. An-
other line of approaches still relies on explicit speech recognition,
and adopts end-to-end trainable triangle structures [14, 15, 16].
Attention-passing [15] uses attention-generated context vectors to
pass information between RNN-based sequence models, yet it is
not compatible with the state-of-the-art transformer models where
multiple layers of self-attention are used. Multi-task end-to-end
model [16, 17] learns hidden representations of words from the ASR
module, yet they cannot operate under zero-data scenario.

There is a notable trade-off between modeling power and data
efficiency [18]. Models that are flexible to train on auxiliary MT cor-
pora tend to be less sensitive to prosodies, whereas models that make
full use of acoustic information are less adaptive to diverse corpora.
Despite previous effort on analysing data efficiency [15, 16, 19], lit-
tle has been done to contrast end-to-end trainable systems against
cascaded structure under limited end-to-end data, neither do they
take into account hybrid speech recognition, which potentially pro-
vides better ASR transcriptions compared to some end-to-end ASR
models. This work studies integrated training of modular struc-
tures, contrasting models with different connections between ASR
and MT modules. Baseline cascade connects through discrete words,
while vanilla end-to-end model connects through acoustic hidden
states. The former has restricted modeling power whereas the lat-
ter is low on data efficiency. Aiming to combine the best of both
worlds, an embedding-passing model is proposed. It matches acous-
tically derived & word level embeddings and initialises the trans-
lation model with auxiliary data, thus achieving speech translation
without in-domain training. Pure embedding-passing suffers from
poor speech recognition, and consequently sabotages translation per-
formance. To strike a balance between rich information flow and reg-
ularisation through words, another joint embedding-passing model is
proposed to use both acoustic and word embeddings as module con-
nection. Models are compared in the following aspects: impact of
different levels of in-domain data availability; data efficiency; trans-
lation performance when high quality ASR transcriptions are used.

2. MODELS

Define speech translation task with audio sequences v1:T , speech
transcriptions x1:N and target translations y1:L. Due to the lack of
end-to-end ST corpora, where all three components are available, ad-
ditional auxiliary ASR {v1:T , x1:N} and MT {x1:N , y1:L} corpora
are used for pre-training. The focus of this work is to design models



(a) Cascade (Casc), End2End (E2E), Embedding-Passing (EP)

(b) Joint Embedding-Passing (EP-J)

Fig. 1: Various models with different connection points
between ASR and MT

such that they can be well initialised with ASR, MT corpora, and
more importantly, quickly adapt to the target domain with limited
quantities of fine-tuning ST data. Various models shown in Figure 1
are discussed below.
Cascade (Casc) The vanilla Casc model consists of an RNN-based
Listen-attend-spell (LAS) [20] and a transformer-based NMT [10].
In the LAS module, audio sequences v1:T are first mapped into time-
reduced hidden states through pyramidal LSTM:

h1:τ = pBLSTM(v1:T ) (1)

Acoustic-level h1:τ are converted into word-level dynamic embed-
dings ed1:N through an attention mechanism, and then mapped into
words (FFN: feed-forward network):

cn = Att(sn,h1:τ ) sn = RNN(sn−1, xn−1, cn−1) (2)

edn = FFN([cn, sn]) (3)

x1:N = argmax(σ(FFN(ed1:N ))) (4)

The transcribed word tokens x1:N are passed onto the NMT module,
mapped into static embeddings es1:N , and then translated to be y1:L:

es1:N = Emb(x1:N ) (5)

y1:L = Transformer(es1:N ) (6)

The cascade structure connects speech recognition and machine
translation through words. Such discrete connection allows hybrid
ASR transcripts to be used as an alternative to LAS. It is conve-
nient to pre-train each module on ASR and MT corpora, and yet
fine-tuning on ST data has to be done in a modular fashion as well.
As are all cascade style models, flexibility is achieved through com-
promising modeling power. Casc model optimises two modules sep-
arately and thus tends to propagate ASR errors to the NMT module.
To mitigate this issue, several other approaches are proposed seeking
to allow softer and tighter connections.
End-to-end (E2E) As shown in Figure 1(a), the E2E model omits
the intermediate speech recognition stage. Acoustic-level hidden
states h1:τ are directly fed into the translation model:

y1:L = Transformer(h1:τ ) (7)

Compared to Casc, connection through hidden states provides a
richer feature space, which potentially encapsulates both acoustic
and textual information. On the other hand, the end-to-end nature
prohibits the model from operating without ST data, and it requires
large quantities of end-to-end data for training.
Embedding-Passing (EP) To obtain a higher level of abstraction,
the EP model passes word-level embeddings rather than acoustic-
level hidden states. It enforces the acoustically derived dynamic em-
beddings ed1:N to match with the static embeddings es1:N , and uses
this embedding as the connection between ASR and MT. It uses es1:N
to initialise the MT module, and uses ed1:N for speech translation:

y1:L = Transformer(ed1:N ) (8)

Static embeddings are derived using one-to-one mapping from
words, thus called static; whereas dynamic embeddings follow
many-to-one mapping since the same word can be pronounced very
differently. The matched embedding connection allows auxiliary
data to be used, and maintains a rich information flow that is partic-
ularly useful during fine-tuning.
Joint Embedding-Passing (EP-J) In EP, embedding matching
reaches a compromise between richness of acoustics and robustness
of text. However, the many-to-one nature of the dynamic embed-
dings causes a systematic mismatch from the static embeddings.
Therefore in EP-J, to loosen the constraints posed by embedding
matching, the model decouples the static and dynamic embeddings,
and simply concatenates the two to yield a joint embedding for
translation:

y1:L = Transformer(W[es1:N , e
d
1:N ]) (9)

where W is a transformation matrix setting the dimension of the
joint embedding. In MT pre-training, there is no dynamic embed-
ding from the acoustics, and an average dynamic embedding ēd, ob-
tained from ASR pre-training, is used to initialise the transformer.

3. EXPERIMENTAL SETUP

This work focuses on En-De speech translation. The three main cor-
pora used in the experiments are summarised in Table 1. WMT17
En-De has over 4M sentences in total, but only 10% was used for
pre-training purposes to save computational time. All results re-
ported are evaluated on MuST-C tst-COMMON with case-sensitive
BLEU. On the audio side, 40 dimensional filter bank features are ex-
tracted at 10ms frame rate. English transcriptions are lower-cased,
punctuation-normalised using Moses toolkit [21], and further to-
kenised following byte-pair encoding [22] with a 40k vocabulary
trained on MuST-C. German translations are kept true-cased.



Corpus Task #Sentences

TED-LIUM3 [23] ASR 268k
WMT17-P En-De [24] MT 400k
MuST-C En-De [25] ST 229k

Table 1: Corpora

The LAS model has an encoder of 1x256D BLSTM and 3x256D
pLSTM layers, reducing acoustic sequence lengths by 8. The de-
coder then uses bilinear attention, followed by 3x512D uniLSTM
layers. Speaker level normalisation and SpecAug [26] were enabled
in LAS training. The NMT transformer is a standard base-sized
model with 512D hidden states, 6 encoder, and 6 decoder layers.
LAS uses BPE tokens as targets, while NMT uses character-level
targets. Both static and dynamic embeddings are 512D. Casc models
can be trivially trained module-by-module. In E2E, the pLSTMs are
trained with LAS target, which are then fixed during the transformer
training. In EP, the matching between static and dynamic embed-
dings was achieved as such: (1) initialise dynamic embeddings with
LAS target (2) freeze LAS and train the static embedding-mapping
function (3) free up all parameters associated with the two embed-
dings and enforce an L2 loss with ASR corpora. Once the embed-
dings are matched and fixed, the transformer can be initialised on
MT data, and later all parameters are fine-tuned on ST data. Training
of EP-J is simpler since dynamic and static embeddings are no longer
coupled. An averaged dynamic embedding is used to initialise the
transformer on MT data, and the fine-tuning stage is similar to EP.
When manual transcriptions are available, fine-tuning always uses
both LAS and NMT objectives. When they are not, LAS-related pa-
rameters are fixed during fine-tuning, and only the NMT objective
is imposed. All models are trained using Adam optimiser [27] with
a batch size of 256, dropout 0.2, and a learning rate of 0.001 with
gradient clipping. A pytorch implementation is available for down-
load 1. Translations were generated using beam search with a beam
width of 5, and models are averaged over the 5 best checkpoints un-
der each setup.

ASR ST (BLEU↑)
Name Models Data WER↓ Base Tune

ASRT Hybrid TED 10.58 13.58 23.85
ASRM Hybrid MuSTC 7.32 14.41 25.45
LAST LAS TED 35.20 9.60 15.97
LASM LAS MuSTC 20.99 12.25 20.54

Table 2: Casc baselines on different ASR transcriptions

Table 2 shows 4 ASR systems with their corresponding Casc
performance before and after fine-tuning on ST data. On the ASR
side, both LAS and hybrid models were trained on TED-LIUM3
corpus (out-of-domain) and MuST-C corpus (in-domain). Hybrid
ASR systems adopted lattice-free maximum mutual information
(LF-MMI) factorised time-delay neural network (TDNN-F) acoustic
model [28] followed by a 3-gram decoding. On the NMT side, the
base model was trained on WMT17-P, and the fine-tuned model
was further trained on MuST-C. Compared to LAS models, hybrid
ASR systems obtained 25% and 13% lower WER when trained on
TED and MuST-C respectively. They consequently led to higher ST
BLEU in both base and fine-tuned cases. As expected, the highest
BLEU score was achieved by combining ASRM transcriptions with
the fine-tuned NMT.

1https://github.com/EdieLu

4. RESULTS

4.1. In-domain Data Availability

ST Data None Audio-De Audio-En-De

E2E - - 19.29
Casc 9.60 16.56 20.54
EP 7.97 18.84 22.56

EP-J 9.60 16.24 23.25

Table 3: ST BLEU under 3 levels of in-domain data availability

This section investigates the impact of in-domain data availabil-
ity on different models. The key difference that distinguishes various
models is the information flow passed from the acoustic side to the
translation module. Casc uses discrete words, E2E uses acoustic-
level hidden states, EP and EP-J use matched embeddings and joint
embeddings respectively. To directly contrast the impact of different
connection points, LAS style ASR is considered across all models,
and hybrid ASR will be discussed in later sections.

Three conditions of data availability are considered here: (1)
zero in-domain ST data; (2) ST data without manual En transcrip-
tions (Audio-De); (3) ST data with both En transcriptions and De
translations (Audio-En-De). All models were initialised with ASR,
MT data, and were then fine-tuned towards the ST domain, except
for E2E which was directly trained on ST data. During fine-tuning,
when manual transcriptions were not available, the NMT compo-
nent in Casc was trained with LAST transcriptions. EP and EP-J
models were trained with LAS-related parameters being fixed. Due
to restricted data availability, Casc was decoded using LAST tran-
scriptions under condition (1)(2); and LASM under (3).

Table 3 shows that Casc and EP-J are similar under zero in-
domain data, EP-J performs the best under full data, whereas EP
is the best when manual transcriptions aren’t available. In the base
case, EP falls short mainly because of the imperfect matching be-
tween static and dynamic embeddings. The dynamic embedding can
be seen as a noisy, perturbed version of the static embedding, since
different pronunciations can point to the same word. Embedding
mismatch is a systematic issue before any in-domain training takes
place. In comparison, EP-J loosens the restriction and makes use of
both dynamic and static embeddings. Before fine-tuning, the trans-
former NMT in EP-J is initialised using averaged dynamic embed-
dings, which explains why the model is not better than Casc since
it’s yet to benefit from richer acoustic context. After fine-tuning,
EP-J is able to gain robustness through regularisation provided by
static embeddings, meanwhile retaining richness of the acoustic fea-
tures from dynamic embeddings, and thus achieve the best perfor-
mance among all. However, when the in-domain speech transcrip-
tions are not available, which means LAS errors are passed down to
the NMT module during fine-tuning, EP outperforms cascade and
EP-J by over 2 BLEU points. This confirms that having a soft dy-
namic connection in a modular structure helps to mitigate error prop-
agation.

Most ST corpora provides audio, transcriptions and translations
as it is natural to produce speech transcripts first, then generate trans-
lations in the annotation process. Therefore in the following sec-
tions, we focus on comparing Casc and EP-J models as they are most
competitive under realistic settings.

https://github.com/EdieLu


4.2. Data Efficiency

(a) Casc+LAS vs EP-J (b) Casc+Hybrid ASR vs EP-J

Fig. 2: Data efficiency: BLEU - data ratio
(All models fine-tuned with MAN transcriptions)

Last section discussed two ends of the data spectrum, this part
further explores how Casc and EP-J behave under different quantities
of in-domain data. To investigate data efficiency, Casc and EP-J are
both initialised with the same ASR, MT corpora, and then fine-tuned
with a sweep through ST data (from 100% to 0%). Their respective
performances are recorded at each data ratio. Figure 2(a) compares
Casc and EP-J models when they both adopt the same LAS-style
ASR module. For Casc, both LAST and LASM transcriptions are
used, setting the lower (out-of-domain LAS) and upper (in-domain
LAS) bounds respectively. EP-J and Casc behave similarly in the
zero data region, and yet EP-J adapts to the target domain much more
quickly with an increasing amount of in-domain ST data, starting to
outperform the Casc upper bound at only 10% data level. The main
difference between Casc and EP-J is the additional dynamic embed-
dings incorporated into the source side of the MT module. This re-
sult confirms that dynamic embeddings do provide downstream tasks
with a richer acoustic context, allowing more efficient domain adap-
tation with as few as 23k sentence pairs.

However, it is not fair to only compare EP-J with Casc models
that are using LAS produced transcriptions. One of the benefits of
cascaded structures is the flexibility in improving each individual
module. To construct a stronger cascaded baseline, two hybrid ASR
systems are used to provide better speech transcriptions, with ASRT
(trained out-of-domain) and ASRM (trained in-domain) setting the
lower and upper bounds. Figure 2(b) shows that when Casc model
adopts hybrid ASR transcriptions, its lower bound performs at the
similar level as EP-J, and the upper-bound outperforms EP-J. This
can be accounted for by the huge performance gap between LAS
(over 15% WER) and hybrid ASR (7.32% WER).

4.3. Improved LAS back history

(a) ST BLEU - data ratio (b) LAS WER - data ratio

Fig. 3: EP-J decoded with various LAS back history
(FR: back history generated under free running)

As mentioned above, EP-J suffers from poor LAS performance,
and consequently leads to inferior speech translation quality. One

of the advantages of having an explicit speech recognition stage in
EP-J, compared with pure E2E, is the flexibility of incorporating ex-
ternal sources of information. In EP-J, it is possible to amend LAS
generated hypotheses and propagate its impact through LAS atten-
tion with the modified back history. One way of improving LAS
transcriptions is to decode with external language model. As shown
in Figure 3 (dotted orange line), by adding an explicit 4-gram LM
trained on TED, LAS WER dropped slightly and led to some in-
crease in ST BLEU. Another more effective approach is to directly
replace LAS hypotheses with external ASR transcriptions. In gen-
eral, better back history leads to lower LAS WER, and thus higher
ST BLEU score. However, as is shown in Figure 3(b), although
the transcription quality used for back history follows FR < ASRT
< ASRM < MAN, the generated LAS hypotheses gives ASRT <
ASRM < FR < MAN, ordered from the highest to the loweset
WER. The inversion between FR and ASRT/M is mainly because
of the mismatch between LAS predicted and hybrid ASR gener-
ated transcripts. Despite the worse WER, with the in-domain ASRM
transcriptions being used, EP-J improved by around 2 BLEU points
throughout the sweep. It is also worth notice that, even when manual
transcriptions are fed in as LAS back history, WER of LAS hypothe-
ses are still above 10% (3 points higher than ASRM), and such sub-
optimal LAS has already led to 28.34 BLEU (with data ratio = 1.0),
which is way higher than the Casc highest 25.45 BLEU. Therefore,
it is safe to speculate that when LAS reaches a comparable WER as
hybrid ASRs, EP-J will achieve much better ST performance.

Figure 4 compares EP-J with Casc, both making use of hybrid
ASR transcriptions in their own ways. Under zero data, true per-
formance is closer to the lower bound (ASRT), whereas full data
leads to the upper bound (ASRM). It is expected that, compared to
the vanilla Casc, it is more challenging for EP-J to indirectly propa-
gate ASR transcriptions through LAS back history. In the low data
region, Casc is better, suggesting that regularisation via words still
is an effective way of handling out-of-domain corpus. After train-
ing on 40% of in-domain data or more, EP-J starts to outperform
Casc model even though the LAS performance (over 15% WER) is
nowhere near ASRM. This shows that joint embedding does help
make the model more robust against poor LAS performance, and
supports efficient adaptation towards the target domain.

Fig. 4: Casc vs EP-J with Hybrid ASR Transcriptions

5. CONCLUSIONS

This work takes a close look at different connections in modu-
lar structures, and their impact on data efficiency in end-to-end
training. Hard, discrete connection poses strong regularisation
on complex systems and performs well under low data scenario.
Soft, embedding-like connection provides richer context and adapts
well under fine-tuning. Combination of the two seeks compromise
between regularisation and richness, and is proved useful when
competing with a challenging baseline.
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