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Abstract—Accurate confidence measures for predictions from
machine learning techniques play a critical role in the deployment
and training of many speech and language processing applica-
tions. For example, confidence scores are important when making
use of automatically generated transcriptions in training auto-
matic speech recognition (ASR) systems, as well as down-stream
applications, such as information retrieval and conversational
assistants. Previous work on improving confidence scores for
these systems has focused on two main directions: designing
features correlated with improved confidence prediction; and
employing sequence models to account for the importance of
contextual information. Few studies, however, have explored
incorporating contextual information more broadly, such as from
the future, in addition to the past, or making use of alternative
multiple hypotheses in addition to the most likely one. This article
introduces two general approaches for encapsulating contextual
information from lattices. Experimental results illustrating the
importance of increasing contextual information for estimating
confidence scores are presented on a range of limited resource
languages where word error rates range between 30% and 60%.
The results show that the novel approaches provide significant
gains in the accuracy of confidence estimation.

Index Terms—Speech recognition, confidence, recurrent neural
network, attention, graph structures.xf

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) accuracy has
seen a gradual but consistent improvement across a wide

range of domains in recent years. The use of transcriptions as
is, however, typically leads to a poor performance in applica-
tions utilising ASR technology (downstream tasks) as mistakes
cannot be flagged and acted upon. If a measure indicating the
likelihood of a mistake occurring can be provided along with
each transcribed word1, then ASR technology could be applied
to a wider range of domains where near-perfect transcriptions
are not possible. Such measures are also very useful for the
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1For simplicity, this article excludes handling deletion errors. Approaches
for taking deletion errors into account have been proposed [1] and can be
incorporated into all of the models described in this article following [2].

development of ASR technology itself (upstream tasks). For
instance, semi-supervised training [3], speaker adaptation [4],
system combination [5] and the transcription process itself [6]
can all benefit from the knowledge of transcription mistakes.

Confidence scores, which are often presented as a numeric
value between 0 and 1 for each word, have been widely used in
this role since the 1990s. A number of schemes have been pro-
posed for estimating these confidence scores. These range from
simple schemes based on word posterior probabilities [7]–
[9] to more complex schemes that utilise powerful sequence
models, such as conditional random fields [10] and recurrent
neural networks (RNN) [2], [11]–[13]. Amongst them, the
approaches based on word posterior probabilities have become
the most commonly used, and successful, schemes. Despite
significant research into finding more accurate alternatives,
these word posterior probabilities have proven to be a very
challenging baseline to improve upon.

This article demonstrates that context plays a critical role
in accurate confidence estimation. It introduces two novel
approaches that provide two different systematic ways for
incorporating information from more general than sequences
graph-like, lattice, data structures. The first approach extends
RNNs from sequences to lattices by means of an attention
mechanism [14] that enables information from multiple paths
to be combined and propagated, which is impossible with
standard RNNs2. The second approach leverages the flexibility
offered by attention to combine information more generally,
such as from all overlapping in time path segments, an entire
lattice, or a set of lattices. Both approaches lead to a significant
increase in the amount of contextual information available
for confidence predictions and yield significant improvements
over word posterior probabilities, as illustrated by an extensive
evaluation in challenging limited resource conditions.

The rest of this article is organised as follows. Section II
relates the proposed approaches to other work in the audio,
speech and language processing area. The following Sec-
tion III provides an overview of conventional confidence score
estimation approaches. Section IV introduces the proposed
recurrent and attention methods for extracting contextual in-
formation for confidence estimation from lattices. Experiments
with the proposed methods are presented in Section V. Finally,
conclusions drawn from this work are given in Section VI.

2A short summary of this approach has been previously presented in [15].
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II. RELATION TO PRIOR WORK

The importance of context in confidence estimation has been
appreciated for a long time. Even the conventional methods
discussed in Section III make use of the whole hypothesised
transcript to estimate confidence. Furthermore, the accuracy
of some of those methods have been long linked with the
number of alternative transcripts used in their estimation
[7]. Alternative transcripts have so far been exploited only
for extracting new types of features. These range from a
hypothesis density [16], [17], which represents the quantity
and/or diversity of alternative hypotheses, to learnt fixed or
variable length lattice embeddings [18]–[21]. The recurrent
and attention methods proposed in this work differ from this
line of research by learning embeddings and confidence scores
of individual arcs in a single fully integrated framework.

The context itself can be viewed more broadly than just
alternative transcripts generated by a single ASR system. It is
common for high-performing ASR systems to combine mul-
tiple diverse sub-systems using approaches such as ROVER
[5] and confusion network (CN) combination (CNC) [22]
to reduce transcription error. The proposed attention method
applied to multiple hypotheses or CNs can be viewed as
a more general trainable solution. Furthermore, unlike the
dynamic programming algorithms used by ROVER and CNC,
the attention method can be generalised to more general graph
structures, such as lattices, as will be illustrated in Section V.

Alternative ASR systems and features such as hypothesis
density provide important information about how consistent
or stable any prediction is. The notion of stability gave rise to
alternative language model assessment criteria [23], data aug-
mentation methodologies [24] as well as confidence estimation
approaches [16]. The proposed attention method can be viewed
as a more general form of acoustic stability [16], where lattices
rather than one-best hypotheses are used and a trainable
attention mechanism replaces counting how many alternative
words emerged by perturbing acoustic and/or language model
scales. This novel form of acoustic stability offers a range
of advantages. In particular, the attention mechanism provides
for a more nuanced definition of stability that can take into
account temporal (e.g. overlap), topological (e.g. location and
connectivity), and semantic (e.g. word) information.

The generality of graph-like data structures makes them
a popular choice of data representation in many other areas
of audio, speech and language processing. Recurrent neural
networks with such a complex input have been previously
examined by a number of authors [19], [25]–[27]. The key
difference between those extensions and the proposed recur-
rent method is the use of attention for computing history states,
rather than averaging, pooling or gating. A broader application
of attention to graph-like data structures has been explored
in [28], [29], where various generalisations of adjacency
(connectivity) matrices were examined for encoding topologies
of machine translation (MT) lattices into a matrix format. The
proposed attention method extends that line of work to ASR
lattices, which contain information not present in MT lattices
such as time. The new information enables novel forms of
adjacency matrices and attention to be explored as will be

described in Section IV.

III. CONVENTIONAL METHODS

This section will focus on hidden Markov model (HMM)
based ASR systems as the problem of miscalibrated pre-
dictions of multi-class (softmax) classifiers employed by al-
ternative end-to-end (E2E) approaches [30]–[32] has a long
history in machine learning and have been extensively covered
elsewhere [33], [34]. Furthermore, some of the approaches
discussed here can be used with E2E systems.

A. Word posterior probabilities

Word posterior probabilities emerged as a popular approach
for obtaining confidence scores at the end of the 1990s [16].
One of the key reasons for their popularity is the simplicity of
computing word posterior probabilities from lattices generated
by HMM-based recognisers. A lattice, illustrated in Figure 1,
is a popular encoding format used in HMM-based ASR to
retain a vast number of hypothesised transcriptions. Similar
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Fig. 1: An example of a lattice (HMM case)

structures have been explored for E2E speech recognition [35],
[36]. Given a lattice, a forward-backward algorithm [37] can
be applied to estimate posterior probabilities of lattice arcs,
or edges [9], [16]. The forward and backward probability
associated with lattice arc ei can be computed recursively by

αi =
∑

j∈
−→
N (1)

i

αjsi and βi =
∑

j∈
←−
N (1)

i

βjsj (1)

where
−→
N (1)

i and
←−
N (1)

i is the set of arcs which are direct left
and right neighbours of ei respectively and si is an arc score.
Given a pair of forward αi and backward βi probabilities, the
arc posterior probability pi can be computed by

pi =
1

[[L]]
αiβi = P (ei|O) (2)

where [[L]] is a lattice weight (forward probability of the
final arc or backward probability of the initial arc3). Lat-
tice arc posterior probabilities are not the same as word
posterior probabilities [9]. A number of different schemes
have been proposed for deciding how to optimally combine
and normalise arc posterior probabilities to yield accurate
estimates of word posterior probabilities [7]–[9]. In particular,

3Multiple initial/final arcs can be handled either by summing over their
probabilities or adding new preceding/following arcs to ensure that only one
initial/final arc exists.
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the confusion network (CN) approach [7], [8] clusters lattice
arcs first based on time and then based on their word labels.
The time clustering creates a chain like structure, where
consecutive nodes, or bins, Ci−1 and Ci are connected by one
or more lattice arcs. The word clustering then merges any arcs
with identical word labels. Figure 2 shows an example of a
confusion network produced from the lattice in Figure 1. The
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Fig. 2: An example of a confusion network (HMM case)

probability of word w in bin Ci is computed by

pi,w =

∑
j∈Ci pjδ(w,wj)∑

j∈Ci pj
= P (w|Ci,O) (3)

where δ(w,wj) = 1 if w = wj and 0 otherwise. These prob-
abilities are used as estimates of word posterior probabilities.

Word posterior probabilities derived from lattices are often
criticised for providing overly optimistic estimates of confi-
dence. This problem exists with both Gaussian mixture model
[7] as well as neural network based HMMs (e.g. [2]). One
of the major contributing issues is the limited number of
arcs generated by speech recognisers, which leads to smaller
than expected denominator terms in equation (2). Another
issue is the underlying statistical models themselves [33], [38].
The problem of poor confidence estimates in neural network
based classifiers is the subject of active research [33], [39].
Approaches for rectifying this problem can be divided into
two groups. The first group comprises approaches that make
changes to the model architecture [33], [40] and/or modify the
standard parameter estimation methodology [41], [42]. Popular
examples included temperature scaling [33], ensembles [39],
and data augmentation [21]. The second group comprises post-
hoc calibration approaches that transform predictions such that
they exhibit a more favourable behaviour [34], [43], [44]. This
last group of approaches is more general, as it supports both
HMM and E2E ASR systems. Common approaches in this
group also include (piece-wise) linear mappings [7], feed-
forward [45] and more complex [46] neural network models.

B. Sequence models

One critical issue with the post-hoc calibration schemes
mentioned in the previous section are strong independence
assumptions, which disregard the sequential nature of speech
and confidence estimation. Discriminative graphical models
[47] emerged as a powerful alternative to HMMs for modelling
posterior probabilities of word sequences given observation
sequences [48]–[50]. Many such approaches are based on
conditional random fields (CRF) [51] which enable comput-
ing word posterior probabilities using the efficient forward-
backward algorithm. These probabilities then can be used as
confidence scores [10]. Even though CRFs theoretically enable
arbitrary long dependencies in observations to be modelled, it
is not obvious how to extract and model them. The recent

revival of interest in neural network approaches has led to
exploring recurrent neural networks (RNN) for confidence
prediction. The key element of an RNN is a recursively
updated history state

hi = ϕ(hi−1,xi) (4)

where hi−1 and hi are the past and current history state, xi

are features associated with the current position in a sequence,
ϕ is a non-linear transform, such as [52], [53]. The recursive
nature of history states, where any state depends on all past
features, provides an opportunity for capturing long-range
dependencies. It is also possible to extend this approach to
capturing future dependencies using a bi-directional RNN [54],
where an additional, future, state is employed. In either case,
confidence scores can be predicted by learning a suitable
non-linear transformation of RNN history states. Both uni-
and bi-directional RNNs have been explored for predicting
confidence scores [2], [11], [13], [55]. RNNs have also been
exploited within energy-based models to yield sequence-level,
or utterance, confidence scores [56].

The ability of CRFs and RNNs to yield accurate confidence
scores also critically relies on the availability of informative
features. The long history of confidence scores in ASR has
led to the development of a large number of features that have
been found useful for confidence estimation.

a) Acoustic features: Given a segment of speech, the
simplest kind of features that can be extracted are duration
[17], speaking rate and signal-to-noise ratio [57], the first
and higher order statistics, HMM likelihoods [17], [57] and
other dynamic kernels [50], [58], [59]. Powerful approaches
from deep learning include various forms of encoders [14],
[53], [60] that enable general mappings from variable length
observation sequences to a fixed length to be learnt.

b) Language features: Similar approaches have been
adopted with word features. These include count-based and n-
gram order features [45], [57] and simple generative kernels,
such as language model log-probabilities [17], [45]. Popular
features from representation learning and the deep learning
area include word embeddings [61].

c) Lexicon features: These features aim to extract in-
formation at a finer, subword, level. There are a number
of possible subword units to consider, such as graphemes,
phonemes, syllables, morphs and n-gram extensions of these
units. Each unit can benefit from all of the features discussed
above (both acoustic and language features, e.g. [62]).

d) Graph features: Features examined so far were fo-
cused on deriving information at a local segment/word level.
Given a sequence or graph output representation, it is possible
to extract features that reflect the global context. The word
posterior probabilities discussed in this section are examples of
graph features [45]. Other examples include arc/node density
and stability of hypothesised word with respect to the acoustic
or language model scale, or acoustic stability [16], [17].
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C. Training and evaluation

Confidence prediction models are commonly trained by
minimising (binary) cross-entropy (CE)

H(c, c∗) = − 1

T

T∑
t=1

c∗t log(ct) + (1− c∗t ) log(1− ct) (5)

where c and c∗ are predicted and reference confidence scores
respectively. The reference confidence scores are not immedi-
ately available and must be inferred. Given a hypothesis w and
reference wref word sequence, the alignment between these
sequences can be obtained using a Levenshtein algorithm [5]

L
j

i = min
{
L
j−1
i−1 + Lj−1,j

i−1,i , L
j

i−1 + Li−1,i, L
j−1
i + Lj−1,j

}
(6)

where L
j

i is a cumulative loss incurred on reaching position
i in the first sequence and position j in the second sequence,
Li−1,i and Lj−1,j are losses incurred on making a single step
transition from one position to the next in either the first or the
second sequence, Lj−1,j

i−1,i is a loss incurred on making single
step transitions in both sequences. These losses are given by

Li−1,i = κ(i), Lj−1,j = κ(d), (7)

Lj−1,j
i−1,i = κ(s)(1− δ(wi, w

ref
j )) (8)

where κ(i), κ(d) and κ(s) are the costs of insertion, deletion
and substitution errors. Backtracking along the path with the
smallest loss enables each hypothesised word to be marked as
either correct or incorrect and thus obtain reference values.

There are two primary modes for evaluating confidence
predictors: intrinsic and extrinsic. The intrinsic evaluation
assesses confidence scores themselves, whereas the extrinsic
evaluation assesses their usefulness in external applications.
A number of intrinsic criteria have been proposed, such as
normalised cross-entropy (NCE) [63]

NCE(c, c∗) =
H(Pc · 1, c∗)−H(c, c∗)

H(Pc · 1, c∗)
(9)

which provides a relative measure of gain in cross-entropy
compared to a baseline that randomly predicts correct confi-
dence with probability Pc =

1
T

∑T
t=1 c

∗
t (the average number

of correctly transcribed words). It is possible to have positive
(better than baseline) and negative (worse than baseline) NCE
values. NCE values, however, obfuscate where any gain in
performance comes from. An easier to interpret metric can be
obtained by choosing a threshold ρ such that any score above
that becomes correct and incorrect otherwise. The performance
of both the confidence scores and the choice of threshold
can be assessed using the standard outcomes of binary de-
tection (true/false positives/negatives) or their derivatives (e.g.
accuracy [9], precision, recall, rates). By varying threshold
ρ, it is possible to plot either a receiver operating (ROC) or
precision and recall (PR) curve respectively, which are useful
when deciding an appropriate operating point to use. It is also
possible to compute areas under those curves (AUC) to provide
a single measure of prediction performance [15], [64].

In order to assess how well confidence scores are calibrated
it is common to use reliability diagrams [33]. A reliability
diagram is a plot of predicted confidence scores against true

confidence scores across the full range of confidence scores.
Such plots are created by partitioning predicted confidence
scores into bins (e.g. 0-0.2, 0.2-0.35, ..., 0.9-1.0) and plotting
the average predicted confidence score against the average true
confidence score. A confidence estimation model would be
considered calibrated if these values are the same across the
full range of confidence scores.

IV. LATTICE CONTEXT MODELLING

Most speech recognisers provide a significantly richer out-
put than the most likely transcription. For example, lattices
have one start and one end node associated with the beginning
and end of speech and a large number of intermediate nodes
that serve as both source and target for one or more arcs. When
multiple arcs are connected to the same node then decisions
need to be made about how to propagate information forward.
Sequence models, such as those described in Section III,
cannot directly handle those structures.

This section describes two approaches that enable features
to be derived from, and confidences predicted for, all alterna-
tive transcriptions and the underlying words. The first is based
on lattice recurrent networks where lattice paths are modelled
using recurrent network. The second approach uses attention
mechanisms over the complete lattice structure.

A. Lattice Recurrent Networks

The key issue to extending RNNs from simple sequences
in equation (4) to handling lattices is to address the problem
that multiple incoming arcs to a particular arc are present in
lattices and CNs. One solution, and the one adopted in this
work, is to make use of an attention mechanism to combine
all information directly available to a given arc

h−→N (1)
i

=
∑

j∈
−→
N (1)

i

αi,jhj (10)

before propagating it to any connecting arc

hi = ϕ(h−→N (1)
i

,xi) (11)

where the set of arcs directly preceding arc ei is denoted
by
−→
N (1)

i , αi,j is an attention weight associated with arcs ei
and ej , hi is a history state associated with arc ei. As with
RNNs and FNNs before that, the confidence score ci can be
predicted by learning a non-linear transformation of history
state hi. Figure 3 provides an illustration of dependencies
between features, history states and confidence predictions.
Similar to RNNs, it is possible to extend this approach to
modelling future information. Such bi-directional lattice RNNs
will be examined in Section V.

Attention weights play a critical role in deciding what
information will be taken into account. To ensure that weights
are non-negative and sum to one, a softmax normalisation

αi,j =
exp(zi,j)∑

j∈Ni
exp(zi,j)

(12)

is applied to the unnormalised weights or energies zi,j . The
energy computation is often discussed in information retrieval
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Fig. 3: An example of lattice recurrent NN

terms of queries qi,j and keys ki,j , which are used to decide
which weight to apply to values, such as states hj or features
xj . A number of approaches have been proposed for comput-
ing energies. For instance, additive attention energies can be
computed by [14]

zi,j = ϕ(w(z)Tϕ(W (k)ki,j +W (q)qi,j)) (13)

as well as [65]

zi,j = ϕ(w(z)Tϕ(W (kq)[kT
i,j qT

i,j ]
T)) (14)

where different choices of non-linearities ϕ and ϕ provide for
more options. On the other hand, multiplicative attention [65]

zi,j = kT
i,jW

(kq)qi,j (15)

includes scaled dot-product [60] and self-attention [60] as
special cases. It is also possible to concatenate outputs from
multiple (not necessarily the same) attention mechanisms,
or heads, to extract diverse kinds of information [60]. This
approach will be exploited in Section V to combine different
types of contextual information.

To find useful information, the attention mechanism relies
on the key to provide a snapshot of the information available
and the query to express what is being searched. There are
numerous options possible for choosing both. For instance,
when deciding if an incoming arc is useful for confidence
prediction it is reasonable to use an arc’s state as the query

qi,j =
[
hj

]
(16)

and distributional information about word posterior probabil-
ities as the key

ki,j =
[
pj µi σi

]T
(17)

where µi and σi are the mean and standard deviation of word
posterior probabilities of all incoming arcs. This combination
of keys and queries provides the attention mechanism with the
content (query) and impact (key) based information.

B. Attention Mechanisms

The recurrent method makes use of an attention mechanism
to combine information from neighbouring states. Each of the
combined states in turn relies on the attention mechanism to

extract information from their respective, direct, neighbour-
hoods. An alternative approach is to bypass such a repeated
process and apply an attention mechanism directly over a large
enough neighbourhood4

hNi
=

∑
j∈Ni

αi,jxj (18)

where Ni is a set of sequence or graph elements that may
be useful for predicting the confidence of the i-th element.
Figure 4 shows a simple example of the proposed attention
models that makes use of directly connected left neighbours
to extract information. In contrast to the recurrent models
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Fig. 4: An example of lattice attention NN

illustrated in Figure 3, attention models, such as in Figure 4,
can be efficiently trained. Furthermore, attention models en-
able efficient computation of confidence scores for a subset of
arcs, which may be useful in information retrieval and other
applications.

In addition to direct left and right neighbours, there are other
options for choosing neighbouring arcs. These include left and
right reachable arcs similar to the recurrent method discussed
in this section and time-overlapped arcs similar to CNs. It
is also possible to extend the notion of neighbouring arcs to
include all or some of the arcs from complementary graphs
that can be produced using a number of approaches, such as
alternative acoustic models, language models and likelihood
scales. The flexibility offered by an attention mechanism
makes it easy to incorporate other kinds of information, such
as topology. When arcs other than direct neighbours are being
combined, the simplest example of topological information
that can be incorporated into the keys in equation (17) are
distances di,j between the arcs as expressed in terms of the
number of arcs [28], binary or probabilistic connectivity masks
[29] or time, which can generalise to sets of graphs. Many of
these options will be examined in Section V.

C. Network Parameter Training

The recurrent and attention models proposed in this section
can be trained by minimising binary cross-entropy with respect

4Although attention mechanisms have previously appeared in confidence
prediction models [66]–[68], their use have been constrained to extracting
information from encoder/decoder states of ASR systems and hypothesised
one-best sequences.
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to the reference confidence scores. In the simplest case, only
those confidence scores that are linked with the most likely
transcripts can be predicted. Such an approach eliminates
the need to obtain reference confidence values for a large
number of competing transcripts but may be suboptimal if
confidence scores linked with them are required. Alternatively,
it is possible to predict confidence scores for all arcs of
confusion networks or lattices provided reference values are
available.

Confusion networks (CN): Given a hypothesis CN C and
a reference word sequence wref, the Levenshtein algorithm
can be adopted to mark CN arcs with substitution loss set to

Lj−1,j
i−1,i = κ(s)(1− P (wref

j |Ci,O)) (19)

When references are provided in the form of CNs, the posterior
probability above is replaced by

P (Crefj |Ci,O) =
∑

wref
j ∈Crefj

P (wref
j |Ci,O)P (wref

j |Crefj ,O) (20)

to yield CN alignment or combination (CNC) [22]. Similar to
sequences in Section III, references for CNs can be obtained
by backtracking along the path with the smallest loss.

Lattices: Marking lattice arcs with reference confidence
scores is significantly more challenging. Instead, approximate
marking schemes based on time overlap can be adopted [69].
Given a hypothesis arc ei and reference arc e∗j with start times
t
(s)
i and t

(s)
j , end times t(e)i and t

(e)
j , and identical word labels,

the time-overlap can be estimated by

νi,j = max

{
0,
|min(t

(e)
j , t

(e)
i )| − |max(t

(s)
j , t

(s)
i )|

|max(t
(e)
j , t

(e)
i )| − |min(t

(s)
j , t

(s)
i )|

}
(21)

Given a fixed threshold ν, any hypothesis arc ei with νi,j ≥ ν
will be marked as correct with respect to the reference arc e∗j .

V. EXPERIMENTS

This section describes experiments that were conducted with
recurrent and attention-based neural network approaches for
predicting confidence scores for the most likely transcriptions
generated by Cambridge University submissions to IARPA
Babel competitions. OpenKWS [70] and their successor Open-
CLIR [71] public competitions challenge participants to de-
velop robust speech recognisers for limited resource languages
to support information retrieval tasks. Word error rates for
those languages commonly range between 20-60% [72] and
necessitate the use of error mitigation approaches, such as
confidence scores, to achieve high performance.

A. Setup

Most of the evaluation was conducted using the Georgian
full language pack (FLP), which consists of approximately
40 hours of transcribed training data for building speech
recognisers and 10 hours of development data for testing them.
All speech data are telephone conversations recorded at 8kHz,
mostly over mobile phone networks. The speech recogniser is
a complex acoustic model that combines 4 diverse acoustic
models [72]. The diversity is accomplished through the use of

TABLE I: Baselines for confidence estimation approaches

Model NCE AUCPR

AUC(0)
PR AUC(1)

PR

random 0.0 0.3177 0.6823
posterior -0.1978 0.7112 0.9081
decision tree 0.2755 0.7112 0.9081

different model architectures (hybrid and tandem) and different
multilingual bottleneck features. The multilingual features
were estimated by IBM and RWTH Aachen on a collection of
28 languages packs released by IARPA and LDC. All acoustic
models are based on graphemic lexica which were derived
using automatic approaches [73]. The language model used in
this article is a simple trigram language model estimated on
training data transcripts and web data. The speech recogniser
was used to produce a set of lattices using a default grammar
scale factor (20) and 4 perturbed factors (12, 16, 24 and 28).
The default factor was selected based on a broad range of
other IARPA Babel languages. Lattices were converted into
confusion networks (CN) using confusion network decoding
[7]. The most likely transcripts were obtained from the output
of CN decoding that corresponds to the default grammar scale
factor.

The available development data were partitioned into a
training, development and evaluation set with a ratio of
8:1:1 for training, validating and testing confidence estimation
schemes. The most likely transcription of the evaluation set
contains 6063 words of which 4137 or 68.2% words are
correctly predicted. Three baseline schemes were examined:
1) a random classifier, 2) word posterior probabilities, 3) a
decision tree. Table I provides a snapshot of their performance
on the evaluation set. The NCE for posterior probabilities (-
0.1978) is negative, which suggests that uncalibrated posteriors
are less informative than the random classifier that predicts
confidence of 1 with probability Pc = 0.682. The decision
tree, as expected, improves calibration of posterior probabili-
ties (0.2755). Areas under the precision-recall curves, where
AUC(0)

PR treats incorrect words as positives and AUC(1)
PR treats

incorrect words as negatives, provide additional information.
Unlike NCEs, AUCs clearly show that given an appropriate
threshold to map posterior probabilities to either 0 or 1 a
significantly better performance than the random classifier can
be achieved. Furthermore, it appears that determining which
predictions are incorrect is a significantly harder problem.
Given a smaller number of incorrect predictions in the most
likely transcriptions, it will be more challenging to improve
accuracy of determining incorrect predictions. In common with
other work in this area, all results are initially presented in
terms of NCE. Section V-D will discuss all major results in
terms of other performance criteria.

B. Sequences

The first set of experiments examined the possibility of
learning accurate confidence scores using information avail-
able only within the most likely transcriptions. Both recurrent
and attention-based models were examined.
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TABLE II: Recurrent sequence models

Features NCE

W
or

d

embedding 0.0358
+duration 0.0541

+posterior 0.2765
+decision tree 0.2911

G
ra

ph
em

e

+embedding 0.2936
+duration 0.2944

+encoder 0.2978

The recurrent models are bidirectional and make use of 128-
dimensional long short-term memory (LSTM) units [52]. A
range of word and sub-word (grapheme) features have been ex-
amined. Word features comprise 50-dimensional fastText
[74] word embeddings and 1-dimensional duration, uncali-
brated and decision tree calibrated posterior probabilities. The
first horizontal block in Table II shows how NCE changes
as more word features are used. Simple features, such as
word embeddings and duration, offer a limited gain over the
random baseline. The use of word posterior probabilities, un-
surprisingly, brings a very large gain in NCE. Despite having
access to word embeddings and duration information the use
of more powerful BiRNNs has led to a small improvement
over decision tree calibration (0.2755 → 0.2765). However,
when BiRNNs make use of calibrated word posteriors instead
then the gain over decision tree calibration becomes significant
(0.2755 → 0.2911). A similar observation was made in the
context of E2E ASR systems [46].

Grapheme features provide one of many possible options
for extending available features and comprise 4-dimensional
word2vec [61] grapheme embeddings, 1-dimensional du-
ration and 10-dimensional encoder output based on bi-
directional gated recurrent units. Grapheme features were com-
bined with word features by learning an attention mechanism
to map a variable number of grapheme features to fixed length
as described in [62]. The second horizontal block in Table II
shows how NCE changes as richer grapheme features are
extracted. Overall, the use of grapheme features provides a
significant increase in NCE (0.2911 → 0.2978). Due to the
increased complexity of learning grapheme encoders to extract
features and attention mechanisms to combine them, the rest
of this section will focus on word features only.

The attention models can make use of one or more attention
mechanisms to combine information across the most likely
word sequence. There are a number of possible context spans
to choose from: one or more left neighbours, one or more right
neighbours, left reachable words, right reachable words, all
reachable words. In common with other work in this area, the
positional information has been encoded into the keys using
discrete distances equal to the number of arcs that need to
be traversed to connect any two arcs with positive distances
representing following arcs and negative distances representing
preceding arcs. All attention models in this article transform
combined features using three 64-dimensional ReLU layers
prior to mapping features to [0, 1] range using a sigmoid non-
linearity.

TABLE III: Attention mechanisms for sequences

Attention Mechanisms NCE
I II

— — 0.2895
left neighbours right neighbours 0.2908
left-reachable — 0.2917
left-reachable right-reachable 0.2920
all reachable — 0.2919

TABLE IV: Attention mechanism options

(a) Additive heads

Heads NCE

1 0.2919
2 0.2941
4 0.2949
8 0.2920

(b) Attention type

Type NCE

additive 0.2919

multiplicative 0.2928

scaled dot product 0.2897

Table III shows how NCE changes as the context of
information available to attention models increases from no
contextual information (0.2895) to all left and right reachable
words (0.2920). It is interesting that the former performance
is only slightly worse than the performance of a BiRNN that
has access to all past and future words (0.2911 in Table II).
Comparing the model that has access to only past information
(left-reachable) to the model with both the past (left-reachable)
and future (right-reachable) information, it appears that the fu-
ture information provides only a limited improvement (0.2917
vs. 0.2920). This observation suggests that accurate confidence
estimates can be obtained in streaming applications where
access to future information may not be possible. The final row
shows that the use of dedicated attention heads to incorporate
past and future information separately offers little gain over
a single attention mechanism that has access to all reachable
words.

As discussed in Section IV, there are many possible ways to
compute attention weights. The experiments in Table III made
use of the additive attention in equation (14), where W (kq)

is a 57×57 parameter matrix (53-dimensional features and
4-dimensional keys). Table IV explores (a) multiple additive
attention heads and (b) alternatives to additive attention, such
as multiplicative and scaled dot product attention. The NCE
results suggest that both directions can bring substantial gains.
For simplicity the following sections will focus on the additive
attention mechanism with one head.

C. Confusion networks

The recurrent and attention models examined so far have
been constrained to extract information from most likely
sequences. The second set of experiments examined incor-
porating additional contextual information from alternative
transcriptions. The set of CNs that yielded the most likely
transcriptions was used to train recurrent and attention models.
Table V provides a side-by-side comparison between recurrent
and attention models. As discussed in Section IV graph-
based models offer an opportunity to evaluate and optimise
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TABLE V: Feature extraction and loss computation based on
confusion networks

Source CN Arcs NCE

Features Loss Recurrent Attention

1-best arcs 1-best arcs 0.2911 0.2919
all arcs 1-best arcs 0.2931 0.2925
all arcs all arcs 0.2934 0.2948

TABLE VI: Confusion network attention options

(a) Distance types

Distance NCE

arc 0.2948

time 0.2962

arc and time 0.2965

(b) Attention mechanisms

Attention Mechanisms NCE
I II

reachable — 0.2962
all — 0.2967
reachable time-overlapped 0.3001

loss over a subset of arcs, e.g. arcs that form the most
likely transcriptions. The NCE results in Table V suggest that
attention models benefit significantly more from optimising
loss on all arcs than recurrent models.

The positional information has so far been represented by
discrete arc-based distances. As mentioned in Section IV-B
it is possible to measure distances using other approaches,
such as time, that provide a more nuanced distance estimate.
Using duration information available to each CN arc enables
a continuous estimate of distance to be obtained. Table VI (a)
shows that time-based distances offer a clear advantage over
arc-based distances. Furthermore, making use of both these
distances as expected yields a marginal gain in NCE perfor-
mance.

The set of reachable arcs used by recurrent and attention
models to make a confidence prediction excludes competing
arcs. For instance, word AN in Figure 2 is just one of
four possible words within that CN bin. It is expected that
the knowledge of competing words should help to predict
confidence scores more accurately. To verify this hypothesis,
a second attention head was introduced where the context
span was limited to arcs present only within the respective
CN bin. Table VI (b) shows that merging competing, time-
overlapped, arcs into the set of reachable arcs yields small
gains in NCE (0.2962 → 0.2967). However, larger gains can
be obtained if competing arcs are modelled by a separate
attention mechanism (0.2962→ 0.3001).

The final experiment examined incorporating information
from a set of CNs. As mentioned at the beginning of this
section, the diversity of CNs in this article was achieved by
varying language model scale. Table VII shows that a simple
approach of aggregating all arcs across 5 CNs does not yield
any gain in NCE performance (0.2967 → 0.2962). On the
other hand, a large gain in NCE performance is observed
when a separate attention mechanism is introduced to model
competing words across all 5 CNs (0.2967→ 0.3035).

TABLE VII: Attention mechanisms for confusion networks

Attention Mechanisms NCE
I II

all arcs (1 CN) — 0.2967
all arcs (5 CN) — 0.2962
all arcs (1 CN) time-overlapped (5 CN) 0.3035

TABLE VIII: Performance summary of baseline and neural
network confidence estimation approaches

Context Model NCE
AUC

AUC(0)
PR AUC(1)

PR

1-best
decision tree 0.2755 0.7112 0.9081

recurrent 0.2911 0.7194 0.9178

attention 0.2949 0.7209 0.9171

CN
recurrent 0.2934 0.7185 0.9197

attention 0.3001 0.7312 0.9189

5 CNs attention 0.3035 0.7340 0.9205

D. Detailed performance analysis

As discussed in Section IV, the use of attention models
provides a highly flexible framework for incorporating infor-
mation across a wide range of commonly used representations.
The current section has so far presented empirical evidence to
support those claims based on the NCE criterion. Table VIII
provides a summary of NCE values of all major confidence
estimation models examined in this article. Although attention
models yield significant gains in NCE performance over the
decision tree approach (0.2755 → 0.3035), care is required
using only NCE criterion. Table VIII also compares perfor-
mance in terms of the area under precision-recall curves, which
confirm that advanced neural network approaches enable more
incorrect (AUC(0)

PR ) and correct (AUC(1)
PR ) arcs to be correctly

classified compared to the decision tree-based approach. As
was expected classifying incorrect arcs as incorrect appears to
be more challenging than classifying correct arcs as correct.
Furthermore, it appears that the neural network approaches im-
prove more in the former case which will benefit applications
focused on detecting errors.

Reliability diagrams in Figure 5 provide additional confir-
mation by showing a significantly better calibration of neural
network approaches over the decision tree for low values (0-
0.3) of predicted confidence scores. These diagrams provide a
clear illustration of poor calibration offered by word posterior
probabilities and the impact that simple, such as decision trees,
and complex, such as attention models, schemes have on cal-
ibration. The neural network approaches offer a significantly
better consistency but visibly under/over predict confidence
near 0.3 and 0.8.

E. Other limited resource languages

Georgian is one of dozens of limited resource languages
examined in the IARPA Babel and, its successor, MATERIAL
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Fig. 5: Reliability diagrams for selected confidence estimation
approaches

TABLE IX: Performance summary of baseline and neural net-
work confidence estimation approaches on 4 diverse languages

Language WER (%) Model NCE AUC

AUC(0)
PR AUC(1)

PR

Georgian 38.4 decision tree 0.2755 0.7112 0.9081
attention 0.3001 0.7312 0.9189

Swahili 44.7 decision tree 0.2580 0.7448 0.8739
attention 0.2772 0.7531 0.8821

Javanese 50.5 decision tree 0.1782 0.6837 0.8255
attention 0.2483 0.7541 0.8632

Igbo 54.1 decision tree 0.1646 0.7120 0.7864
attention 0.2000 0.7545 0.8086

programmes. Those languages were carefully selected by
the MIT Lincoln Laboratory to provide a representative and
diverse sample of languages. Recogniser accuracy for those
languages is typically lower than what can be achieved for
English and varies in the range of 30-60% WER, which poses
a significant challenge in developing accurate solutions that
utilise ASR technology. Three languages were selected from
that range: Swahili, Javanese and Igbo (see [72] for setup).
As shown in Table IX, WERs for these languages are sub-
stantially higher than for Georgian. Confidence score quality,
as measured by the decision tree calibrated NCE values and
AUC(1)

PR , appears to be negatively correlated with WER. On the
other hand, the correlation to AUC(0)

PR is weaker. The decision
tree yields lower than expected NCE values for the two most
challenging languages. The attention models bring gains over
decision trees for all languages. In particular, substantially
larger gains for the two most challenging languages address
the limitations of simpler decision trees. A similar picture can
be observed in terms of AUC values, where substantially larger
gains are observed for more challenging languages. These ob-
servations suggest that confidence estimation approaches may
provide a substantial performance improvement in situations
where ASR systems exhibit poor performance.

VI. CONCLUSION

Confidence scores play an important role in the development
and adoption of speech and language technology, and their
applications. A wide range of approaches have been developed
over the years with the aim to improve over the simplest
form of confidence scores – word posterior probabilities. This
article argues that context plays a key role in the assessment
of ASR system prediction accuracy, and shows how neural
network approaches, such as RNNs and attention, can be
extended to combine diverse types (word and subword level)
of information from varied sources (sequences, graphs and
sets of graphs). In particular, the article shows how to devise
high-performing recurrent and attention models over complex
sources, such as confusion networks, for confidence prediction.
Experimental validation was performed using the IARPA
OpenKWS 2016 challenge Georgian language. The experi-
mental results show that the proposed approaches provide
higher accuracy and better consistency than word posteriors
and simple calibration schemes across the full range of con-
fidence scores. These findings were further corroborated on
three other challenging IARPA Babel programme languages.
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