Data classification through the consensus of an ensemble

Jeremy Wong
Outline

- What is machine learning and data classification
- Ensemble methods
- Student-teacher training
What is machine learning?

Machine learning

Regression

Classification

panda

car
How do we make a decision?

Bayes’ decision rule: \[\hat{c} = \arg\max_{c'} P(c = c'|x, \theta) \]

This leads to minimum classification error.
How do we train a classifier?

- We know true class training data points
 \[P^*(c = c^* | x) = \delta(c, c^*) \]

- Minimise a cost function

Kullback-Leibler divergence

\[
L(\theta) = \sum_{i} \sum_{c} P^*(c | x_i) \log \frac{P^*(c | x_i)}{P(c | x_i, \theta)}
\]
Find $\theta^* = \arg\min_{\theta} L(\theta)$

$$= \arg\min_{\theta} \left\{ \sum_i \sum_c P^*(c|x_i) \log \frac{P^*(c|x_i)}{P(c|x_i, \theta)} \right\}$$

* Ideally, want to solve $\frac{\partial L}{\partial \theta} = 0$

* Use gradient descent $\theta^{(\tau)} = \theta^{(\tau-1)} - \eta \frac{\partial L}{\partial \theta}\bigg|_{\theta^{(\tau-1)}}$
Problem of using single model

- Multiple equivalent models
- True model may be outside space of possible models
Advantage of combining an ensemble

- Reduce the variance of the model estimate.
- Reduce overfitting and generalise better to unseen data.
- Correct each other’s errors.
- Expand the space of possible models.
Solution – take the average

* Mixture model / Bayesian average

\[
P(c|x, D) = \int P(c|x, \theta)p(\theta|D)d\theta
\]
\[
\approx \sum_{m=1}^{M} P(c|x, \theta_m)p(\theta_m|D)
\]
\[
\approx \frac{1}{M} \sum_{m=1}^{M} P(c|x, \theta_m)
\]
Other ensemble methods

- Product of experts
 \[P(c|x, D) \approx \frac{1}{Z} \prod_{m=1}^{M} \left[P(c|x, \theta_m) \right]^{1/m} \]

- Majority voting
 \[P(c|x, D) \approx \frac{1}{M} \sum_{m=1}^{M} P'(c|x, \theta_m) \]

where
 \[P'(c|x, \theta_m) = \delta \left(c, \arg \max_{c'} P(c'|x, \theta_m) \right) \]
Problem with using an ensemble

* Slow, $M \times$ computational requirements
Can we teach a single model to emulate the performance of an ensemble?
Student-teacher training

- What can the teacher provide in addition to the training data?
 - Relative likelihoods between classes
 - How to generalise to new data

- Emulate the class probability of the teacher model

\[P(c|x_i, \theta) \rightarrow P(c|x_i, \phi) \]

- Cost function

\[L(\theta) = \sum_i \sum_c P(c|x_i, \phi) \log \frac{P(c|x_i, \phi)}{P(c|x_i, \theta)} \]
Experimental Results

* Speech recognition task trained on 3 hrs of data in the Tok Pisin language

<table>
<thead>
<tr>
<th>Model</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single model average</td>
<td>52.5</td>
</tr>
<tr>
<td>Teacher ensemble</td>
<td>52.0</td>
</tr>
<tr>
<td>Student</td>
<td>52.2</td>
</tr>
</tbody>
</table>
Thank you