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Image Intensities

We can represent a monochrome image as a matrix I(x, y) of

intensity values. The size of the matrix is typically 320× 240

(QVGA), 640 × 480 (VGA) or 1280 × 720 (HD) and the

intensity values are usually sampled to an accuracy of 8 bits

(256 grey levels). For colour images each colour channel

(e.g. RGB) is stored separately.

If a point on an object is visible in view, the corresponding

pixel intensity, I(x, y) is a function of many geometric and

photometric variables, including:

1. The position and orientation of the camera;

2. The geometry of the scene (3D shapes and layout);

3. The nature and distribution of light sources;

4. The reflectance properties of the surfaces: specular ↔
Lambertian, albedo 0 (black) ↔ 1 (white);

5. The properties of the lens and the CCD.

In practice the point may also only be partially visible or

its appearance may be also be affected by occlusion.
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Data reduction

With current computer technology, it is necessary to discard

most of the data coming from the camera before any attempt

is made at real-time image interpretation.

images → generic salient features

10 MBytes/s 10 KBytes/s

(mono CCD)

All subsequent interpretation is performed on the generic rep-

resentation, not the original image. We aim to:

• Dramatically reduce the amount of data.

• Preserve the useful information in the images (such as the

albedo changes and 3D shape of objects in the scene).

• Discard the redundant information in the images (such

as due to the lighting conditions).

We would also like to arrive at a generic representation, so

the same processing will be useful across a wide range of

applications.
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Image structure

The answer becomes apparent if we look at the structure of

a typical image. In this photo of “Claire”, we’ll examine the

pixel data around several patches: a featureless region, an

edge and a corner.

0D

The featureless region is characterized by a smooth variation

of intensities.
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Edges and corners

1D

The patch containing the edge reveals an intensity disconti-

nuity in one direction.

2D

The patch containing the corner reveals an intensity discon-

tinuity in two directions.

Note that an edge or corner representation imparts a desirable

invariance to lighting: the intensity discontinuities are likely

to be prominent, whatever the lighting conditions.
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1D edge detection

We start with the simple case of edge detection in one di-

mension. When developing an edge detection algorithm, it is

important to bear in mind the invariable presence of image

noise. Consider this signal I(x) with an obvious edge.
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An intuitive approach to edge detection might be to look for

maxima and minima in I ′(x).
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This simple strategy is defeated by noise. For this reason,

all edge detectors start by smoothing the signal to suppress

noise. The most common approach is to use a Gaussian filter.
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1D edge detection

A broad overview of 1D edge detection is:

1. Convolve the signal I(x) with a Gaussian kernel gσ(x).

Call the smoothed signal s(x).

gσ(x) =
1

σ
√
2π

exp

(

− x2

2σ2

)

2. Compute s′(x), the derivative of s(x).

3. Find maxima and minima of s′(x).

4. Use thresholding on the magnitude of the extrema to

mark edges.
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1D edge detection

The smoothing in step (1) is performed by a 1D convolution:

s(x) = gσ(x) ∗ I(x) =

∫ +∞

−∞
gσ(u)I(x− u) du

=

∫ +∞

−∞
gσ(x− u)I(u) du

For discrete signals, the differentiation in step (2) is also per-

formed by a 1D convolution. Thus edge detection would ap-

pear to require two computationally expensive convolutions.

However, the derivative theorem of convolution tells us that

s′(x) =
d

dx
[gσ(x) ∗ I(x)] = g′σ(x) ∗ I(x)

so we can compute s′(x) by convolving only once — a con-

siderable computational saving.

gσ(x) g′σ(x)
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1D edge detection
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Having obtained the convolved signal s′(x), interpolation can

be used to locate any maxima or minima to sub-pixel accu-

racy. Finally, an edge is marked at each maximum or mini-

mum whose magnitude exceeds some threshold.

Looking for maxima and minima of s′(x) is the same as look-

ing for zero-crossings of s′′(x). In many implementations of

edge detection algorithms, the signal is convolved with the

Laplacian of a Gaussian, g′′σ(x):

s′′(x) = g′′σ(x) ∗ I(x)
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Zero-crossings
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The zero-crossings of s′′(x) mark possible edges.

We have not yet addressed the issue of what value of σ to

use. Consider this signal:
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Does the signal have one positive edge or a number of positive

and negative edges?
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Multi-scale edge detection

Using a small σ brings out all the edges.
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Sigma = 20

As σ increases, the signal is smoothed more and more, and

only the central edge survives.
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Multi-scale edge detection

The amount of smoothing controls the scale at which we

analyse the image. There is no right or wrong size for the

Gaussian kernel: it all depends on the scale we’re interested

in.

Modest smoothing (a Gaussian kernel with small σ) brings

out edges at a fine scale. More smoothing (larger σ) identifies

edges at larger scales, suppressing the finer detail.

This is an image of a dish cloth. Af-

ter edge detection, we see different

features at different scales.

σ = 1 σ = 5

Fine scale edge detection is particularly sensitive to noise.

This is less of an issue when analysing images at coarse scales.
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2D edge detection

The 1D edge detection scheme can be extended to work in two

dimensions. First we smooth the image I(x, y) by convolving

with a 2D Gaussian Gσ(x, y):

Gσ(x, y) =
1

2πσ2
exp−

(

x2 + y2

2σ2

)

S(x, y) = Gσ(x, y) ∗ I(x, y)

=

∫ ∞

−∞

∫ ∞

−∞
Gσ(u, v)I(x− u, y − v) du dv

The effects of this blurring on a typical image:

Unsmoothed σ = 3 pixels σ = 4 pixels
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2D edge detection

The next step is to find the gradient of the smoothed image

S(x, y) at every pixel:

∇S = ∇(Gσ ∗ I)

=





∂(Gσ∗I)
∂x

∂(Gσ∗I)
∂y



 =





∂Gσ

∂x ∗ I
∂Gσ

∂y
∗ I





The following example shows |∇S| for a fruity image:

(a) Original image (b) Edge strength |∇S|
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2D edge detection

The next stage of the edge detection algorithm is non-maximal

suppression. Edge elements, or edgels, are placed at lo-

cations where |∇S| is greater than local values of |∇S| in
the directions ±∇S. This aims to ensure that all edgels are

located at ridge-points of the surface |∇S|.

(c) Non-maximal suppression

Next, the edgels are thresholded, so that only those with

|∇S| above a certain value are retained.

(d) Thresholding
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2D edge detection

The edge detection algorithm we have been describing is due

to Canny (1986). The output is a list of edgel positions, each

with a strength |∇S| and an orientation ∇S/ |∇S|.

An alternative approach to edge detection was developed by

Marr and Hildreth (1980). While the Canny detector is a di-

rectional edge finder (both the gradient magnitude and direc-

tion are computed), the Marr-Hildreth operator is isotropic.

It finds zero-crossings of∇2Gσ∗I , where∇2Gσ is the Lapla-

cian of Gσ (∇2 = ∂2/∂x2 + ∂2/∂y2).

Gσ ∇2Gσ
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Implementation details

In practice, the image and filter kernels are discrete quantities

and the convolutions are performed as truncated summations:

S(x, y) =

n
∑

u=−n

n
∑

v=−n

Gσ(u, v)I(x− u, y − v)

g  (x)

n0-n

σ

2n+1 pixel filter kernel

For acceptable accuracy, kernels are generally truncated so

that the discarded samples are less than 1/1000 of the peak

value.

σ 1.0 1.5 3 6

2n + 1 7 11 23 45

The 2D convolutions would appear to be computationally

expensive. However, they can be decomposed into two 1D

convolutions:

Gσ(x, y) ∗ I(x, y) = gσ(x) ∗ [gσ(y) ∗ I(x, y)]

The computational saving is (2n + 1)2/2(2n + 1).
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Implementation details

Differentiation of the smoothed image is also implemented

with a discrete convolution.

By considering the Taylor-series expansion of S(x, y) it is

easy to show that a simple finite-difference approximation to

the first-order spatial derivative of S(x, y) is given by:

∂S

∂x
=

S(x + 1, y)− S(x− 1, y)

2

This is equivalent to convolving the rows of image samples,

S(x, y), with the kernel

1/2 0 -1/2
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Corners

While edges are a powerful intermediate representation, they

are sometimes insufficient. This is especially the case when

image motion is being analysed. The motion of an edge

is rendered ambiguous by the aperture problem: when

viewing a moving edge, it is only possible to measure the

motion normal to the edge.

P
?

P

P

P

’’

’

CornerEdge

To measure image motion completely, we really need to look

at corner features. We saw earlier that a corner is charac-

terized by an intensity discontinuity in two directions. This

discontinuity can be detected using correlation.
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Correlation

The normalized cross-correlation function measures how

well an image patch, P (x, y), matches other portions of the

image, I(x, y), as it is shifted from its original location. It

entails sliding the patch over the image, computing the sum

of the products of the pixels and normalizing the result:

c(x, y) =

n
∑

u=−n

n
∑

v=−n

P (u, v) I(x+ u, y + v)

√

√

√

√

n
∑

u=−n

n
∑

v−n

P 2(u, v)
n

∑

u=−n

n
∑

v−n

I2(x + u, y + v)

A patch which has a well-defined peak in its correlation func-

tion can be classified as a “corner”.

Image I & patchP Correlation c(x, y)
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Corner detection

A practical corner detection algorithm needs to do something

more efficient than calculate correlation functions for every

pixel!

1. Calculate change in intensity in direction n:

In ≡ ∇I(x, y).n̂ ≡ [ Ix Iy ]
T .n̂

I2n =
nT ∇I∇IT n

nTn

=

nT

[

I2x IxIy

IxIy I2y

]

n

nTn

where Ix ≡ ∂I/∂x and Iy ≡ ∂I/∂y.

2. Smooth I2n by convolution with a Gaussian kernel:

Cn(x, y) = Gσ(x, y) ∗ I2n

=

nT

[

〈

I2x
〉

〈IxIy〉
〈IxIy〉

〈

I2y
〉

]

n

nTn

where 〈 〉 is the smoothed value.
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Corner detection

The smoothed change in intensity around (x,y) in direction

n is therefore given by

Cn(x, y) =
nTAn

nTn

where A is the 2× 2 matrix
[

〈

I2x
〉

〈IxIy〉
〈IxIy〉

〈

I2y
〉

]

Elementary eigenvector theory tells us that

λ1 ≤ Cn(x, y) ≤ λ2

where λ1 and λ2 are the eigenvalues of A. So, if we try

every possible orientation n, the maximum smoothed change

in intensity we will find is λ2, and the minimum value is λ1.

We can therefore classify image structure around each pixel

by looking at the eigenvalues of A:

No structure: (smooth variation) λ1 ≈ λ2 ≈ 0

1D structure: (edge) λ1 ≈ 0 (direction of edge), λ2 large

(normal to edge)

2D structure: (corner) λ1 and λ2 both large and distinct
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Corner detection

The corner detection algorithm we have been describing is

due to Harris (1987). It is necessary to calculate A at every

pixel and mark corners where the quantity λ1λ2−κ(λ1+λ2)
2

exceeds some threshold (κ ≈ 0.04 makes the detector a little

“edge-phobic”). Note that det A = λ1λ2 and trace A= λ1 +

λ2.

Low threshold High threshold

Corners are most useful for tracking in image sequences or

matching in stereo pairs. Unlike edges, the displacement of

a corner is not ambiguous. Corner detectors must be judged

on their ability to detect the same corners in similar images.

Current detectors are not too reliable, and higher-level visual

routines must be designed to tolerate a significant number of

outliers in the output of the corner detector.
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Interest Point Detection - Blobs

A blob is a region of pixels with intensities higher (or lower)

than surrounding pixels. Whereas edges and corners are fea-

tures which are found at discontinuities, blobs are localised in

the middle of areas of similar intensity which are surrounded

by pixels of a different intensity on their boundaries.

Polka Dots

∗ =

Detected Blobs

The 1D signal is a scan line running across one of the polka

dots above. The result shows how, even though the signal

is quite noisy, the minimum of the resulting response from

the Laplacian of the Gaussian places the centre of the dot

perfectly.

σ = 20
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Blobs and Band-pass filtering

The size of the blob detected depends on the sigma of the

detector used. As the sigma is increased, larger and larger

image features are detected, ranging from small boxes to en-

tire buildings. Each time the blob detector will fire on the

center of the blob in question, making it ideal for extracting

texture from the inside of an object or for fixing location of

an object in the scene.

σ = 1 σ = 3

σ = 7 σ = 19
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Scale Space

Corners and especially blobs have a range of scales over which

they will be detected. The Laplacian of a Gaussian as recorded

at a particular location is a monotonic function over scale,

with definite peaks or troughs. These maxima and minima

lie in the middle of the ranges at which blobs and corners

will be detected at that point, and thus are considered ideal

places to examine the surroundings of the feature point for

use in later processes.
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Original Level 0

σ = 5

σ = 10

Level 1 Level 2
σ = 20

Level 3 Level 4

σ = 40

σ = 80
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Scale Space, cont.

We achieve scale independence by look-

ing at the different resolutions of an im-

age. There are an infinite number of pos-

sible resolutions for any image, a three-

dimensional function of intensity over lo-

cation and scale known as the scale

space of the image, denoted S(x, y, t).

This can be calculated by convolving the

original image I(x, y) with Gaussians of

arbitrary scale t, thus the scale space

function is often written as

S(x, y, t) = G(x, y, t) ∗ I(x, y)

G(x, y, t) =
1

2πt
e−(x2+y2)/2t

t = σ2

It is impractical to examine all possible

resolutions, and indeed impossible to do

so when we are restricted by digital im-

age representation. Thus, we sample the

space by choosing particular resolutions

to examine.
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Scale Space, cont.

We produce a discrete set of low-pass fil-

tered images with scale satisfying

σi = 2
i

sσ0

so that after that it doubles after s intervals. The s images

in each octave are spaced logarithmically with the scale of

neighbouring images satisfying

σi+1 = 2
1

sσi

Blurring with large scales is avoided in 2 ways: subsampling

the image after each octave (i.e. scale has doubled) and by

using a finite set of incremental blurrs.

The resulting sampling of spaces is called an image pyra-

mid, for which we compute scales ranging from σ to 2σ (an

octave), and then subsample the image for the next octave.
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Scale Space, cont.

Within each octave, as we convolve images repeatedly with

Gaussian filters, the resulting image has a σ calculated as

G(σ1) ∗G(σ2) = G

(

√

σ2
1 + σ2

2

)

At every interval i of the pyramid, we want σi = 2
i

sσ0 (so

that it doubles after s intervals). We need to achieve this

incrementally, thus

G(σi+1) = G(σi) ∗G(σk)

So, what is σk?

σk =
√

σ2
i+1 − σ2

i

σi+1 = 2
1

sσi

σk =

√

2
2

sσ2
i − σ2

i

σk = σi

√

2
2

s − 1



Feature Extraction 31

Scale Space, cont.

Different scales are ideal for interest points of different sizes,

and all the interest points which are ideal at particular scale

are used to describe the image at that scale, thus providing

scale invariance to the overall system. The ideal scale for a

keypoint is located at the maximum of the scale space func-

tion at that point. For example, with a blob, we would want

to find the maximum of the Laplacian of a Gaussian over

scale.

1: σ = 1 2: σ = 7 3: σ = 12 4: σ = 18

Since we cannot efficiently find the exact point, the largest

value of the samples in the pyramid is found by comparing

26 neighbours and then the exact point interpolated.
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Difference of Gaussians

The difference of Gaussians interest point, or DoG as

it is often called, is a blob detector. The points are taken

from the minima and maxima of the DoG response over an

image. It takes its name from the fact that it is calculated

as the difference of two Gaussians, which approximates the

Laplacian of a Gaussian.

In a system which utilizes a scale space pyramid (such as the

one we will consider), the DoG point is a useful entity, as a

response can be computed simply subtracting one member

of a pyramid level from the one directly above it. For image

matching, blobs are particularly useful features to concentrate

on, as they are usually found inside of objects as opposed to

at their edges and thus are less likely to contain part of the

background in queries, in addition to other properties such as

stability, repeatability, and a definite optimal scale.
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Image Structure: Texture

Image texture arises from large numbers of small objects

such as grass, brush, pebbles and hair and surfaces with or-

derly and repetitive patterns such as the spots or stripes on

animals, wood and skin. They typically consist of organised

patterns of regular sub-elements called textons. A natural

way to describe texture is to find these textons and describe

how they are distributed.

Image textures can be described by their response to a col-

lection of filters to represent the patterns of spots, bars etc.
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Characterising Texture

This is an example filter bank. It consists of 8 Laplacian of

Gaussian filters and 4 Gaussian filters at different scales to

provided non-oriented responses, and 36 oriented filters at 6

different angles, 3 different scales, and 2 different phases. The

two phases of oriented filters are first and second derivatives

of Gaussians on the minor axis and elongated Gaussians on

the major axis, and thus detect edges or bars respectively

along their major axes.

The descriptor is simply the concatenated responses of all of

the filters in the filter bank at a pixel.


