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1 Camera model for perspective projection onto im-
age plane

To reconstruct 3D space from images we require the mapping from image plane
pixel coordinates, u, to visual rays in a fixed world coordinate system, p. This
is determined by transformations describing the position and orientation of
the coordinate system attached to the camera relative to the world coordinate
system; perspective (central) projection onto the image plane and the geometry
of the CCD array. These three transformations are derived below and can be
conveniently written as a 3 x 4 projection matrix (Roberts 1965).

Property 1.1 The projection matrix. Under perspective projection the
map between the three-dimensional world coordinates of a point (X,Y,Z) and
its two-dimensional image plane pizel coordinates (u,v) can be written as a lin-
ear mapping in homogeneous coordinates and represented by a 3 x 4 projection
matriz:

X
Cu b11 P12 P13 P4 %
Cv | = | P21 P22 P23 P24 PRE (1)
¢ P31 P32 P33 D34 1

Rigid-body transformation

Consider a coordinate system X = (X,Y,Z) attached to the world reference
frame, and another coordinate system X, = (X, Y¢, Z.) attached to the camera
at position c(t), where the optical axis is aligned with Z.. See Figure 1.

The camera and reference coordinate systems are related by a rigid body
transformation which are conveniently represented with a rotation matrix and
a translation vector, t, by:

X 11 T2 T13 X tx
Y. = T21 T22 T23 Y |+ ] ty (2)
Ze T3] T32 T33 Z tz

where the translation vector is related to the position of the camera centre by

t = —Rec.
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Figure 1: Camera model and camera and reference coordinate systems. X =
c+ Ap and X =c + RX..

Perspective projection onto the CCD image plane

Perspective projection onto the imaging plane followed by the conversion of
image plane coordinates into CCD pixel coordinates, (u,v), can be modelled by

u = wup+ aui (3)
Y,
v = v+ avi (4)

where the CCD array axes are assumed aligned with the X, and Y, axes; (ug, vg)
is the principal point (the point of intersection of the optical axis and the image
plane); a,, and «a, are image scaling factors. These four parameters are known
as the internal camera parameters. The ratio a, /o, is known as the aspect
ratio.

Projection matrix

The relationship between image pixel coordinates and rays in Euclidean 3-
space can now be expressed succinctly by introducing homogeneous coordinates
to represent image points with 3-vectors and points in 3-space by 4-vectors,
defined up to arbitrary scales (e.g. (). Homogeneous (projective) coordinates
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Figure 2: Camera calibration. A camera is calibrated by processing an image
of a calibration grid (a). The image positions of known 3D points on the grid
are extracted automatically. Edge detection is followed by fitting lines to the
image segments. Intersections of lines are used to localize the image features
to sub-pixel accuracy (b).

are often used in projective geometry and allow us to represent projective trans-
formations as a matrix multiplications. By concatenating the matrices for the
transformations described above the relationship becomes:

X

Cu ay 0 wug 11 T2 T13 tx v
Cv = 0 oy wo To1 T22 T23 ty 7
¢ 0 0 1 31 T32 T33 Uz 1

or more simply as the 3 x 4 projection matriz representing the perspective
projection of a point in space onto a digitized image given in Property 1.1
where equality is defined up to an arbitrary scale.

u=PX (5)

The projection matrix, P, is not a general 3 x 4 matrix. It has 11 parameters
(since the overall scale does not matter) and it can be decomposed into a 3 X
3 upper triangular matrix of camera internal parameters called the camera
calibration matriz, K, and a matrix representing the rigid-body motion.

The mapping from an image point to a visual ray in 3-space is expressed in
homogeneous coordinates and up to an arbitrary scale by:

u = KRp (6)
2 Camera model for weak perspective and ortho-
graphic projection

A useful approximation to perspective projection occurs when the field of view
is narrow or the depth variation along the line of sight is small compared with



the distance from the camera to the scene. The camera model can then be
simplified to weak perspective and (3) and (4) can be re-written as:

X,

_ il 7

U = u0+auZO (7
C

_ ) 8

v o= vo—i—avZo (8)

The difference with perspective projection is that all image points are scaled
uniformly by Z,, the mean distance of the features of the scene to the camera
centre. Weak perspective can in fact be considered as the orthographic (paral-
lel) projection of all points onto the plane Z, = Z; followed by a perspective
projection to give a uniform inverse-depth scaling. It can be represented by the
transformation:

X

Ug ay, 0 wg i1 riz T3 tx v
Vg = 0 ay wo To1 T2 T3 ly 7
1 0 0 1 0 0 0 Z, 1

If the principal point of a camera is (ug,vg), the variation of depth in the
scene is AZ along the optical axis and the mean distance of the features of the
scene to the camera is Zj, the difference of the image of a point taken from
a perspective camera (u,v) and its image with the weak perspective camera,
(uq,vq) is given by

u—u, = (u—w)AZ/Z, (9)
v—v, = (v—v9)AZ/Z,. (10)

When the field of view is narrow, the terms u — ug and v — vy will be small. In
this case, or when the depth variation of the scene is much smaller than its mean
depth, e. g. AZ/Zy < 0.1, the error due to the weak perspective appproximation
is negligible.

Orthographic projection can be modelled in exactly the same way but with
no scaling due to depth by setting Z, = f.

3 Camera calibration

For reconstruction we require the camera centres, c(t), and the rays p(s,t).
These can be obtained from the projection matrix for each viewpoint. Camera
calibration is the name given to the process of recovering the projection matrix
from an image of a controlled scene. For example, we might set up the camera
to view the calibrated grid shown in Figure 2(a) and automatically extract the
image positions of known 3D points (Figure 2(b)). Each image point, (u;,v;),
of a known calibration point, X;, Y;, and Z;, generates two equation which the
elements of the projection matrix must satisfy:

Cui _ puXi+p12Yi + p13Zi + pua
¢ pnX;+p3Y;+p33Z;+p3
Cu; _ P21 X + pa2Yi + pa3Z; + pag

v, = >— .
‘ ¢ p31X;+p32Y +p33Z; + paa

u; =
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These equations can be rearranged to give two linear equations in the 12 un-
known elements of the projection matrix. For n calibration points and their
corresponding image projections we have 2n equations:
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Since there are 11 unknowns (scale is arbitrary), we need to observe at least 6
reference points to recover the projection matrix and calibrate the camera.

Numerical considerations

The equations can be solved using orthogonal least squares. First, we write the
equations in matrix form:

Ax=0 (11)
where x is the 12 x 1 vector of unknowns (the 12 elements of the projection
matrix, p;;), A is the 2n x 12 matrix of measurements and n is the number of
observed calibration points. A linear solution (least squares) which minimizes
||Ax|| subject to ||x|| =1 is obtained as the unit eigenvector corresponding to
the smallest eigenvalue of A" A. Numerically this computation is performed
via the singular value decomposition of the matrix (Strang 1988)

A =UAV'

where A = diag(o1,09,...,012) is the diagonal matrix of singular values and
the matrices U and V are orthonormal. The columns of V are the eigenvectors
of AT A and the least squares solution is given by the last column of V which
is the singular vector with the smallest singular value o15. The least squares
solution is, however, only approximate and should be used as the starting point
for non-linear optimization: i.e. finding the parameters of the projection matrix,
P, that minimize the errors between measured image points, (u;,v;) and the
projections onto the image plane of the reference points:

min Y || (wi, vi) — P(X3,Y;, Zi, 1)
[

Once the projection matrix has been estimated the first 3 x 3 submatrix,
(KR)T, can be easily decomposed by standard matrix algorithms into an up-
per triangular matrix, K, and a rotation (orthonormal) matrix (known as QR
decompositon) or used directly to determine the ray in space p and the position
of the camera centre:

= (KR)'u (12)
¢ = —(KR) '(p1a,p24,p31) " (13)



4 Epipolar geometry

Epipolar geometry plays a key part in the algorithms to recover structure and
motion. We briefly review the geometry of two views and describe how to
compute the epipolar geometry when the cameras are calibrated. The use of
uncalibrated cameras and the recovery of the epipolar geometry from apparent
contours is then described.

The epipolar constraint

In stereo vision the projection of a world point in two calibrated viewpoints
can be used to recover the three-dimensional position by triangulation. The
geometry of the two views, as shown in Figure 3, plays a key part in helping
to find correspondences by constraining the search for correspondence from a
region to a line. This matching constraint is known as the epipolar constraint.

The epipolar constraint arises from the fact that the two rays, p and p’, to
a common scene point, X, and the optical centres of the two camera (the stereo
baseline, t = Ac) lie in a plane called the epipolar plane. The intersection of the
epipolar plane with each image plane defines a line called an epipolar line. The
correspondence of an image point in the first view, u, must line on the epipolar
line, I, in the other view shown in Figure 3. Using homogeneous coordinates
to represent the coefficients of a line in the image as a 3-vector, the epipolar
constraints in each view can be written as:

Each world point, X, has its own epipolar plane. The family of epipolar
planes define a pencil of epipolar lines which pass through a common point
called the epipole, illustrated in Figure 4. The epipoles and pencil of epipolar
lines in each view are known as the epipolar geometry. The epipolar geometry
is completely determined by the relative position, t, and relative orientation,
R, of the two views and the camera parameters of each camera, K and K’
respectively. It does not depend on the 3D structure of the scene being viewed.

The essential matrix

The epipolar constraint is a co-planarity constraint and can be expressed alge-
braically as a scalar triple product:

P’ (¢ Ap) =0. (16)

With out loss of generality, we can align the reference coordinate system with
the second camera so that the epipolar constraint can be rewritten in terms of
image positions (3-vectors in homogeneous coordinates), u and u':

W' K"TEK lu=0 (17)

where E is a 3 x 3 matrix known as the essential matriz (Longuet-Higgins 1981)
and is the product of a skew-symmetric or antisymmetric matrix (representing
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Figure 3: The geometry of two views. In stereo vision an epipolar plane is
the plane defined by a 3D point X and the optical centres of the two cameras.
The baseline is the line joining the optical centres. An epipole is the point of
intersection of the baseline with the image plane. An epipolar line, 1 and U, is
a line of intersection of the epipolar plane with an image plane. It is the image
in one camera of the ray from the other camera’s optical centre to the point X.

Figure 4: Epipolar geometry. Each world point X has its own epipolar plane
which rotates about the baseline. All epipolar lines intersect at the epipole.



the vector product with the translation vector) and an orthonormal matrix
representing the rotation between the two views:

where
0 —t3 to
[t]x = t3 0 -t
—ty t 0

and R now specifies the relative orientation between the views.

The essential matrix is of maximum rank 2. Its factorization into the prod-
uct of a non-zero skew-symmetric matrix and a rotation matrix is only possible
if it has two equal non-zero singular values. The other is of course equal to zero
(Tsai and Huang 1984, Faugeras and Maybank 1990).

The fundamental matrix

From (17) we see that the epipolar geometry can be conveniently specified by
introducing a matrix, F (Faugeras 1992)

F=K "EK L (18)

Property 4.1 The epipolar constraint and the fundamental matrix.
The image coordinates (projective representation using homogeneous coordi-
nates) of all pairs of corresponding points, u; = (u;,vi, 1) and u'; = (u}, v}, 1)",
must satisfy the epipolar constraint:

Fu; = 0 (19)
or

fll f12 f13 Uj
[u§ vi 1| | fa fa2 fos v; | =0 (20)
f31 f32 f33 1

where F is a 3 x 3 real matriz of rank 2 which is defined up to an arbitrary scale
and is known as the fundamental matriz.
Epipolar lines and epipoles

The epipolar geometry (see Figure 4) is completely determined by the funda-
mental matrix.

Property 4.2 Epipolar geometry from fundamental matrix.

1. Epipolar lines.

The epipolar line (represented by a homogeneous 3-vector), I, correspond-
ing to a point u in the other view is given by

I' = Fu (21)



and u' must lie on this line to satisfy the epipolar constraint:
u -1 =0.
The epipolar line corresponding to u' is given by 1=Fu’.

2. Epipoles.

The epipole is defined as the point in each image which is common to all
the epipolar lines. The left and right epipoles (e and €' in homogeneous
coordinates) are therefore given by the null spaces of F and F T respectively

Fe = 0 (22)
F'e = o0 (23)

5 Epipolar geometry from projection matrices

For calibrated cameras with known projection matrices it is trivial to compute
the fundamental matrix and hence obtain the epipolar geometry (epipoles and
epipolar lines for each image feature). We here outline a simple method by
exploiting the following result.

Property 5.1 Projective ambiguity. The pair of cameras and projection
matrices P and P’ give Tise to the same fundamental matriz as the pair of
cameras and projection matrices PH and P'H where H is a 4 x 4 non-singular
matriz.

A simple proof can be found in (Hartley 1992 and 1994) but follows trivially
from the fact that the simultaneous transformation of the projection matrices,
P by H and the 3D point coordinates, X, by H™! leaves the image coordinates
u = PX, unchanged.

Assume we are given the projection matrices for two viewpoints, P and
P'. The position of the optical centre of the first camera, ¢, can be computed
directly from the projection matrix P.

In homogeneous coordinates we can represent it by a 4-vector C = (c' 1) so
that

PC=0

and its projection into the second image plane defines the epipole, €',
e =P'C. (24)
We can also compute the pseudo-inverse, P, of the projection matrix P,
P =P (PP") !, (25)

such that multiplication with the first projection matrix gives the identity ma-
trix, I, and multiplication with the second projection matrix gives a 3 x 3 matrix
(a two-dimensional projective transformation), M:

I = PPT (26)
M = P'P* (27)



Figure 5: Epipolar geometry computed from known projection matrices. Se-
lected image points are shown in the left view with corresponding epipolar lines
shown in the right view. The corresponding image feature satisfies the epipolar
constraint.

The two projection matrices have in this way been normalized to have the
special forms:

PH = [I|0] (28)
PH = [M]e] (29)

These normalized projection matrices are known as canonical cameras. From
Property 5.1 both the original projection matrices and these normalized forms
have the same fundamental matrix F given by (see Property 8.1):

F =[e/],M. (30)

An example of the epipolar geometry of two discrete views computed from
calibrated projection matrices using (24) - (27) and (30) is shown in Figure 5.

For uncalibrated cameras we do not have the projection matrices and hence
E, K and K’ are unknown a priori. The fundamental matrix and epipolar
geometry, however, can still be estimated from point or curve correspondences
between the two views.

The recovery of the structure and motion from point correspondences has
attracted considerable attention and many practical algorithms exist to recover
both the spatial configuration of the points and the viewer motion compatible
with the views. These are briefly reviewed in §6 to §8.

6 The fundamental matrix from point correspondences

For uncalibrated cameras we do not have the projection matrices and hence
the essential matrix parameters, t and R, and the camera calibration parame-
ters, K and K', are unknown a priori. The fundamental matrix, however, can
be estimated from point correspondences between the two views. We briefly
describe the algorithms used for computing the epipolar geometry from point
correspondences (also reviewed in Zhang 1998) before describing the extension
to curves and apparent contours.
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From the epipolar constraint (20) we see that each point correspondence,
w; = (u;,v;,1)" and u'; = (u},v},1)7, generates one constraint on the epipolar
geometry which can be expressed in terms of the elements of the fundamental

matrix F:
fuu fiz fi3 Uj
[U; v; 1} for fa2  fo3 v; | =0.
far fa2 f33 1

For n pairs of correspondences, the constraints can be rearranged as linear
equations in the 9 unknown elements of the fundamental matrix:

fu
fi2
! ! ! ! ! ! f13
U1u1 ul'Ul ul 1)1U1 'Ul'Ul 1)1 (51 (%1 1 f21
: : : : : : f2 | =0
UpUp ULV, U] VhU, VLU, U, Up U, f23
f31
f32
| f33

or in matrix form:

Af =0

where A is an n X 9 measurement matrix, and f represents the elements of the
fundamental matrix as a 9-vector. Given 8 or more correspondences a solution’
can be found by least squares as the unit eigenvector (f is defined up to an
arbitrary scale) corresponding to the minimum eigenvalue of A" A. A unique
solution is obtained unless the points and the camera centres lie on a ruled
quadric or all the points lie on a plane (Faugeras and Maybank 1990).

The computation can be poorly conditioned and it is important to pre-
condition the image points by normalizing them to improve the condition num-
ber of AT A before estimating the elements of the fundamental matrix by sin-
gular value decomposition (Hartley 1998).

Parametrization of the fundamental matrix

Two steps can be taken to improve the solution. The most important requires
enforcing the rank 2 property of the fundamental matrix. This can be achieved
by a suitable parametrization of F.

The epipolar geometry between two uncalibrated views is completely deter-
mined by 7 independent parameters: the position of the epipoles in the two
views, € = (ue, Ve, 1) and € = (ul,v.,1)7, and the 3 parameters of the one-
dimensional projective transformation? relating the pencil of epipolar lines in

!Note that the fundamental matrix has only 7 degrees of freedom since its determinant
must be zero. A non-unique solution can be obtained from only 7 point correspondences and
is described in (Huang and Netravali 1994).

2This one-dimensional projective transformation (also known as a collineation or homog-
raphy) can be represented by a 2 x 2 matrix in homogeneous coordinates.

11



view 1 to those in view 2 (Luong and Faugeras 1996),

hori + h
=2t (31)
hyat; + h3
where 7; and 7/ represent the directions (as the gradient of a line) of a pair of
corresponding epipolar lines, 1; and 1}, in the first and second images respec-
tively. Namely:

T = Vi — Ve (32)
U; — Ue
! U; - vzla
T, = ! 1 (33)
Ui — 'U,e

The transformation of epipolar lines between views is sometimes known as the
epipolar transformation and is fixed by 3 pairs of epipolar line correspondences.
The correspondence of any additional epipolar line is completely determined
since it must preserve the cross-ratio of the 4 epipolar planes and corresponding
epipolar lines. See (Luong and Faugeras 1996) and Figure 6.

Substituting (32) and (33) into (31) for the image coordinates of a pair of
corresponding points results in the epipolar constraint and leads to the following
minimal parametrization of the fundamental matrix:

h1 ha —ueh1 — veho
F = h3 h4 —uehg - Ueh4
—uLhy — vlhy —ulhy — vlha ueulhy + veuLha + ucvLhg + vevihy

(34)
This parametrization will be exploited later when apparent contours are
used instead of point correspondences to estimate the epipolar geometry.

Optimization

Another improvement requires finding the 7 independent parameters of the
fundamental matrix which minimize the distances between the image points
and their epipolar lines.

Property 6.1 Geometric error using epipolar distances. The geometric
distance between an image point u' and the epipolar line, ' = Fu is given by:
(v} Fu,)?
(Fu;)? + (Fu;)3

(35)

A suitable cost function, C, consisting of the sum of the squared geometric
distances (defined above) between image points and their epipolar lines in both
images (Luong and Faugeras 1996),

1 1
7 Z <<F‘lz’>% T Fu)g CEW (P

) (' By
can be minimized by non-linear optimization techniques (Press et al. 1988).

12



Figure 6: The epipolar geometry of an uncalibrated stereo pair of images is
completely specified by the image positions of the epipoles and 3 pairs of cor-
responding epipolar lines. The projective parameters 7 and 7' represent the
intersection of the epipolar line and the line at infinity. The directions in the
2 views are related by a one-dimensional projective transformation (homogra-

phy).
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7 Recovery of the projection matrices and viewer
motion

As shown above it is possible to recover the epipolar geometry (via the fun-
damental matrix) from point correspondences in the case of uncalibrated cam-
eras. Nevertheless we must recover the projection matrices corresponding to
each viewpoint if we are to attempt reconstruction.

Factorization of the essential matrix

If the camera internal parameters, K and K', are known the viewer motion
and the projection matrices are determined by the epipolar geometry. We can
transform the recovered fundamental matrix into an essential matrix (18):

E =K' 'FK (36)

and decompose this matrix into a skew-symmetric matrix corresponding to
translation and an orthonormal matrix corresponding to the rotation between
the views:

E = [t],R. (37)

The latter is in fact only possible if the the essential matrix has rank 2 and two
equal singular values (Tsai and Huang 1984). This property turns out to be very
important in recovering constraints on the internal parameters of the cameras
when they are uncalibrated. The difference in the two singular values can be
used to refine the camera parameters. In fact, each fundamental matrix places
two quadratic constraints on the internal calibration parameters (the Kruppa
equations) which can be used to estimate, for example, the scale factors of the
two cameras. This is known as self-calibration (Maybank and Faugeras 1992
and Hartley 1992).

The translation vector, t, which can only be recovered up to an unknown
magnitude, can be found as the unit eigenvector corresponding to the smallest
eigenvalue of EE' since it must satisfy

E't=0.

The rotation can then be obtained as the orthonormal matrix which minimizes
the matrix Frobenius norm
2
[|E — [tx]R||

which can be solved linearly if we represent the rotation with a quaternion
(Horn 1987).

Numerical considerations

An alternative numerical approach is to perform the singular value decomposi-
tion (Strang 1988) of the essential matrix (Hartley 1992):

E=UAV' (38)
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where A = diag(o1,02,03) and the matrices U and V are orthogonal. The
decomposition into a translation vector and the rotation between the two views
requires that o = o2 # 0 and 03 = 0. The nearest (in the sense of minimizing
the Frobenius norm between the two matrices) essential matrix with the correct
properties can be obtained by setting the two largest singular values to be equal
to their average and the smallest one to zero (Hartley 1992). The translation
and axis and angle of rotation can then be obtained directly up to arbitrary
signs and unknown scale for the translation:

0 10
t]lx=U| -1 0 0 |UT (39)
0 00
0 -1 0
R=U|1 0 0]|VT (40)
0 0 1

The projection matrices follow directly from the recovered translation and
rotation by aligning the reference coordinate system with the first camera to
give:

P = K[I|O0]
P = K'[R|t].

Four solutions are possible due to the arbitrary choice of signs for translation,
+t, and rotation, R or R". The correct solution is easily disambiguated by
ensuring that reconstructed points lie in front of the cameras.

8 Recovery of the projection matrices for uncali-
brated cameras

If the camera calibration matrices are unknown the projection matrices can not
be uniquely recovered from the epipolar geometry of two views alone. In fact
we will see that they can only be recovered up to an arbitrary 3D projective
transformation, known as a projective ambiguity.

From (18) it follows that the fundamental matrix can, like the essential
matrix, be factorized into a skew-symmetric matrix corresponding to translation
and a 3 x 3 non-singular matrix (ignoring arbitrary scalings of the elements of

F):
F = K '[t|,RK™
= [K't]xK'RK™*
= [¢]xMx (41)
where
M, = K'RK ! (42)
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is a 2D projective transformation (homography) which maps points on the plane
at infinity in one image to the other (Luong and Vieville 1996).

The factorization of the fundamental matrix as the product of a skew-
symmetric matrix and a non-singular matrix M is not unique since there is
a 3 parameter family of matrices M (which represents the 2D projective trans-
formation between views induced by different planes) such that:

M=M,+ev'

where v can be arbitrarily chosen to give a different projective transformation
but the same fundamental matrix (Hartley 1994 and Luong and Vieville 1996)3.

Property 8.1 Factorization of the fundamental matrix. The fundamen-
tal matriz can be factorized into a skew-symmetric matriz and a 3 X 3 non-
singular matriz, M.:

F = [¢']xM

where €' is equivalent to the epipole in the second view:

F'e' =0
and M can be chosen from the 3-parameter family (defined by the arbitrarily
choice of v) of homographies given by:

M = [e],F +ev'.

Singular value decomposition of the fundamental matrix

As with the essential matrix, we can factorize the fundamental matrix into a
skew-symmetric component and a non-singular matrix by analysing its singular
value decomposition:

F=UAV'

where A = diag(r, s,0). The skew-symmetric component can be recovered from:

0 10
[€]x=U| -1 0 0 |UT (43)
0 00

in exactly the same way as with calibrated cameras. The non-singular matrix M
is no longer an orthogonal transformation and is not uniquely defined. As shown
by Property 8.1, the homography (two-dimensional projective transformation)
is defined up to an arbitrary choice of parameters, here described by {«, 8,7}

1
M=U

O = O

-1 0
0 0
0 1

Q O© =

0
S

®Note the relationship with the minimal parametrization introduced in (34). A 3-parameter
family of two-dimensional projective transformations, M, representing the transformation
between views induced by points on a plane, can be recovered from the pair of epipoles and

3 pairs of corresponding epipolar lines. The epipoles must satisfy € = Me while the epipolar
lines must pass through the epipoles and satisfy I} = M~ "I,.

0
0|V (44)
gl
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Canonical cameras and projective ambiguity

The factorization of the fundamental matrix can be used to compute the canon-
ical cameras — the normalized projection matrices — given by (28) and (29)

PH = [I]|0]
PH = [M]|é]

The real projection matrices, P and P’, have only been recovered up to an
arbitrary 3D projective transformation represented algebraically by a 4 x 4
matrix H, and known as a projective ambiguity.

Property 8.2 Projective ambiguity. A general 8D projective transforma-
tion can be represented by a non-singular 4 x 4 matriz, H, of the form

SRR k| CR -

The projective ambiguity is composed of the following effects. A metric trans-
formation resulting from the rigid body motion between the coordinate system
of the first camera and the reference frame and an arbitrary scaling. This can
be ignored if we align the reference coordinate system with the first camera
and accept that shape can only be recovered up to an arbitrary scale, s, if the
distance between the two camera centres is unknown. The second component
of the ambiguity results from an 3D affine transformation due to the unknown
parameters of the first camera. Finally we are left with a projective transforma-
tion which transforms points on the plane (v'1)X = 0 to points on the plane
at infinity and results from the ambiguity of Property 8.2.

The ambiguity in the projection matrices is of the form above and will result
in a projective ambiguity in the recovered geometry, i.e. the 3D coordinates of
visible points, X, can only be recovered up to a 3D projective transformation,
H~'X. This ambiguity can only be removed with additional information de-
rived from scene constraints or knowledge of the camera parameters, K and K'.
In particular the ambiguity is completely removed by using the 3D position of
5 known scene points to determine the transformation H or H™!. Alternatively
we require the internal camera parameters of the first camera and must then
find the equation of the plane at infinity represented by v where

M=KRK !+ev'.

The ambiguity is removed by using knowledge of the camera parameters to fix v
to make the homography, M, be that induced by the plane at infinity (Hartley
1994). The rotation matrix follows.
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