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Stereo Vision 1

Stereo vision

We have seen how it is impossible in general to recover 3D

scene structure from a single image. Even if the camera is

calibrated, we can only deduce the ray on which each image

feature lies.

O O /

Feature located

If we can observe the same feature from two different view-

points, however, we can solve for the intersection of the rays

and recover the 3D location of the feature. This is the essence

of triangulation in stereo vision.

While this might sound straightforward, there are many sub-

tleties to stereo vision. For instance, to what extent do we need

to calibrate the cameras? How do we establish correspondences

between features in the two views?
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Recovering 3D structure

If the left and right cameras are calibrated with respect to the

world coordinate system, then it is not difficult to recover 3D

structure.

Recall from handout 3 that each point observed by one camera

gives us two equations in three unknowns (X, Y, Z):

u =
su

s
=

p11X + p12Y + p13Z + p14
p31X + p32Y + p33Z + p34

v =
sv

s
=

p21X + p22Y + p23Z + p24
p31X + p32Y + p33Z + p34

Observing the same point with the other camera provides two

further equations. These can be re-arranged as four linear

equations in the three unknowns (X, Y, Z), and geometrically

correspond to 4 planes defining 2 rays. The four equations

in three unknowns are over-constrained and a solution can be

found by least-squares.

To understand what is required for the equations to be con-

sistent, we will first reformulate the equations in terms of 3D

vectors. The analysis will also identify a key constraint to help

with the correspondence problem.
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Rays

Suppose we know the relative positions of the cameras and

their intrinsic parameters1. Given the CCD parameters, we

can translate pixel coordinates (u, v) into image plane coordi-

nates (x, y):

u = u0 + kux , v = v0 + kvy

With the focal length, we can translate image plane coordi-

nates into a ray in 3D space. Let’s define the ray by the point

p (in camera-centered coordinates) where it pierces the image

plane:

p =


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1We can extract most of this information from the two calibration matrices.
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From pixels to rays

We can conveniently express the relationship between an image

point with pixel coordinates w and a ray in 3D p. These are

related by the CCD calibration matrix:

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We can modify this to derive a relationship between pixel co-

ordinates and rays:
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Recall that we defined the camera calibration matrix K as

follows:

K =















fku 0 u0
0 fkv v0
0 0 1















then we can write

w̃ = Kp
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Epipolar geometry

An important part of stereo is triangulating 2 rays from a

pair of image correspondences. The most important matching

constraint which can is used is the epipolar constraint, and

follows directly from the fact that the rays must intersect in

3D space.

Epipolar constraints facilitate the search for correspondences:

they constrain the search to a line in each image. To derive

general epipolar constraints, consider the epipolar geome-

try of two cameras:

ΠEpipolar plane

/O

/x

X

O e

x

e /

Right epipoleLeft epipole

Right epipolar lineLeft epipolar line

Baseline

The epipolar plane is the plane defined by a 3D point X

and the optical centres.
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Epipolar geometry

The baseline is the line joining the optical centres.

An epipole is the point of intersection of the baseline with

the image plane. There are two epipoles, one for each image.

An epipolar line is a line of intersection of the epipolar plane

with an image plane. It is the image in one camera of the ray

from the other camera’s optical centre to the point X.

O /

X

X

1

2

O

For different world points X, the epipolar plane rotates about

the baseline. All epipolar lines intersect at the epipole.
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Epipolar geometry

The epipolar line constrains the search for correspondence from

a region to a line. If a point feature x is observed in one image,

then its location x′ in the other image must lie on the epipolar

line.

O /

x/?
x/?

O

X?

X?

x

e

ray

e /

We can derive an expression for the epipolar line. The two

camera-centered coordinate systems are related by a rotation

R and translation T:

X′
c = RXc +T

Taking the vector product with T, we obtain

T×X′
c = T× RXc +T×T

⇔ T×X′
c = T× RXc
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The essential matrix

Taking the scalar product with X′
c, we obtain

X′
c.(T×X′

c) = X′
c.(T× RXc)

⇔ X′
c.(T× RXc) = 0 (1)

Recall that a vector product can be expressed as a matrix

multiplication:

T×Xc = T×Xc

where T× =















0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0















So equation (1) can be rewritten as

X′
c.(T×RXc) = 0

⇔ X′
c
TEXc = 0 , where E = T×R

E is a 3×3 matrix known as the essential matrix. The con-

straint also holds for rays p, which are parallel to the camera-

centered position vectors Xc:

p′TEp = 0 (2)

This is the epipolar constraint. If we observe a point p in one

image, then its position p′ in the other image must lie on the

line defined by (2).
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The essential matrix

The essential matrix can also be used to find the locations of

the epipoles.

c

Xc
/

Yc
/

Y

Z

Xc

Zc
/

p
e

/

c

e
p/ OO

T

R

Referring to the figure, the position of the left camera’s epipole

is pe in the left camera’s coordinate system and λT in the right

camera’s coordinate system. Relating the coordinate systems,

we obtain

λT = Rpe +T

Taking the vector product with T, we obtain

0 = T× Rpe

⇔ Epe = 0

So the location of the epipole in the left image lies in the null

space of E. It follows that E is non-invertible (det E = 0)

and is therefore of maximum rank 2. The result for the other

epipole is ETp′
e = 0.
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Essential matrix: example

Let’s calculate the essential matrix for the basic parallel camera

configuration:

R = I , T =


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0
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, E = T×R =




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
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0 0 0

0 0 d

0 −d 0
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
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

The epipolar constraint p′TEp = 0 is therefore

[

x′ y′ f
]


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0 0 d
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
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= 0

⇔
[

x′ y′ f
]















0

df

−dy















= 0

⇔ y = y′

Hence the image of any pointXmust lie on the same horizontal

line in each image plane.

For parallel cameras, the epipolar lines are parallel, and the

epipole is at infinity. This is what we’d expect: neither camera

can “see” the optical centre of the other camera.
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From rays to pixels

Up until now we have been assuming calibrated cameras, so

we can go from pixel coordinates w to rays p. But what if we

do not know the calibration?

We have seen how pixel coordinates and image plane coordi-

nates are related by the CCD calibration matrix:
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We can modify this to derive a relationship between pixel co-

ordinates and rays:
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If we define the matrix K as follows:

K =




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0 0 1
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then we can write

w̃ = Kp
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The fundamental matrix

The epipolar constraint becomes

p′TEp = 0

⇔ w̃′TK′−TEK−1w̃ = 0

⇔ w̃′TFw̃ = 0 , where F = K′−TEK−1

F is the 3 × 3 fundamental matrix and the epipolar con-

straint can be expressed in terms of image/pixel co-ordinates:

[

u′ v′ 1
]
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




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


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Epipolar geometry examples

Converging cameras

O /O
e /e

Epipolar lines3 corner features
in left image in right image

Epipolar lines
in left image

3 corner features
in right image
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Epipolar geometry examples

Near parallel cameras

O /

e /

O
at infinity

e at infinity

3 corner features
in right image

Epipolar lines
in left image

Epipolar lines
in right image

3 corner features
in left image
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Epipolar lines and epipoles

For any given point w̃ in the left image, using the known F we

can derive an epipolar constraint on the corresponding location

in the right image, w̃′.

The epipolar line in the right view can be expressed simply

in in homogeneous co-ordinates, l̃
′
:

w̃′TFw̃ = 0

w̃′T l̃
′
= 0

⇔ l̃
′
= Fw̃

Similarly for a point in the right image, w̃′, the epipolar line

in the left image is given by l̃:

l̃ = FTw̃′

The locations of the epipoles w̃e and w̃′
e (in pixels) are given

by

Epe = 0 ⇔ EK−1w̃e = 0

⇔ K′−TEK−1w̃e = 0

⇔ Fw̃e = 0 and likewise FT w̃′
e = 0
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The fundamental matrix

At first sight, F appears to have 9 degrees of freedom. However,

its overall scale does not matter (so we could set f33 to 1) and,

as with E, it has zero determinant (maximum rank 2). So F

has only 7 degrees of freedom.
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Computing F from correspondences

Since the cameras are uncalibrated, we do not know E, K or K′

and so we do not know F a-priori. However, we can estimate

F from point correspondences.

Each point correspondence w̃ ↔ w̃′ generates one constraint

on F:

[

u′ v′ 1
]
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n of these constraints can be arranged in the following form:
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Computing F from correspondences

Given 8 or more perfect correspondences (image points in gen-

eral position, no noise), F can be determined uniquely up to

scale. In practice, we may have more than 8 correspondences

and the image measurements will be noisy. The system of

equations is then solved by least squares.

Note that we have not attempted to enforce the constraint

that det F = 0. If the 8 image points are noisy, then we will

find that our estimate of F does not have zero determinant and

the epipolar lines do not meet at a point. Nonlinear techniques

exist to estimate F from 7 point correspondences, enforcing the

rank 2 constraint.

Given F, we can establish correspondences with relative ease.

If we know the intrinsic camera parameters K, we can also

find the essential matrix, decompose E into T× and R, and

recover metric structure by triangulation. Without K we can

only recover structure up to a 3D projective transformation,

which can later be disambiguated using further constraints.
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The correspondence problem

Even with the epipolar constraint, establishing correspondences

between points in the left and right image is not trivial. Com-

paring image patches by correlation is unreliable since the grey

levels are viewpoint dependent.

/OLeft image Right image
O

Hypothesis 1

Hypothesis 2

Hypothesis 3

In the illustration, we are trying to match three corners in the

left image with three corners in the right image. We have three

hypotheses, all of which satisfy the epipolar constraint. How

can we discover which hypothesis is correct?
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The correspondence problem

The correspondence problem is difficult to solve, but we can

make progress by identifying more constraints.

Uniqueness

The most obvious constraint is uniqueness. For opaque objects,

each point in the left image has at most one match in the right

image.

/OLeft image Right image
O

Violates uniqueness
constraint

For transparent objects, we cannot rely on the uniqueness con-

straint. Two features may be visible in the right image but

instantaneously aligned in the left image.
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The correspondence problem

Ordering

Corresponding points lying on the surface of an opaque object

will be ordered identically in left and right images.

/ORight image
O

Left image

Satisfies ordering
constraint

/OO
Left image Right image

Violates ordering
constraint
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The correspondence problem

The ordering constraint will not necessarily hold if the points

do not lie on the surface of the same opaque object. Given

point X observed in both images, any point lying in X’s “for-

bidden zone” will violate the ordering constraint.

X

Xof
Forbidden zone

/Left image Right image
O O

Figural continuity

When distinguished points lie on image contours, we can some-

times use figural continuity as a matching constraint. In the

following example, the point in the left image must match the

point towards the right of the right image.
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The correspondence problem

Left image Right image

point epipolar
line

Disparity gradient

If surfaces are smooth, then disparities (differences in location

between points in the left and right images) must be locally

smooth. So, away from occluding boundaries, a further con-

straint comes from imposing a limit on the allowable spatial

derivatives of disparity.

Given matches

Right image

and

2 ?

in the left image

must match point 1 in the right image. Point 2
would exceed the disparity gradient limit.

, point

Left image

1 ?

line
Epipolar
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Finding correspondences

Here is the outline of an algorithm for finding correspondences

between corners (typically 200–300 per image).

1. Unguided matching.

Seed matches

Use normalized cross-correlation

to obtain a small number of seed

matches.

2. Compute epipolar geometry. Use seed matches and

robust regression to compute F.

Find an F which is consistent

with many of the seed matches,

reject the rest as outliers.

Matches consistent with F
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Finding correspondences

3. Guided matching. Now that we know F, the search for

matches can be restricted to a narrow band around epipolar

lines.

Epipolar

Right image

line

Left image

Point

Search band

Using the epipolar and other constraints (ordering etc.), we

obtain a large number of matches.

With intrinsically calibrated cameras, we can now recover struc-

ture by triangulation. Practical implementations first obtain

the two projection matrices via a singular value decomposi-

tion of the essential matrix, then solve for structure using least

squares.
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Recovering metric structure

The SVD of the essential matrix is given by

E = K′TFK = T×R = UΛVT

It can be shown that

T̂× = U


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






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0 1 0

−1 0 0

0 0 0
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



UT and R = U















0 −1 0

1 0 0

0 0 1















VT

Then, aligning the left camera and world coordinate systems,

we have

P = K [ I | 0 ] and P′ = K′ [ R | T ]

Given the two projection matrices, we can recover structure

(only up to scale, since we do not know ‖T‖) using least

squares, as described on page 2. Ambiguities in T and R

are resolved by ensuring that visible points lie in front of the

two cameras.

We only recover structure at the detected corners: to recon-

struct more of the scene, we use dense, intensity-based match-

ing between corners. The recovered 3D points are then trian-

gulated, and the visual appearance of the model improved by

mapping texture from the images onto the model.
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Factorization of fundamental matrix

Like the essential matrix, the fundamental matrix can be fac-

torized into a skew-symmetric matrix corresponding to transla-

tion and a 3×3 non-singular matrix corresponding to rotation.

F = K′−⊤
[t]×RK−1

= [K′t]×K
′RK−1

= [e′]×M∞

where M∞ represents a 2D projective transformation induced

by the plane at infinity:

M∞ = K′RK−1

The factorization of the fundamental matrix, however, is not

unique. Any 2D projective transformation M of the form

M = [e′]×F + e′v⊤

will give the same fundamental matrix. This property leads to

an ambiguity in the recovered projection matrices, known as

the projective ambiguity.
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Projective reconstruction

The factorization of the fundamental matrix can be used to

compute the canonical cameras – the normalized projection

matrices. These are real projection matrices, P and P′, up

to an arbitrary 3D projective transformation represented al-

gebraically by a 4 × 4 matrix H, and known as a projective

ambiguity.

PH = [I | 0]

P′H = [M | e′]

The projective ambiguity is a 3D projective transformation

and can be represented by a non-singular 4× 4 matrix, H, of

the form

H =







sRw tw
0⊤ 1













K−1 0

0⊤ 1













I 0

v⊤ 1





 .

This ambiguity can only be removed with additional informa-

tion derived from scene constraints or knowledge of the camera

parameters, K and K′. In particular the ambiguity is com-

pletely removed by using the 3D position of 5 known scene

points to determine the transformation H or H−1.
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Affine stereo

Recall that when depth variations in the scene are small com-

pared with the viewing distance, an affine camera is appropri-

ate:







u

v




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





p11 p12 p13 p14
p21 p22 p23 p24


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

















X

Y

Z

1





















The affine camera can be calibrated by observing four points

in space.

With two calibrated affine cameras, it is straightforward to

triangulate to recover structure:




















u

v

u′

v′





















=





















p11 p12 p13 p14
p21 p22 p23 p24
p′11 p′12 p′13 p′14
p′21 p′22 p′23 p′24
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
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
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



























X

Y

Z

1





















(3)

Each point observed in left and right images gives us 4 equa-

tions in the 3 unknowns (X, Y, Z). These can be solved using

least squares.

But what about an epipolar constraint to help with the corre-

spondence problem?
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Affine stereo

Assume (without loss of generality), that the left camera is

aligned with the world coordinate system: this will simplify

the algebra considerably. It is straightforward to show (by

inspection of the weak perspective camera matrix) that the

left camera matrix reduces to







u

v





 =







p11 0 0 p14
0 p22 0 p24






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

















X

Y

Z

1





















We can now easily eliminate X and Y from the equations for

u′ and v′ in (3):

u′ = p′11
(u− p14)

p11
+ p′12

(v − p24)

p22
+ p′13Z + p′14

v′ = p′21
(u− p14)

p11
+ p′22

(v − p24)

p22
+ p′23Z + p′24

Rewriting these equations, we obtain
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



u′

v′





 =










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+ p′24











+ Z
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
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
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Affine stereo

We can rewrite the preceding equation as

w′ = a + Zb (4)

This is one form of the epipolar constraint for affine stereo (see

the examples paper for another form).

Given calibrated cameras and a point w in the left image, we

do not know Z but we do know a and b. Thus, the corre-

sponding point w′ must lie on the epipolar line in the right

image described by (4).

Since b is independent of w, it follows that all epipolar lines

are parallel under affine stereo.

line for
Epipolar

line for
Epipolar

Right imageLeft image

2

1

w

2w

w Slope b

w

1
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Affine Fundamental Matrix

The left (u, v) and right (u′, v′) pixel positions of a point in

space viewed through weak perspective cameras also satisfy

the epipolar constraints. By eliminating Z we can show that

the pixel coordinates are related by

[ u′ v′ 1 ]FA















u

v

1















= 0

where FA is the affine fundamental matrix which has maximum

rank 2 and can be expressed in the form

FA =















0 0 a

0 0 b

c d 1















The epipolar lines under weak perspective are parallel.
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Summary

Decompose E into T  and R
X

Calculate E from F and K
p

Metric 3D structure

Triangulate

Recover rays

Left Right Left Right

Match corners using epipolar and other constraintsMatch corners using epipolar and other constraints

correspondences

Metric 3D structure

Triangulate

Fully calibrated
cameras

Compute E from R and

Projective 3D structure

Left Right

Image pair with detected corners

T

parameters K

Not fully
calibrated cameras

Work with pixels w
Compute F from

Known intrinsic

Work with rays p

Unknown intrinsic
parameters K
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