Structure from Motion

Andrew Fitzgibbon Microsoft Research

Computer graphics in the movies

Enemy at the Gates

Images courtesy of Mandalay Pictures, Pathé and Double Negative.

Boujou

- A computer program which makes inserting 3D objects easy
- Developed at Oxford University and at company "2d3"
- · Now used in almost every movie
 - Lord of the Rings series
 - Harry Potter series
 - Bridget Jones's Diary

[demo]

Structure from motion: input data

If the sequence is m frames long then each track is represented as a stacked vector of 2D points:

Each 3D point generates a 2D track

If the sequence is m frames long then each track is represented as a stacked vector of 2D points:

$$\begin{pmatrix}
\mathbf{x}_1 \\
\mathbf{x}_2 \\
\vdots \\
\mathbf{x}_m
\end{pmatrix}$$

Many tracks: *measurements*

One track:

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{pmatrix}$$

Concatenate n tracks, one per column:

$$\mathbf{M} = \begin{pmatrix} \mathbf{x}_{11} & \mathbf{x}_{11} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{21} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{m1} & \mathbf{x}_{m1} & \cdots & \mathbf{x}_{mn} \end{pmatrix}$$

Measurement matrix

Structure from Motion: Problem statement

Given

ullet 2D point trajectories x in measurement matrix M

Recover

• Structure: 3D point positions X

• Motion: Camera projection matrices P

All based on projection equation

$$\mathbf{x} = P\mathbf{X}$$

Problem statement expanded

Given data: \mathbf{x}

Related by: $\mathbf{x} = P\mathbf{X}$

Recover: P, \mathbf{X}

Reminder: affine camera

Affine

 $\tilde{\mathbf{w}} = P_{aff}\tilde{\mathbf{X}}$. 8 degrees of freedom $(p_{34} = 1)$. 4 points to calibrate.

$$\begin{bmatrix} su \\ sv \\ s \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 0 & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

1. Calibration

Reminder: Affine camera calibration

Given

3D points $\{\mathbf{X}_1,...,\mathbf{X}_n\}$ and 2D points $\{\mathbf{x}_1,...,\mathbf{x}_n\}$

Compute P such that $\mathbf{x}_i = \mathbf{X}_i$ as closely as possible.

Reminder: Affine camera calibration

Given

3D points $\{\mathbf{X}_1,...,\mathbf{X}_n\}$ and 2D points $\{\mathbf{x}_1,...,\mathbf{x}_n\}$

Compute P such that $\mathbf{x}_i = \mathbf{X}_i$ as closely as possible.

For i = 1

$$\begin{pmatrix} x_i \\ y_i \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{pmatrix} \begin{pmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{pmatrix}$$

2 equations, 8 unknowns \implies no unique solution

Reminder: Affine camera calibration

Given

3D points $\{X_1,...,X_n\}$ and 2D points $\{x_1,...,x_n\}$

Compute P such that $x_i = X_i$ as closely as possible.

For i = 1..4

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{pmatrix} \begin{pmatrix} X_1 & X_2 & X_3 & X_4 \\ Y_1 & Y_2 & Y_3 & Y_4 \\ Z_1 & Z_2 & Z_3 & Z_4 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{M} = \mathbf{P} \mathbf{B}^{\top}$$

$$\mathbf{P} = \mathbf{M} \mathbf{B}^{-\top}$$

 $8 \text{ equations}, 8 \text{ unknowns} \implies \text{unique solution (?)}$

Note
$$X^{-\top} = (X^{-1})^{\top} = (X^{\top})^{-1}$$

Reminder: Affine camera calibration

For i = 1..n

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \end{pmatrix} \begin{pmatrix} X_1 & X_2 & \dots & X_n \\ Y_1 & Y_2 & \dots & Y_n \\ Z_1 & Z_2 & \dots & Z_n \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

$$\mathbf{M} = \mathbf{PB}^{\mathsf{T}}$$

$$\mathbf{P} = \mathbf{M}(\mathbf{B}^*)^{\mathsf{T}}$$

2n equations, 8 unknowns \implies least-squares solution

$$X^* = (X^\top X)^{-1} X^\top$$

See that
$$M = PB^{\top} \implies MB = PB^{\top}B \implies MB(B^{\top}B)^{-1} = M((B^{\top}B)^{-\top}B^{\top})^{\top} = M(B^*)^{\top} = P$$
, as $B^{\top}B$ symmetric.

2. Triangulation

2nd reminder: affine triangulation

Given

```
2D points \{x_1, x_2\}, projection matrices \{P_1, P_2\}.
```

Compute

X such that $\mathbf{x}_i = P_i \mathbf{X}$ as closely as possible.

2nd reminder: affine triangulation

Given

2D points $\{x_1, x_2\}$, projection matrices $\{P_1, P_2\}$.

Compute

X such that $\mathbf{x}_i = P_i \mathbf{X}$ as closely as possible.

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{pmatrix} = \underbrace{\begin{pmatrix} P_1 \\ P_2 \end{pmatrix}}_{4 \times 4} \mathbf{X}$$

$$\mathbf{M} = \mathbf{A}\mathbf{X}$$
$$\implies \mathbf{X} = \mathbf{A}^*\mathbf{M}$$

Each 3D point generates a 2D track

If the sequence is m frames long then each track is represented as a stacked vector of 2D points:

$$\begin{pmatrix}
\mathbf{x}_1 \\
\mathbf{x}_2 \\
\vdots \\
\mathbf{x}_m
\end{pmatrix} = \begin{pmatrix}
\mathbf{P}_1 \\
\mathbf{P}_2 \\
\vdots \\
\mathbf{P}_m
\end{pmatrix} \mathbf{X}$$

2nd reminder: affine triangulation

Given

2D points $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m\}$, projection matrices $\{P_1, P_2, ..., P_m\}$.

Compute

X such that $\mathbf{x}_i = P_i \mathbf{X}$ as closely as possible.

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{pmatrix} = \underbrace{\begin{pmatrix} P_1 \\ P_2 \\ \vdots \\ P_m \end{pmatrix}}_{2m \times 4} \mathbf{X}$$

$$M = A\mathbf{X}$$
$$\implies \mathbf{X} = A^*M$$

3. Factorization

How do we get both **P** and **X**?

• One track:

$$\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{pmatrix} = \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \vdots \\ \mathbf{P}_m \end{pmatrix} \mathbf{X}$$

• n tracks:

$$\begin{pmatrix} \mathbf{x}_{11} & \mathbf{x}_{11} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{21} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{m1} & \mathbf{x}_{m1} & \cdots & \mathbf{x}_{mn} \end{pmatrix} = \begin{pmatrix} \mathbb{P}_1 \\ \mathbb{P}_2 \\ \vdots \\ \mathbb{P}_m \end{pmatrix} \begin{pmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{pmatrix}$$

The "factorization" problem

• *n* tracks:

$$\begin{pmatrix} \mathbf{x}_{11} & \mathbf{x}_{11} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{21} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{m1} & \mathbf{x}_{m1} & \cdots & \mathbf{x}_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \vdots \\ \mathbf{P}_m \end{pmatrix} \begin{pmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{pmatrix}$$

$$M = PX$$

Given M, what are its factors P, X?

Factorization

- Factorization: M = PX
- Q. Suppose M = 6, what are P and X?
- Ambiguity:
 Factors P and X are not unique
 But they are restricted to a small set

Singular value decomposition (SVD)

 Any matrix M has a singular value decomposition of the form

$$M = U S V^T$$

- For "simple" matrices *U*, *S*, and *V*:
 - S is diagonal
 - U is orthonormal: U $U^T = I$
 - V is orthonormal: $V V^T = I$

- Given SVD of M, i.e. M = U D V'
- And rank(M) = 4 (why?)
- Simply set
 - P = First 4 columns of U D
 - -X = First 4 rows of V

This is one solution – could there be a better one?

Ambiguity (Perspective, not affine)

Ambiguity

How unique is a factorization?

Given matrix $\ensuremath{\mathtt{M}},$ for which we have already found factors so that

$$M = AB^{T}$$

we can generate new factors $\tilde{\mathtt{A}}$ and $\tilde{\mathtt{B}}$ as follows.

For any 4×4 invertible matrix H, set

$$\tilde{A} = AH$$
 $\tilde{B} = BH^{-T}$

Then
$$\tilde{A}\tilde{B}^{\top} = AH(BH^{-\top})^{\top} = AHH^{-1}B^{\top} = AB^{\top} = M$$

But...

- Factorization uses affine camera model, the real world is perspective
- · Factorization computes minimum of error

$$e(P,X) = norm(M - P X)$$

Would like to optimize weighted error

$$e(P,X) = norm(W * (M - P X))$$

Must deal with missing data

Matrix factorization with missing data

$$\min_{\mathbf{A}, \mathbf{B}} \left\| \mathbf{W} \odot (\mathbf{M} - \mathbf{A} \mathbf{B}^{\top}) \right\|_{\rho}$$

- Structure from motion
- PCA with missing data
- · Shape from shading
- ...

$$\mathbf{P}\odot\mathbf{Q}=\mathbf{R}\Leftrightarrow r_{ij}=p_{ij}q_{ij}$$

Missing data algorithm 1: Alternation

If we know A...

Missing data algorithm 1: Alternation

Missing data algorithm 1: Alternation

But...

- Factorization uses affine camera model, the real world is perspective
- Factorization computes minimum of error
 e(P,X) = norm(M P X)

Would like to optimize weighted error

$$e(P,X) = norm(W - (M - P X))$$

Must deal with missing data

Photometric stereo

- Camera and flash mounted together
- Geometric target allows estimation of position of camera...
 - ... and therefore of position of light

