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AutoStitch iPhone
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“Raises the bar on iPhone panoramas”
- TUAW

“Magically combines the resulting shots”
- New York Times

“Create gorgeous panoramic 
photos on your iPhone”

- Cult of Mac



4F12 class of ‘99
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Projection 37

Case study – Image mosaicing

Any two images of a general scene with the same
camera centre are related by a planar projective
transformation given by:

w̃′ = KRK−1w̃

where K represents the camera calibration matrix
and R is the rotation between the views.

This projective transformation is also known as the
homography induced by the plane at infinity. A min-
imum of four image correspondences can be used to
estimate the homography and to warp the images
onto a common image plane. This is known as mo-
saicing.



Local Feature Matching

• Given a point in the world...

...compute a description of that point 
that can be easily found in other images

[  ]
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Scale Invariant Feature Transform

• Start by detecting points of interest (blobs)
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Figure 3: Normalized scale-space maxima computed from an image of a sunflower field: (top
left): Original image. (top right): Circles representing the 250 normalized scale-space maxima
of (traceHnormL)2 having the strongest normalized response. (bottom left): Circles represent-
ing scale-space maxima of (traceHnormL)2 superimposed onto a bright copy of the original
image. (bottom right): Corresponding results for scale-space maxima of (detHnormL)2.
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Figure 4: The 250 most significant normalized scale-space extrema detected from the per-
spective projection of a sine wave of the form (with 10% added Gaussian noise).
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• Find maxima of image Laplacian over scale and space

7[ T. Lindeberg ]



Scale Invariant Feature Transform

• Describe local region by distribution (over angle) of gradients
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computing the gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over 4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradientmagnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computed from an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function with σ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although, of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of 1 − d for each dimension, where d is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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• Each descriptor: 4 x 4 grid x 8 orientations = 128 dimensions



Scale Invariant Feature Transform

• Extract SIFT features from an image
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• Each image might generate 100’s or 1000’s of SIFT descriptors

[ A. Vedaldi ]



Feature Matching
• Goal: Find all correspondences between a pair of images
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?

• Extract and match all SIFT descriptors from both images

[ A. Vedaldi ]



Feature Matching

• Each SIFT feature is represented by 128 numbers
• Feature matching becomes task of finding a nearby 128-d vector
• All nearest neighbours:
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• Solving this exactly is O(n2), but good approximate algorithms 
exist

• e.g., [Beis, Lowe ’97] Best-bin first k-d tree
• Construct a binary tree in 128-d, splitting on the coordinate 

dimensions
• Find approximate nearest neighbours by successively exploring 

nearby branches of the tree

8j NN(j) = argmin
i

||xi � xj ||, i 6= j



2-view Rotational Geometry

• Feature matching returns a set of noisy correspondences 
• To get further, we will have to understand something about the 

geometry of the setup

12



2-view Rotational Geometry

• Recall the projection equation for a pinhole camera
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X̃ ⇠ [X, Y, Z, 1]T
ũ ⇠ [u, v, 1]T

K (3⇥ 3)

: Homogeneous image position

: Homogeneous world coordinates

: Intrinsic (calibration) matrix

R (3⇥ 3) : Rotation matrix

t (3⇥ 1) : Translation vector



2-view Rotational Geometry

• Consider two cameras at the same position (translation)
• WLOG we can put the origin of coordinates there
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Appendix A. Multiple View Geometry 128

Figure A.4: Panoramic Geometry. For a camera that rotates about it’s optical centre,
there is a one-to-one mapping between the points in the two images.

A.5.1 Panoramic Geometry

For images related by a rotation about the camera centre there is a one-to-one mapping

between corresponding points. Consider two cameras centred at 0 viewing the point

X

x̃1 = [ R1 | 0 ] X̃ = R1X (A.23)

x̃2 = [ R2 | 0 ] X̃ = R2X (A.24)

Hence

x̃1 = R1R
�1
2 x̃2 (A.25)

Substituting ũ = Kx̃ gives

ũ1 = H12ũ2 (A.26)

where

H12 = K1R1R
�1
2 K�1

2 (A.27)

is a special homography known as the homography of the plane at infinity. In the gen-

eral case when the camera centres are distinct, the homography of the plane at infinity

ũ1 = K1[ R1 | t1 ] X̃

• Set translation to 0

ũ1 = K1[ R1 | 0 ] X̃

• Remember X̃ ⇠ [X, Y, Z, 1]T so

ũ1 = K1R1X

X = [X, Y, Z]T(where )



2-view Rotational Geometry

• Add a second camera (same translation but different rotation 
and intrinsic matrix)
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Appendix A. Multiple View Geometry 128

Figure A.4: Panoramic Geometry. For a camera that rotates about it’s optical centre,
there is a one-to-one mapping between the points in the two images.

A.5.1 Panoramic Geometry

For images related by a rotation about the camera centre there is a one-to-one mapping

between corresponding points. Consider two cameras centred at 0 viewing the point

X

x̃1 = [ R1 | 0 ] X̃ = R1X (A.23)

x̃2 = [ R2 | 0 ] X̃ = R2X (A.24)

Hence

x̃1 = R1R
�1
2 x̃2 (A.25)

Substituting ũ = Kx̃ gives

ũ1 = H12ũ2 (A.26)

where

H12 = K1R1R
�1
2 K�1

2 (A.27)

is a special homography known as the homography of the plane at infinity. In the gen-

eral case when the camera centres are distinct, the homography of the plane at infinity

ũ2 = K2R2X

ũ1 = K1R1X

• Now eliminate X

• Substitute in equation 1

X = RT
1 K

�1
1 ũ1

ũ2 = K2R2R
T
1 K

�1
1 ũ1

This is a 3x3 matrix -- a (special form) of homography



Computing H: Quiz

• Each correspondence between 2 images generates  _____ 
equations

• A homography has  _____  degrees of freedom
• _____  point correspondences are needed to compute the 

homography
• Rearranging to make H the subject leads to an equation of the 

form
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• This can be solved by _____

Mh = 0



Finding Consistent Matches

• Raw SIFT correspondences (contains outliers)
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Finding Consistent Matches

• SIFT matches consistent with a rotational homography

18



Finding Consistent Matches

• Warp images to common coordinate frame

19



RANSAC

• RAndom SAmple Consensus [Fischler-Bolles ’81]
• Allows us to robustly estimate the best fitting homography 

despite noisy correspondences
• Basic principle: select the smallest random subset that can be 

used to compute H
• Calculate the support for this hypothesis, by counting the 

number of inliers to the transformation
• Repeat sampling, choosing H that maximises # inliers

20



RANSAC
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H = eye(3,3); nBest = 0;

for (int i = 0; i < nIterations; i++)
{ 
    P4 = SelectRandomSubset(P);
    Hi = ComputeHomography(P4);
    nInliers = ComputeInliers(Hi);
    if (nInliers > nBest)
    {
        H = Hi;
        nBest = nInliers;
    }
}



[ Brown, Lowe ICCV’03 ]
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Recognising Panoramas



Global Alignment

• The pairwise image relationships are given by homographies

• But over time multiple pairwise mappings will accumulate 
errors

• Notice: gap in panorama before it is closed...
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Gap Closing
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Bundle Adjustment
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-           = projected position of point i in image j

-           = measured position of point i in image j
uij
mij

Bundle Adjustment

• Minimise sum of robustified residuals

e(�) =

npX

i=1

X

j�V(i)

f(uij(�)�mij)

f(x) =

(
|x|2, |x| < �

2�|x|� �2, |x| ⇥ �

• Robust error function (Huber)

-           = # points/tracks (mutual feature matches across images)np

-           = set of images where point i is visibleV(i)

-           = camera parameters⇥
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