
Engineering Tripos Part IIB FOURTH YEAR

Module 4F12: Computer Vision

Solutions to Examples Paper 2

1. Perspective projection and vanishing points

(a) Consider a line in 3D space, defined in camera-centered coordinates:

Xc = a+ λb

⇒ x = f

(

ax + λbx
az + λbz

,
ay + λby
az + λbz

)

As λ → ∞, we move further down the line, and x converges to the vanishing point:

xvp = f

(

bx
bz
,
by
bz

)

The vanishing point depends only on the orientation of the line and not its position.
When bz = 0, the line is parallel to the image plane and the vanishing point is at
infinity.

(b) Renaissance artists generally restricted themselves to projections onto vertical
planes (since the pictures tended to be hanging on walls), hence the vertical lines
were parallel to the image plane and had no vanishing points. However, Renaissance
artists had a good grasp of the theory of perspective, and would introduce vanishing
points for vertical lines when painting scenes onto ceiling frescos, trying to give the
illusion that the scene was actually “up there”.

(c) Parallel planes meet at infinity in the world. This projects to lines in the image,
often referred to as horizon lines. To prove this, consider a plane in 3D space defined
as follows:

Xc.n = d

where n = (nx, ny, nz) is the normal to the plane. We can analyse horizon lines by
writing the perspective projection in the following form:







x
y
f






=

fXc

Zc

Taking the scalar product of both sides with n gives:






x
y
f





 .







nx

ny

nz





 =
fXc.n

Zc

=
fd

Zc

1

As Zc → ∞ we move away from the camera and we find






x
y
f





 .







nx

ny

nz





 = 0

Thus the equation of the horizon line is

nxx+ nyy + fnz = 0

which depends only on the orientation of the plane, and not its position. Thus parallel
planes meet at a horizon line in the image.

2. Rigid body transformations

Inspection of the figure reveals that

Xc = −Y , Yc = −Z + h , Zc = X + 4h

The rigid body transformation between world and camera coordinates is therefore










Xc

Yc

Zc

1











=











0 −1 0 0
0 0 −1 h
1 0 0 4h
0 0 0 1





















X
Y
Z
1











3. Calibration (3D)

(a) The overall projection matrix must take account of rigid body motion between
the camera and the scene, perspective projection onto the image plane and CCD
imaging. This can be accomplished as follows.

Rigid body transformation

There is a rigid body transformation between the world coordinates X̃ and the
camera-centered coordinates X̃ c.

X̃ c = Pr X̃ , where Pr =











R T

0 0 0 1











X̃ is the homogeneous representation of the world point X, and likewise for X̃ c.
Pr is the rigid body transformation matrix (rotation and translation).

Perspective projection

The next stage is perspective projection of X̃ c onto x̃ in the image plane:

x̃ = Pp X̃ c , where Pp =







f 0 0 0
0 f 0 0
0 0 1 0







2

x̃ = (sx, sy, s) is the homogeneous representation of the image point x = (x, y).
Pp is the perspective projection matrix.

CCD imaging

Finally, we have to convert to pixel coordinates w = (u, v):

w̃ = Pc x̃ , where Pc =







ku 0 u0

0 kv v0
0 0 1







w̃ = (su, sv, s) is the homogeneous representation of the pixel coordinates w =
(u, v). Pc is the CCD calibration matrix.

We can now express the overall imaging process, from X̃ to w̃, as a single matrix
multiplication in homogeneous coordinates:

w̃ = Pps X̃

where Pps = Pc Pp Pr

=







ku 0 u0

0 kv v0
0 0 1













f 0 0 0
0 f 0 0
0 0 1 0

















R T

0 0 0 1











Pps is the camera projection matrix for a perspective camera. It is a 3 × 4 matrix
with 10 degrees of freedom. The product Pc Pp accounts for all the intrinsic (or
internal) camera parameters. Pr accounts for the extrinsic parameters. Pps is not
a general 3× 4 matrix, but has a special structure composed of Pr, Pp and Pc.

(b) For calibration purposes, it is easier to consider another camera model, the pro-
jective camera, which is described by the general 3× 4 matrix P:

w̃ = P X̃, where P =







p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34







The projective camera has 11 degrees of freedom (since the overall scale of P does
not matter). It is often far more convenient to deal with a projective camera than a
perspective one, since we do not have to worry about any nonlinear constraints on
the elements of P.

The projective camera can be calibrated by observing the corners of the squares on
the table. We have to know the positions of the corners in the image (we could
extract these by hand or use a corner detector) and in the world (we would measure
these with a ruler). Each point we observe gives us a pair of equations:

u =
su

s
=

p11X + p12Y + p13Z + p14
p31X + p32Y + p33Z + p34

3

v =
sv

s
=

p21X + p22Y + p23Z + p24
p31X + p32Y + p33Z + p34

Since we are observing a calibrated scene, we know X, Y, and Z, and we observe
the pixel coordinates u and v in the image. So we have two linear equations in the
unknown camera parameters. Since there are 11 unknowns (the overall scale of P
does not matter), we need to observe at least 6 points to calibrate the camera.

The equations can be solved using orthogonal least squares. First, we write the
equations in matrix form:

A p = 0

where p is the 12 × 1 vector of unknowns (the twelve elements of P), A is the
2n × 12 matrix of coefficients and n is the number of observed calibration points.
The aim of orthogonal least squares is to minimize the squared residuals of these
equations, subject to a unit length constraint on p. Without this constraint, the
squared residuals would be zero for p = 0, which is not a very interesting solution.
Since the overall scale of P does not matter, the unit length constraint is valid. So,
we aim to minimize

pT AT A p

pT p

From Part IA mathematics we know that

λ1 ≤
pT AT A p

pT p
≤ λ12

where λ1 is the smallest eigenvalue of AT A and λ12 is the largest eigenvalue of
AT A. Furthermore, we know that

λ1 =
pT AT A p

pT p

when p is equal to u1, the eigenvector corresponding to λ1. Thus, the orthogonal
least squares solution corresponds to the eigenvector of AT A with the smallest
corresponding eigenvalue.

It is essential to adjust the height of the table, since if we do not we are not exercising
all the degrees of freedom of the camera model and the set of linear equations will
not be independent. Consequently, the least squares procedure will not find a unique
solution (there will be a degenerate zero eigenvalue).

Given the projective camera matrix, we can attempt to recover the intrinsic and
extrinsic parameters using QR decomposition. Writing

Pps =







fku 0 u0 0
0 fkv v0 0
0 0 1 0

















R T

0 0 0 1











=







fku 0 u0

0 fkv v0
0 0 1












R T







= K
[

R T
]

=
[

K R K T
]

4

it is apparent that we need to decompose the left 3×3 sub-matrix of P into an upper
triangular matrix K and an orthogonal (rotation) matrix R. This can be achieved
using QR decomposition: here’s the appropriate sequence of Matlab commands:

[X Y] = qr(flipud(PL)’); K = flipud(fliplr(Y’)); R = flipud(X’);

where PL is the left 3 × 3 sub-matrix of P. Since there are multiple solutions, it is
necessary to check that the appropriate elements of K are positive, change the signs
of some columns of K if necessary, and compensate by changing the signs of the
corresponding rows of R. T can then be recovered using

T = K−1 [p14 p24 p34]
T

If the camera we’re calibrating is high quality (so it does something approaching a
perspective projection onto a well mounted CCD array) and the calibration has been
properly performed, we should find that the recovered intrinsic matrix K has a zero
in the middle of its top row, as expected. If we scale the matrix K so that it has
a 1 in its lower right hand corner (this is acceptable, since the overall scale of P does
not matter), then we can recover the principle point (u0, v0) by looking at k13 and
k23, and the products fku and fkv by looking at k11 and k22. It is not possible to
decouple the focal length from the pixel scaling factors.

(c) Nonlinear distortion is not included in the projective camera model. Any residuals
remaining after the orthogonal least squares procedure are partly due to nonlinear
distortion, as well as errors in localising the corners in the image and in the world.

4. Planar projective transformations

The mapping from world to image plane is described by a planar projective trans-
formation Pp:







sx
sy
s





 =







p11 p12 p13
p21 p22 p23
p31 p32 1













X
Y
1







The transformation can be calibrated by observing four points whose world coordi-
nates are known. Each point gives us two linear equations in the eight unknowns.

X=0, Y=0, x=0, y=0

0 =
sx

s
=

p13
1

, 0 =
sv

s
=

p23
1

⇒ p13 = p23 = 0

X=1, Y=0, x=1, y=–0.5

1 =
sx

s
=

p11 + p13
p31 + 1

, −0.5 =
sy

s
=

p21 + p23
p31 + 1

⇒ p11 + p13 − p31 = 1 , 2p21 + 2p23 + p31 = −1

5

X=0, Y=1, x=–0.5, y=1

−0.5 =
sx

s
=

p12 + p13
p32 + 1

, 1 =
sy

s
=

p22 + p23
p32 + 1

⇒ 2p12 + 2p13 + p32 = −1 , p22 + p23 − p32 = 1

X=1, Y=1, x= 1/3, y=1/3

1/3 =
sx

s
=

p11 + p12 + p13
p31 + p32 + 1

, 1/3 =
sy

s
=

p21 + p22 + p23
p31 + p32 + 1

⇒ 3p11 + 3p12 + 3p13 − p31 − p32 = 1 , 3p21 + 3p22 + 3p23 − p31 − p32 = 1

We now have a total of 8 equations in 8 unknowns, which we can write in matrix
form:

















0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 1 0 0 0 −1 0
0 0 0 2 0 2 1 0
0 2 2 0 0 0 0 1
0 0 0 0 1 1 0 −1
3 3 3 0 0 0 −1 −1
0 0 0 3 3 3 −1 −1

































p11
p12
p13
p21
p22
p23
p31
p32

















=

















0
0
1
−1
−1
1
1
1

















We solve this by matrix inversion (Matlab):

Pp =







2 −1 0
−1 2 0
1 1 1







The image of the point (0.5, 0.5) is

Pp =







2 −1 0
−1 2 0
1 1 1













0.5
0.5
1





 =







0.5
0.5
2







in homogeneous coordinates, which is (0.25, 0.25) in Cartesian coordinates.

(b) We can check the answer by finding the intersection of the diagonals of the imaged
square (since incidence is preserved under perspective projection).

C (0,1)

P
p

World

X

Y

O A

B

(1,0)

(1,1)

(1/2,1/2)D

y

Image plane

(1,-1/2)

(1/3,1/3)

(-1/2,1)

a

b

d (1/4,1/4)
c

o x

6

5. Projective transformation due to camera rotation

(a) Before the camera is rotated, the camera is aligned with the world coordinate
system and hence

w̃ = K
[

I O
]

X̃ = K







X
Y
Z






= K X

It follows that
X = K−1 w̃

After rotating by R about the optical centre, the same world point X projects to a
different image point w̃′ as follows:

w̃′ = K
[

R O
]

X̃ = K R







X
Y
Z





 = K R X = K R K−1 w̃

Hence the relationship between points in the original image and corresponding points
in the second image is a plane to plane projectivity.

(b) The homography (2D projective transformation) can be estimated by observing
at least four corresponding points in the two images. Each correspondence gives a
constraint of the form







su′

sv′

s






=







p11 p12 p13
p21 p22 p23
p31 p32 p33













u
v
1







By rearranging this matrix equation, it becomes clear how each correspondence pro-
vides two linear equations in the unknown elements of P:

u′ =
su′

s
=

p11u+ p12v + p13
p31u+ p32v + p33

v′ =
sv′

s
=

p21u+ p22v + p23
p31u+ p32v + p33

The set of constraints can be written in matrix form:

A p = 0

where p is the 9 × 1 vector of unknowns (the 9 elements of P), A is the 2n × 9
matrix of coefficients and n is the number of corresponding points observed in the
two images. This can be solved using orthogonal least squares, as in question 3.

A mosaic can be constructed as follows. The camera is rotated around the opti-
cal centre and a sequence of images is acquired, with each image overlapping its

7

predecessor to some extent (say 50%). The plane to plane projectivity P relating
consecutive pairs of images is estimated using correspondences in the overlap region.
The correspondences can be located manually, or perhaps even automatically using
some sort of correlation scheme. P is then used to warp one image into the coor-
dinate frame of its predecessor, by finding the grey level I(w̃) in the second image
associated with each pixel w̃′ in the frame of the first image. The two images can
then be displayed in the same frame. Some sort of blending is required in the overlap
region. This process is repeated for all pairs of images, allowing the entire sequence
to be displayed in a single frame. If all has gone well (and the camera has not been
translated as well as rotated), the seams should be invisible in the final composite
mosaic.

6. Line to line transformations

As discussed in the lecture notes, for the purposes of recovering structure along a
line we really only need to calibrate for one component, say y:

[

sy
s

]

=

[

p21 p22
p31 1

] [

X
1

]

where X is the position of the train on the railway line. We can calibrate this using
the y coordinates of the imaged markers.

X=0, y=0

0 =
sy

s
= p22

X=20, y=0.5

0.5 =
sy

s
=

20p21 + p22
20p31 + 1

X=30, y=3/5

3

5
=

sy

s
=

30p21 + p22
30p31 + 1

Solving these gives p22 = 0, p21 = 1/20, p31 = 1/20, so
[

sy
s

]

=

[

1 0
1 20

] [

X
1

]

With this calibration we can recover structure X given the y component of the image
position:

y =
X

X + 20
⇔ X =

20y

1− y

8

We can differentiate this expression to find the train’s velocity Ẋ in terms of the y
component of image velocity ẏ:

Ẋ =
(1− y)× 20ẏ + 20y × ẏ

(1− y)2
=

20ẏ

(1− y)2

The alarm should sound when Ẋ > 40:

20ẏ

(1− y)2
> 40 ⇔ ẏ > 2(1− y)2

So the limiting value of ẏ should be 2(1− y)2.

7. Calibration (1D)

The transformation between the projected cross’ position in 3D space and the pixel
coordinates of its image is a 1D projective one. Since the 3D position of the projected
cross is a linear function of the height of the table, it follows that the transformation
between the height of the table and the pixel coordinates of the cross’ image is also
a projective one.

Having established this, we could proceed as in question 6 and calibrate the trans-
formation between one of the pixel coordinates, u say, and the height of the table
using the three calibration points given in the question. However, if we plot the three
calibration points (marked ‘+’ below) we see that they are not exactly collinear.

50 100 150 200 250

250

300

350

400

450

u

v

Best fit straight line to calibration points
Calibration points
Observation points

We clearly have some measurement noise to deal with. Also, one of the three points
observed later (marked ‘∗’ above) is well off the line and is clearly an outlying mea-
surement: it would be pointless to try to deduce the height of the table from this
point. Since measurement errors are equally likely in the u and v directions, we

9

should use both u and v observations together with a least squares technique to find
the optimal calibration matrix.

The transformation between table height X and cross position (u, v) can be written
in the following form:







su
sv
s






=







p11 p12
p21 p22
p31 p32







[

X
1

]

The u and v coordinates of the calibration observations provide six equations:

X=50, u=100, v = 250

100 =
su

s
=

50p11 + p12
50p31 + p32

, 250 =
sv

s
=

50p21 + p22
50p31 + p32

X=100, u=140, v = 340

140 =
su

s
=

100p11 + p12
100p31 + p32

, 340 =
sv

s
=

100p21 + p22
100p31 + p32

X=200, u=200, v = 450

200 =
su

s
=

200p11 + p12
200p31 + p32

, 450 =
sv

s
=

200p21 + p22
200p31 + p32

Writing these equations in matrix form gives:





















50 1 0 0 −5000 −100
100 1 0 0 −14000 −140
200 1 0 0 −40000 −200
0 0 50 1 −12500 −250
0 0 100 1 −34000 −340
0 0 200 1 −90000 −450































p11
p12
p21
p22
p31
p32











= 0

We solve this by orthogonal least squares (see question 3 for the method, and use
Matlab to calculate the eigenvector via SVD):







p11 p12
p21 p22
p31 p32





 =







1.6934 35.1093
3.5839 127.5444
0.0044 1.0







where the solution has been arbitrarily scaled to give a 1 in the lower right hand
corner.

By way of illustration, let’s look at an alternative way to estimate P. We could set
p32 to 1 from the outset. Our system of linear equations becomes:

10





















50 1 0 0 −5000
100 1 0 0 −14000
200 1 0 0 −40000
0 0 50 1 −12500
0 0 100 1 −34000
0 0 200 1 −90000





























p11
p12
p21
p22
p31









=





















100
140
200
250
340
450





















We solve this via the pseudo-inverse (use Matlab):







p11 p12
p21 p22
p31 1





 =







1.7462 33.2618
3.7011 123.8197
0.0046 1.0







The solution is very similar to the one obtained with the eigenvector technique. In
general, however, the eigenvector technique is to be preferred, since it produces a less
biased solution1. For low-dimension problems there is not much to choose between the
two approaches, and we’ll stick with the pseudo-inverse for the rest of this question.

We can now use this calibration to find the height of the table X for new observations
of the cross. Each of the u and v observations provides a single equation in X :

u =
su

s
=

Xp11 + p12
Xp31 + 1

, v =
su

s
=

Xp21 + p22
Xp31 + 1

We could solve using either the u or v coordinates, but since measurement errors are
equally likely in u and v we should really use both coordinates together with a least
squares procedure. Rearranging the above equations gives:

[

p11 − up31
p21 − vp31

]

X =

[

u− p12
v − p22

]

These equations can be solved for X using a pseudo-inverse (use Matlab) and the
calibration parameters found earlier.

(a) (u, v) = (130, 310) ⇒ X = 82.2 mm.
(b) (u, v) = (170, 380) ⇒ X = 133.1 mm.
(c) (u, v) = (190, 300). As mentioned earlier, this is clearly an outlying observation.

Graphical approach

Alternatively, we could try a graphical approach to avoid the lengthy least squares
calculations (though this is not really an issue if we’re using Matlab). We can plot

1In the context of fitting a straight line to a set of points in a plane, the pseudo-inverse technique

minimizes the distances between the line and the points in only one of the principal directions, while the

eigenvector technique minimizes the orthogonal distances between the line and the points.

11

the three calibration points on graph paper, and then fit a straight line (using or-
thogonal least squares) by eye — see the graph on page 9. Next we project each of
the calibration points onto the line (using orthogonal projection, again by eye) to
obtain what are effectively noise-free calibration points. We can now proceed as in
question 6, calibrating for just one of the image coordinates, for example:

[

sv
s

]

=

[

p21 p22
p31 1

] [

X
1

]

Finally, we project each of the noisy observation points onto the straight line and use
the calibration to solve for the table height X .

8. Weak perspective

(a) Under weak perspective projection, we assume that all points lie at approximately
the same depth ZA from the camera. This allows the projection to be re-written as
follows:







suA

svA
s






=







kuf 0 0 u0ZA

0 kvf 0 v0ZA

0 0 0 ZA

















Xc

Yc

Zc

1











(b) Under full perspective we have

u =
kufXc + u0Zc

Zc

Under weak perspective we have

uA =
kufXc + u0ZA

ZA

=

(

kufXc + u0ZA

Zc

)

(

Zc

ZA

)

=

(

kufXc + u0Zc + u0(ZA − Zc)

Zc

)

(

Zc

ZA

)

=
(

u+
u0∆Z

Zc

)(

Zc

ZA

)

where ∆Z ≡ ZA − Zc. So

u− uA = u−

(

uZc + u0∆Z

Zc

)(

Zc

ZA

)

=
(

uZA

Zc

−
uZc + u0∆Z

Zc

)(

Zc

ZA

)

=

(

u(ZA − Zc)− u0∆Z

Zc

)

(

Zc

ZA

)

= (u− u0)
∆Z

ZA

Similarly for (v − vA), we find that

v − vA = (v − v0)
∆Z

ZA

12

So the weak perspective approximation is perfect at the centre of the image, but gets
progressively worse away from the centre.

(c) Weak perspective is a good approximation when the depth range of objects in
the scene is small compared with the viewing distance. A good rule of thumb is that
the viewing distance should be at least ten times the depth range.

The main advantage of the weak perspective model is that it is easier to calibrate
than the full perspective model. The calibration requires fewer points with known
world position, and, since the model is linear, the calibration process is also better
conditioned (less sensitive to noise) than the nonlinear full perspective calibration.

9. Planar affine transformations

(a) If the field of view is such that all points visible on the world plane lie at approxi-
mately the same depth from the camera (compared with the viewing distance), then
the mapping from world plane (X, Y) to image plane (u, v) is approximately affine:

[

u
v

]

=

[

p11 p12 p13
p21 p22 p23

]







X
Y
1







This transformation has 6 degrees of freedom. Geometrically they signify rotation
(1 DOF), scaling (1 DOF), shear (axis and magnitude, 2 DOF) and translation (2
DOF).

(b) The planar affine transformation preserves parallelism. Bilateral planar symmetry
is transformed into a property called skew symmetry: the axis of symmetry is no
longer orthogonal to the lines joining corresponding points.

Skew symmetry

Planar affine

transformation

Bilateral symmetry

The planar affine transformation preserves centroids. The centroid (ū, v̄) of the trans-
formed shape is at the same position as the transformed centroid (X̄, Ȳ) of the original
shape:

ū =
1

n

n
∑

i=1

ui =
1

n

n
∑

i=1

(p11Xi + p12Yi + p13) = p11
1

n

n
∑

i=1

Xi + p12
1

n

n
∑

i=1

Yi + p13

13

= p11X̄ + p12Ȳ + p13

Similarly
v̄ = p21X̄ + p22Ȳ + p23

Hence
[

ū
v̄

]

=

[

p11 p12 p13
p21 p22 p23

]







X̄
Ȳ
1







(c) The planar projective transformation has two extra degrees of freedom. These
specify “fanning”: a square can transform to a quadrilateral with two vanishing points
in the image. The equation of the horizon line contributes the two extra degrees of
freedom.

10. Projective invariants

la

lb

lc ld

u

v

Image d

c

a

b

o

The figure shows the image of four world points A, B, C and D, and the world origin
O. Distances l measured along the image line from o are related to distances along
the world line by a 1D projective transformation:

[

sl
s

]

=

[

p q
r 1

] [

X
1

]

Hence we obtain

li =
pXi + q

rXi + 1

Ratios of lengths in the image and the world can be expressed as follows:

ac = lc − la =
(Xc −Xa)(p− qr)

(rXc + 1)(rXa + 1)

14

bc = lc − lb =
(Xc −Xb)(p− qr)

(rXc + 1)(rXb + 1)

⇒
ac

bc
=

AC(rXb + 1)

BC(rXa + 1)
(1)

So the ratios of lengths are not invariant (compare with the affine case, where they
are).

Similarly,
ad

bd
=

AD(rXb + 1)

BD(rXa + 1)
(2)

Dividing (1) by (2) we obtain

ac× bd

bc× ad
=

AC × BD

BC × AD

This is the cross-ratio, which is invariant to camera position, orientation and in-
trinsic parameters.

The four points can be permuted 4! = 24 different ways. However, if we explore these
permutations we find only six distinct values of the cross-ratio.

a

c

d

b

uImage

v

1

y

x

Using the lengths x and y defined in the figure, we can write the cross-ratio as follows:

ac× bd

bc× ad
=

(x+ y)(1− x)

y
=

x− x2 − xy + y

y

We shall see common terms cropping up when we permute the points, so for conve-
nience define α = x− x2 − xy and β = y, so

ac× bd

bc× ad
=

α + β

β
= τ , say

15

The second distinct cross-ratio is found by permuting the points as follows;

ab× cd

ac× bd
=

x(1− x− y)

(x+ y)(1− x)
=

x− x2 − xy

x− x2 − xy + y
=

α

α + β
=

τ − 1

τ

The third distinct cross-ratio is found by permuting the points as follows;

ad× bc

ab× cd
=

y

x(1− x− y)
=

y

x− x2 − xy
=

β

α
=

1

τ − 1

A further three distinct cross-ratios can be derived by taking the inverses of these
expressions:

bc× ad

ac× bd
=

1

τ
,

ac× bd

ab× cd
=

τ

τ − 1
,

ab× cd

ad× bc
= τ − 1

All other permutations of the points yield one of these cross-ratios. In summary,
then, there are six distinct cross-ratios, though they are not independent.

Roberto Cipolla
October 2020

16

