Engineering Tripos Part IIB FOURTH YEAR

Module 4F12: Computer Vision

Solutions to Examples Paper 1

1. Images

Each frame requires 1920 x 1080 x 1 = 2.07 x 10° Bytes. A 25Hz stereo image stream
requires 2.07 x 10% x 25 x 2 = 1.04 x 10® Bytes/s. Assuming an average A4 page of
text contains 50 lines, with about 80 characters on each line, and that a character is
represented (using an ASCII code) as a single byte, a page of text requires 80 x 50 x 1
= 4000 Bytes. So, instead of one second of stereo video, we could alternatively store
1.04 x 10%/4000 ~ 26000 pages of text — enough for a large encyclopaedial

2. Smoothing by convolution with a Gaussian

Consider smoothing an image, first with a Gaussian of standard deviation oy, then
with a Gaussian of standard deviation os:

§(1) = goa () * (901 (2) * [(2))

Since convolution is associative, we can write this as the convolution of the image
with the kernel g,2(z) * g,1(2):

§(2) = (9o2(7) * gor (2)) I ()

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier

transforms and then multiply the transforms in the frequency domain. If g,(z) <
Gy (w), then:
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Hence

wio? Wlo?
9o2(2) * go1(x) > Gaa(w) X Gy1(w) = exp (— 5 2) X exp (— L

2
w?(03 + 0’%))

S go2(T) * go1(x) <> exp (— 5

The expression on the right is the Fourier transforms of a Gaussian with standard
deviation /a2 + 02. So the convolution of two Gaussians with variances 7 and o3
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is a Gaussian with variance o? + 2. It follows that consecutive smoothing with a
series of 1D Gaussians, each with a particular standard deviation o;, is equivalent to

a single convolution with a Gaussian of variance 3, o2.

Spatial domain convolution

Alternatively, we can convolve in the spatial domain. The trick, once again, is to

complete the square:
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This expression is a Gaussian with standard deviation /03 + o%.




3. Generating the Gaussian filter kernel

In general, if we discard the sample (n + 1) pixels from the center of the kernel, the
size of the kernel will be 2n + 1 pixels. We can find n by solving:
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So n must be the nearest integer to 3.70 — 0.5.

(a) Applying this formula for o = 1 gives n = 3 and a kernel size of 2n+1 = 7 pixels.
The filter coefficients can be found by sampling the 1D Gaussian g;(x) at the points
x={-3,-2,—1,0,1,2,3}. The sum of the coefficients is one, so regions of uniform
intensity are unaffected by smoothing.

(b) For ¢ = 5 we get n = 18 and a kernel size of 37 pixels.

(¢) The choice of o depends on the scale at which the image is to be analysed. Modest
smoothing (a Gaussian kernel with small o) brings out edges at a fine scale. More
smoothing (larger o) identifies edges at larger scales, suppressing the finer detail.
There is no right or wrong size for the kernel: it all depends on the scale we're
interested in. Another factor is image noise: the smoothing suppresses noise. It may
be difficult to detect fine scale edges, since a kernel large enough to suppress the noise
may also suppress the fine detail. Finally, computation time may be an issue: large
o means a large kernel and computationally expensive convolutions.

4. Discrete convolution

The image and filter kernels are discrete quantities and convolutions are performed
as truncated summations:

@)= Y go(w(z—u)

uU=-—"n

Applying this to the pixel with intensity 118, which is the 11th pixel in the row, we
obtain

@) = Y go(wI(l—u)

u=-3

= 0.004 x 57+ 0.054 x 77+ 0.242 x 99 + 0.399 x 118. ..
+0.242 x 130 4 0.054 x 133 4+ 0.004 x 134
= 115 (to the nearest integer)

5. Derivative of convolution theorem



(a) This is easily proved by interchanging the order of differentiation and integration:
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(b) Edges are localised at the maxima and minima of -£[g,(z) * I(z)]. These occur
when
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The derivate of convolution theorem tells us that
d2
"
@[Qa(l‘) « 1(z)] = g;(x) * I(z)
Hence edges can be localised at the zero-crossings of ¢”(x) x I(z).

6. Differentiation and 1D edge detection

An approximation to the first-order spatial derivative of I(z) mid-way between the
nth and (n+1)th sample is I(n+1) —I(n). This can be computed by convolving with
the kernel [ 1/2 70 [-1/2 | (remember that the kernel is flipped before the multiply
and accumulate operation).

Applying this kernel to the smoothed row of pixels gives the approximation to the
first-order spatial derivative:
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The intensity discontinuity is at the maximum of the first-order spatial derivative.
The maximum derivative (18) occurs at the tenth pixel - between the pixel with
smoothed intensity 79 and the pixel with intensity 98.

7. Decomposition of 2D convolution

The 2D convolution can be decomposed into two 1D convolutions as follows:

Gol(z,y) * I(x,y) = L //I(:L’—u,y—v) eXp—<UQ+v2> du dv
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ITf you want to be more precise, you can localise the discontinuity to sub-pixel accuracy by calculating
the second order derivatives and then interpolating to find the zero-crossing.
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= go(w) * [95(y) * (2, y)]

Performing two 1D convolutions is much more efficient and quicker than performing
a single 2D convolution. A discrete 1D convolution with a kernel of size N = 2n + 1
requires N multiply and add operations. A discrete 2D convolution with a kernel
of size N x N requires N? multiply and add operations. The speed-up offered by
decomposing the 2D convolution is N?/2N = N/2.

Corner detection

This is taken from a previous tripos examination. See solutions for 4F12 examination
Q1 in 2012 (or 2018).

Band-pass filtering using Image Pyramids

This question was taken from 4F12 examination Q1 (2021). See the examination
solution and marking scheme (Crib).

Feature description and matching

This question was taken from a previous tripos examination. See solution and mark-
ing scheme for 4F12 examination Q1 (2021).
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