Multi-view stereo via volumetric graph-cuts

George Vogiatzis, Carlos Hernandez and Roberto Cipolla

Cambridge Research Laboratory
Toshiba Europe Research Laboratory

3D models from images

- State-of-the-art improving rapidly in recent years
- Various 3D cues have been exploited:
 - Silhouettes
 - Stereopsis (photo-consistency, multi-view stereo)
 - Shading (single/multiple images)
 - Texture
 - Defocus

Photo-consistency

Photo-consistency

3D shape from *photo-consistency*

- Integrate this cue on surface
- Algorithms try to find the most photoconsistent 3D surface
- Key assumptions for object surface
 - Lambertian
 - Richly textured
 - Smooth

3D shape from *photo-consistency*

- Scene representation
 - Meshes, level-sets, voxel occupancy
- Shape prior
 - Local smoothness
- Photo-consistency metric
 - Normalised cross-correlation (NCC), sum of squared differences (SSD)
- Occlusion reasoning
 - How to determine visible images
- Reconstruction algorithm
 - How to obtain globally optimal solution

Our solution

- Volumetric Graph-cuts
 - Uses an occlusion-robust photo-consistency
 - Casts the problem as discrete Markov
 Random Field (MRF) optimisation, obtaining global solution

Find optimal depth with NCC

Find optimal depth with NCC

 Count number of local maxima of red curves for each depth (in small interval)

Combining depth-maps

Aggregating information

Occlusion-robust NCC

Averaged NCC

Robust NCC

3D MRF models

Labelling cost:

Every voxel has a certain preference for being foreground or background

Compatibility cost:

 Every pair of neighbour voxels has a certain preference for being given the same or oposite labels

Optimal labelling can under some simple condition be obtained in polynomial time using "graph-cuts" (Boykov & Kolmogorov, ICCV 2003)

3D MRF for 3D modelling

- Labelling cost:
 - Constant bias towards being foreground
- Compatibility cost:
 - Pair of neighbour voxels
 prefers having oposite
 labels if photo-consistent
 region is between them

- Optimal voxel labelling can be computed using graph-cuts
- Computation takes approx. *7mins* for *512x512x512* grid on Pentium IV 2.6Ghz

3D Models

3D Models

3D models

Middlebury evaluation (temple)

	Accuracy / Completeness		
	Full (312 images)	Ring (47 images)	SparseRing (16 images)
Hernandez [10]	0.36mm / 99.7%	0.52mm / 99.5%	0.75mm / 95.3%
Goesele [9]	0.42mm / 98.0%	0.61mm / 86.2%	0.87mm / 56.6%
Hornung [12]	0.58mm / 98.7%	_	_
Pons [20]	_	0.60mm / 99.5%	0.90mm / 95.4%
Furukawa [8]	0.65mm / 98.7%	0.58mm / 98.5%	0.82mm / 94.3%
Vogiatzis [29]	1.07mm / 90.7%	0.76mm / 96.2%	2.77mm / 79.4%
Present method	0.50mm / 98.4%	0.64mm / 99.2%	0.69mm / 96.9%

Advantages

- Accurate
 - sub-millimetre accuracy on sequence with ground truth
- Simple
 - Can work with about 15-30 images
- Fast
 - Approximately 45' of computation for these models
 - We believe we can bring this down to few minutes

Publications

- Silhouette and stereo fusion for 3D object modeling. Hernández et al, CVIU 96(3):367–392, 2004.
 - Described occlusion-robust photo-consistency
- Multi-view Stereo via Volumetric Graph-cuts, Vogiatzis et al, CVPR, 391–398, 2005.
 - Formulated the multi-view stereo problem as MRF inference
- New and improved version appears in PAMI (December 2007)