Discriminative Training for Speech Recognition

Dan Povey

May 2002

Cambridge University Engineering Department

IEEE ICASSP’2002
Overview

- MMI & MPE objective functions

- Optimisation of objective functions
 - Strong & weak-sense auxiliary functions
 - Application to Gaussians and weights

- Prior information: I-smoothing

- Lattices and MMI & MPE optimisation

- Other issues to consider in discriminative training

- Some typical improvements from discriminative training
Objective functions: MMI & ML

ML objective function is product of data likelihoods given speech file O_r:

$$
\mathcal{F}_{\text{ML}}(\lambda) = \sum_{r=1}^{R} \log p_{\lambda}(O_r|s_r),
$$

(1)

MMI objective function is posterior of correct sentence:

$$
\mathcal{F}_{\text{MMIE}}(\lambda) = \sum_{r=1}^{R} \log \frac{p_{\lambda}(O_r|s_r)^{\kappa} P(s_r)^{\kappa}}{\sum_{s} p_{\lambda}(O_r|s)^{\kappa} P(s)^{\kappa}} = \sum_{r=1}^{R} \log P^{\kappa}(s_r|O_r, \lambda)
$$

(2)
Objective functions: MPE

Minimum Phone Error (MPE) is the summed “raw phone accuracy” (#correct - #ins) times the posterior sentence prob:

\[
F_{\text{MPE}}(\lambda) = \sum_{r=1}^{R} \left(\sum_{s} p_{\lambda}(O_r|s)^{\kappa} P(s)^{\kappa} \text{RawPhoneAccuracy}(s, s_r) \right) \frac{\sum_{s} p_{\lambda}(O_r|s)^{\kappa} P(s)^{\kappa}}{\sum_{s} p_{\lambda}(O_r|s)^{\kappa} P(s)^{\kappa}}
\]

\[
= \sum_{r=1}^{R} \sum_{s} P^{\kappa}(s_r|O_r, \lambda) \text{RawPhoneAccuracy}(s, s_r)
\]

(3)

Equals the expected phone accuracy of a sentence drawn randomly from the possible transcriptions (proportional to scaled probability).
Objective functions: Simple example

- Suppose correct sentence is “a”, only alternative is “b”.

- Let \(a = p_\lambda(O|"a") P("b") \) (acoustic & LM likelihood), \(b \) is same for “b”.

- ML objective function = \(\log(a) + \) other training files.

- MMI objective function = \(\log\left(\frac{a}{a+b}\right) + \) other training files.

- MPE objective function = \(\frac{a \times 1 + b \times 0}{a+b} + \) other training files.
Objective functions: Simple example (Continued)

Criteria shown graphically: MPE and MMI criteria as a function of $\log\left(\frac{a}{b}\right)$.

![Graph showing MPE and MMI criteria as a function of $\log\left(\frac{a}{b}\right)$]
Objective functions: Further remarks on MPE

- MPE is sensitive to the “degree of wrongness” of wrong transcriptions.

- There is a related criterion, MWE, where we calculate accuracy based on a word level.

- (MWE doesn’t work quite so well).
Optimisation of objective functions: preliminary remarks

- With ML training, there is a fast method available (Expectation-Maximisation)

- For MMI and MPE training, optimisation is more difficult

- Two general kinds of optimisation available: gradient based, and Extended Baum-Welch (EB)

- Be careful, because criterion optimisation \neq test-set recognition !!

- Need to optimise the objective function in a “smooth” way

- Extended Baum-Welch (EB) is nice because it doesn’t need second-order statistics
Auxiliary functions

Use of (a) strong-sense and (b) weak-sense auxiliary functions for function optimisation

- Auxiliary functions are a concept used in E-M. Functions of (eg) HMM parameters λ

- Strong-sense auxiliary function: has the same value as real objective function at a local point $\lambda = \lambda'$, but $\leq \text{objf}$ everywhere else

- Weak-sense auxf has same differential around local point $\lambda = \lambda'$
Auxiliary functions & function maximisation

• To maximise a function using auxiliary functions, find the maximum of the auxiliary function, find a new auxiliary function around the new point and repeat

• With strong-sense auxiliary function, this is guaranteed to increase the function value on each iteration unless a local maximum has been reached (e.g. as in E-M)

• With weak-sense auxiliary function, there is no guarantee of convergence

• ... but if it does converge it will converge to a local maximum

• Similar level of guarantee to gradient descent (which will only converge for correct speed of optimisation)

• Note—“weak-sense” and “strong-sense” are my terminology, normal terminology is different also involves the term “growth transformation.”
Strong-sense auxiliary functions- beyond E-M

Example of using strong-sense auxiliary function to maximise something (not E-M):

- Suppose we want to maximise $\sum_{m=1}^{M} A_m \log x_m + B_m x_m$ for constants A_m, B_m, with constraint $\sum_{m=1}^{M} x_m = 1$ (will mention reason later)

- Suppose the current values of x_m are x'_m (for $m = 1 \ldots M$).

- For each m, add a +ve constant k_m times the function $(x'_m \log(x_m) - x_m)$ to the objective function.

- Function $k_m(x'_m \log(x_m) - x_m)$ for +ve k_m is convex with a zero gradient around the current values x'_m

- ... so can add this function to objf for each m & will get a strong-sense auxf

- Add this using appropriate values of k_m to make coeffs of x_m all the same, hence constant (due to sum-to-one constraint).

- Reduces to something of the form $\sum_{m=1}^{M} A_m \log x_m$ which can be solved
Weak-sense auxiliary functions— Mixture weights

Example of weak-sense auxf for MMI

- Optimising mixture weights for MMI

 - For ML, we can get a (strong-sense) auxiliary function which looks like
 \[
 \sum_{j=1}^{J} \sum_{m=1}^{M} \gamma_{jm} \log c_{jm} \quad (\text{plus other terms for Gaussians & transitions})
 \]

 - ... as in normal E-M. The above is a strong-sense auxiliary function for the log HMM likelihood

 - For MMI, the objective function is one HMM likelihood (OK) minus another (Not OK)

 - Call these *numerator* (num) and *denominator* (den) HMMs
Weak-sense auxiliary functions—Mixture weights (cont’d)

- Try \(- \sum_{j=1}^{J} \sum_{m=1}^{M} \gamma_{jm}^{\text{den}} \log c_m\) as a weak-sense auxf for second term

- But total auxf \(\sum_{j=1}^{J} \sum_{m=1}^{M} (\gamma_{jm}^{\text{num}} - \gamma_{jm}^{\text{den}}) \log c_m\) would not give good convergence (would set some mixtures to zero).

- Instead use \(\sum_{j=1}^{J} \sum_{m=1}^{M} \gamma_{jm}^{\text{num}} \log c_m - \gamma_{jm}^{\text{den}} c_m c'_m\).

- Same differential w.r.t. mixture weights where they equal old mixture weights \(c'_m\).

- Can be maximised easily (see previous slide)

- Gives good convergence
Weak-sense auxiliary functions— Gaussians

• Normal auxiliary function for ML is
 \[
 \sum_{j=1}^{J} \sum_{m=1}^{M} -0.5 \left(\gamma_{jm} \log \sigma_{jm}^2 + \frac{\theta_{jm}(O^2) - 2\mu_{jm}\theta_{jm}(O) - \gamma_{jm}\mu_{jm}^2}{\sigma_{jm}^2} \right)
 \]
 where \(\theta_{jm}(O) \) and \(\theta_{jm}(O^2) \) are sum of data & data squared for mix \(m \) of state \(j \).

• Abbreviate this to \(\sum_{j=1}^{J} \sum_{m=1}^{M} Q(\gamma_{jm}, \theta_{jm}(O), \theta_{jm}(O^2) | \mu_{jm}, \sigma_{jm}^2) \).

• For MMI, a valid weak-sense auxiliary function for objf is
 \[
 \sum_{j=1}^{J} \sum_{m=1}^{M} Q(\gamma_{jm}^{\text{num}}, \theta_{jm}^{\text{num}}(O), \theta_{jm}^{\text{num}}(O^2) | \mu_{jm}, \sigma_{jm}^2) \]
 \[
 - Q(\gamma_{jm}^{\text{den}}, \theta_{jm}^{\text{den}}(O), \theta_{jm}^{\text{den}}(O^2) | \mu_{jm}, \sigma_{jm}^2) .
 \]
Weak-sense auxiliary functions– Gaussians (cont’d)

• Would not have good convergence, so add “smoothing function”
 \[
 \sum_{j=1}^{J} \sum_{m=1}^{M} Q(D_{jm}, D_{jm}\mu_j', D_{jm}(\mu_j', 2\sigma_j'^2)|\mu_j, \sigma_j^2)
 \]
 for a positive constant \(D_{jm}\) chosen for each Gaussian.

• This function has zero differential where the parameters equal the old parameters \(\mu_j', \sigma_j'^2\), so local gradient unaffected.

• Solving this leads to the EB update equations, e.g. (for the mean):
 \[
 \mu_j = \frac{\{\theta_{jm}(\mathcal{O}) - \theta_{jm}(\mathcal{O})\} + D_{jm}\mu_j'}{\{\gamma_{jm}^{num} - \gamma_{jm}^{den}\} + D_{jm}}
 \]

• For good convergence set \(D_{jm}\) to \(E\gamma_{jm}^{den}\) for e.g. \(E = 1\) or 2
MPE optimisation

- For MPE, we don't have a difference of HMM likelihoods as in MMI.

- For Gaussians—Work out differential w.r.t. MPE objective function of each log Gaussian likelihood at each time t.

- Define $\gamma_{jm}^{\text{MPE}}(t)$ as that differential.

- Use $\sum_{r,t,j,m} \gamma_{jm}^{\text{MPE}}(t) \log \mathcal{N}(o_r(t)|\mu_{jm}, \sigma_{jm}^2)$ as basic auxiliary function. Obviously has same differential as real objective function locally (where $\lambda = \lambda'$)

- The functional form of this is equivalent to the $Q(\ldots)$ functions referred to above, with similar statistics required.
MPE optimisation

- Ensure convergence by adding “smoothing function”
 \[\sum_{j=1}^{J} \sum_{m=1}^{M} Q(D_{jm}, D_{jm} \mu'_{jm}, D_{jm}(\mu'_{jm}^2, \sigma'_{jm}^2) | \mu_{jm}, \sigma_{jm}^2). \]

- Leads to EB equations, except statistics are gathered in a different way

- Set the constant \(D_{jm} \) based on a further constant \(E \), in a similar way to MMI.
I-smoothing

- I-smoothing is the use of a prior distribution over the Gaussian parameters
- Mode of prior is at the ML estimate
- Prevents extreme parameter values being estimated based on limited training data
- Prior is $Q(\tau, \frac{\theta_{jm}^{\text{mle}}(O)}{\gamma_{jm}^{\text{mle}}}, \frac{\theta_{jm}^{\text{mle}}(O^2)}{\gamma_{jm}^{\text{mle}}}|\mu_{jm}, \sigma_{jm}^2)$
- ... where mle refers to the ML statistics, and τ is a constant (e.g. 50)
- Very simple to implement in the context of the EB equations (all the terms inside the various $Q(\ldots)$ functions can just be added together)
- Important for MPE: unless I-smoothing is used for robustness, MPE is worse than MMI
- I-smoothing can also improve MMI, but only slightly
Lattices and MMI/MPE optimisation

- Lattices are generated once and used for a number of iterations of optimisation.

- 2 sets of lattices-
 - Numerator lattice (= alignment of correct sentence)
 - Denominator lattice (from recognition). [Needs to be big, e.g. beam > 125]

- Lattices need time-marked phone boundaries:

- Can’t do unconstrained forward-backward because:
 i) slow and ii) interferes with the probability scaling which is done at whole-model level
Lattices and MMI/MPE optimisation (cont’d)

- Optimisation involves two phases, as in ML: i) get statistics, ii) reestimate.

- Gathering statistics initially involves a forward (/backward) alignment of time-marked models, to get whole-model acoustic likelihoods.

- For MMI, a forward-backward algorithm is done over the lattice at the phone level to get model occupation probabilities, and then stats are accumulated (for each of the 2 lattices separately).

- For MPE, see next slide...
Lattices and MPE optimisation

- For MPE, only align denominator lattice (numerator lattice is used to work out how correct den-lattice sentences are)
- Each phone HMM in the lattice has a given start and end time, use q to refer to these “phone arcs”
- Need to work out of differential of MPE objective function w.r.t. log acoustic likelihood of each arc q (can then work out differentials w.r.t. individual Gaussian likelihoods)
- Define $\gamma_q^{\text{MPE}} = \frac{1}{\kappa}$ times this differential
- Can use $\gamma_q^{\text{MPE}} = \gamma_q(c(q) - c_{\text{avg}})$ where γ_q is occupation probability
 - $c(q)$ is average correctness of sentences passing through arc q, weighted by scaled probability
 - c_{avg} is average correctness of entire file
- Hence, differential is positive for arcs with higher-than-average correctness
Lattices and MPE optimisation (cont’d)

Can calculate \(c(q) = \text{correctness of } q \) in two ways:

- (Both of these ways involve an algorithm similar to a forward-backward algorithm over the lattice)

- Approximate method:
 - Use a heuristic formula based on overlap of phones to calculate the approximate contribution of an individual phone arc to the correctness of the sentence
 - This method makes use of the time markings in the correct-sentence (numerator) lattice
 - Gives a value quite close to the “real” phone accuracy of paths
Lattices and MPE optimisation (cont’d)

• Exact method:
 – Turn the numerator (correct sentence) lattice into a sausage (in case of alternate pronunciations)
 – Do an algorithm which is like a forward-backward algorithm combined with token-passing algorithm as used for recognition (not quite as complex as normal token passing)
 – Token-passing part corresponds to getting the best alignment to the lattice; forward-backward part follows from the need to get a weighted sum over sentences encoded in the lattice

• In both cases, generally ignore silence/short pause phones for calculating accuracy

• Difference in recognition performance between approximate & exact versions is not consistent
Optimisation regime

- Generally use 4-8 iterations of EB, typically 4 for MMI and 8 for MPE
- Very quick—some discriminative optimisation techniques reported in the literature use 50-100 iterations
- Recognition is the aim, not optimisation! Too-fast optimisation can lead to poor test set performance
- “Smoothing constant” E (=1 or 2) and number of iterations of training are set based on recognition (on development test set)
- For MMI on Broadcast News (hub4), criterion divided by #frames typically increases from, say, -0.04 to -0.02 during training (0.0 = perfect)
- MPE on hub4: MPE criterion divided by #words increases from 0.78 to 0.88 during training (1.0 = perfect)
Practical issues for discriminative training

• Need to recognise all the training data—takes a long time

• Need to get phone marked lattices → need right software

• Important to use the scale κ rather than using unscaled probabilities; otherwise test set accuracy may not be very good

• κ typically in the range $\frac{1}{10}$ to $\frac{1}{20}$: generally equal to inverse of normal language model scale

• Essential to have a language model available (in HTK it is in the lattices)

• Unigram language model is best (generates more confusable words than a bigram)
MMI or MPE?

- MPE generally gives more improvement than MMI, especially where there is plenty of training data (see later)

- Compute time is similar for both criteria

- But MMI is easier to implement

- MPE implementation is built on top of MMI implementation so best to start with MMI
Figure shows relative improvements from MPE on various corpora.

Shows that once we know the amount of training data available per Gaussian, improvement is predictable.

For typical systems as used for evaluations: 6% (WSJ), 11% (Swbd), 12% (BN) relative improvement.
• Figure shows relative improvement from MMI, I-smoothed MMI and MPE
• MPE best, but I-smoothed MMI nearly as good for limited training data (or too many Gaussians)
Interaction with other techniques

• How is the relative improvement from discriminative training affected by other techniques?

• Discriminative training gives most improvement for small HMM sets and large amounts of training data

• MLLR can sometimes (but not always) decrease improvement from discriminative training

• Discriminative training can be combined with SAT, which helps restore any lost improvement

• Discriminative training gives nearly as much improvement when tested on a different database
• Improvement slightly reduced when combined with HLDA

• Interaction with VTLN, CMN, clustering etc not investigated
Summary & conclusions

- Discriminative objective functions described (MMI and MPE)
- Mentioned the use of probability scaling (κ) in the objective functions
- Explained meaning of strong-sense & weak-sense auxiliary functions
- Described how weak-sense auxiliary functions justify EB update equations
- Described in general terms how the same approach is applied to MPE
- ... and how MPE objective function is differentiated within the lattice
- Mentioned I-smoothing (priors over Gaussian parameters)
- Gave typical results over various corpors, showing that improvement is a predictable of function of log($\#\text{frames}/\text{Gaussian}$)