Adaptive Training with Structured Transforms

K. Yu & M.J.F. Gales

5th Dec. 2003

Cambridge University Engineering Department

Overview

- Adaptive training with structured transforms:
 - review of ML cluster adaptive training
 - combination with constrained MLLR;
- MPE training for multiple cluster models:
 - form of smoothing function to use;
 - nature of prior to use.
- Initial performance evaluated on CTS English.

Structured Transforms

- Found data may be highly non-homogeneous:
 - multiple acoustic factors (e.g. gender/channel/style);
 - effects on acoustic signal of each factor varies;
- Multiple transforms:
 - a separate transform for each kind of unwanted variability;
 - nature of transform (should) reflect factor;
 - (possibly) more compact systems.
- Form examined in this work:
 - constrained MLLR (CMLLR) transforms;
 - interpolation weights in cluster adaptive training (CAT);
 - no explicit association of transform with factor.

CMLLR and **CAT**

Likelihood of observation given by

$$p(\mathbf{o}(t)|m,s) \propto -\frac{1}{2}\log|\mathbf{\Sigma}^{(m)}| + \frac{1}{2}\log(|\mathbf{A}^{(s)}|^2)$$
$$-\frac{1}{2}(\mathbf{o}^{(s)}(t) - \boldsymbol{\mu}^{(sm)})^T \mathbf{\Sigma}^{(m)-1}(\mathbf{o}^{(s)}(t) - \boldsymbol{\mu}^{(sm)})$$

Constrained Maximum Likelihood Regression (CMLLR)

$$\mathbf{o}^{(s)}(t) = \mathbf{A}^{(s)}\mathbf{o}(t) + \mathbf{b}^{(s)}$$

Cluster Adaptive Training (CAT)

$$oldsymbol{\mu}^{(sm)} = \mathbf{M}^{(m)} oldsymbol{\lambda}^{(s)} \quad \mathbf{M}^{(m)} = egin{bmatrix} oldsymbol{\mu}_1^{(m)}, \cdots, oldsymbol{\mu}_P^{(m)} \end{bmatrix}$$

ML Parameters Estimation

Multi-cluster canonical model (updates of variances not described)

$$\mathbf{G}^{(m)} = \sum_{s,t} \gamma_m(t) \boldsymbol{\lambda}^{(s)} \boldsymbol{\lambda}^{(s)T}$$

$$\mathbf{K}^{(m)} = \sum_{s,t} \gamma_m(t) \boldsymbol{\lambda}^{(s)} \mathbf{o}^{(s)}(t)^T \qquad \mathbf{M}^{(m)T} = \mathbf{G}^{(m)-1} \mathbf{K}^{(m)}$$

- Structured transforms estimation:
 - CAT interpolation weights for each speaker s

$$\mathbf{G}^{(s)} = \sum_{m,t} \gamma_m(t) \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} \mathbf{M}^{(m)}$$

$$\mathbf{k}^{(s)} = \sum_{m} \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} \left(\sum_{t} \gamma_{m}(t) \mathbf{o}(t) \right); \qquad \boldsymbol{\lambda}^{(s)} = \mathbf{G}^{(s)-1} \mathbf{k}^{(s)}$$

– CMLLR: standard approach except using the adapted mean $oldsymbol{\mu}^{(sm)}$

Minimum Phone Error Criterion

MPE criterion

$$\mathcal{F}(\mathcal{M}) = \frac{\sum_{w} p(\mathbf{O}|\mathcal{M}_{w})^{\kappa} P(w) \operatorname{RawAccuracy}(w)}{\sum_{w} p(\mathbf{O}|\mathcal{M}_{w})^{\kappa} P(w)}$$

Use weak-sense auxiliary function

$$Q(\mathcal{M}) = Q^{n}(\mathcal{M}) - Q^{d}(\mathcal{M}) + \mathcal{G}(\mathcal{M}) + \log p(\mathcal{M})$$

- $\mathcal{Q}^n(\mathcal{M})$ and $\mathcal{Q}^d(\mathcal{M})$ are standard auxiliary function for numerator and denominator
- $-\mathcal{G}(\mathcal{M})$ is smoothing function to improve stability
- $-\log p(\mathcal{M})$ is prior over the model parameters
- Simplified MPE adaptive training using fixed ML estimate of transforms.

Multi-Cluster Smoothing Function

- Smoothing function satisfies $\frac{\partial}{\partial \mathcal{M}}\mathcal{G}(\mathcal{M})\big|_{\hat{\mathcal{M}}}=0$
- ullet ML estimates for model given by $(\hat{m{\mu}}^{(sm)} = \hat{\mathbf{M}}^{(m)} \hat{m{\lambda}}^{(m)})$

$$\mathcal{G}(\mathcal{M}) = -\sum_{m,s} \frac{D_m \nu_m^{(s)}}{2} (\log |\mathbf{\Sigma}^{(m)}| + \operatorname{tr}((\hat{\mathbf{\Sigma}}^{(m)} + \hat{\boldsymbol{\mu}}^{(sm)} \hat{\boldsymbol{\mu}}^{(sm)T}) \mathbf{\Sigma}^{(m)-1})$$

$$+ \hat{\boldsymbol{\lambda}}^{(s)T} \mathbf{M}^{(m)T} \mathbf{\Sigma}^{(m)-1} (\mathbf{M}^{(m)} \hat{\boldsymbol{\lambda}}^{(s)} - 2\hat{\boldsymbol{\mu}}^{(sm)}))$$

Effective smoothing statistics

$$\mathbf{G}_D^{(m)} = \sum_s \nu_m^{(s)} \hat{\boldsymbol{\lambda}}^{(s)} \hat{\boldsymbol{\lambda}}^{(s)T}; \qquad \mathbf{K}_D^{(m)} = \mathbf{G}_D^{(m)} \hat{\mathbf{M}}^{(m)T}$$

• $\nu_m^{(s)}$ is normalised contribution from speaker s - $\nu_m^{(s)} = \frac{\sum_t \gamma_m^n(t)^{(s)}}{\sum_s \sum_t \gamma_m^n(t)}$

Multi-cluster Model Prior Function

A possible form of prior is

$$\log p(\mathcal{M}) = K - \frac{\tau^I}{2} \sum_{s,m} \tilde{\nu}_m^{(s)} \left(\log |\mathbf{\Sigma}^{(m)}| + \operatorname{tr}(\tilde{\mathbf{\Sigma}}^{(m)} \mathbf{\Sigma}^{(m)-1}) + (\mathbf{M}^{(m)} \hat{\boldsymbol{\lambda}}^{(s)} - \tilde{\mathbf{M}}^{(m)} \hat{\boldsymbol{\lambda}}^{(s)})^T \mathbf{\Sigma}^{(m)-1} (\mathbf{M}^{(m)} \hat{\boldsymbol{\lambda}}^{(s)} - \tilde{\mathbf{M}}^{(m)} \hat{\boldsymbol{\lambda}}^{(s)}) \right)$$

- \bullet au^I determines contribution of the prior;
- ullet $ilde{
 u}_m^{(s)}$ is the normalised contribution from speaker s -

$$\tilde{\nu}_m^{(s)} = \frac{\sum_t \gamma_m^{ml}(t)^{(s)}}{\sum_s \sum_t \gamma_m^{ml}(t)}$$

ullet Need to determine prior parameters $ilde{\mathbf{M}}^{(m)}$ and $ilde{\mathbf{\Sigma}}^{(m)}$

Multi-Cluster Prior Model Parameters

- Possible sources of prior information:
 - ML CAT model parameters (derived from $\mathbf{G}^{(m)}, \mathbf{K}^{(m)}$);
 - ML/MPE SI model parameters;
 - ML/MPE SAT model parameters;
- Possible form interpolate two sources yields count smoothing:

$$\tilde{\mathbf{G}}^{(m)} = \frac{\mathbf{G}^{(m)} + \tau^M \sum_{s} \tilde{\nu}_m^{(s)} \hat{\boldsymbol{\lambda}}^{(s)} \hat{\boldsymbol{\lambda}}^{(s)T}}{\sum_{m} \gamma_m^{ml} + \tau^M}$$

$$\tilde{\mathbf{K}}^{(m)} = \frac{\mathbf{K}^{(m)} + \tau^{M} (\sum_{s} \tilde{\nu}_{m}^{(s)} \boldsymbol{\lambda}^{(s)}) \tilde{\boldsymbol{\mu}}_{SI}^{(m)T}}{\sum_{m} \gamma_{m}^{ml} + \tau^{M}}$$

- ullet au^M balance between CAT-ML estimate and (approximate) SI MPE model.
 - $-\tau^M \to \infty$ used for experiments (v.roughly tuned).

Multi-cluster MPE Estimates

Complete update based on smoothing all accumulates:

$$\mathbf{G}^{(m)} = \sum_{s,t} \gamma_m^{mpe}(t) \hat{\boldsymbol{\lambda}}^{(s)} \hat{\boldsymbol{\lambda}}^{(s)T} + D_m \mathbf{G}_D^{(m)} + \tau^I \tilde{\mathbf{G}}^{(m)}$$

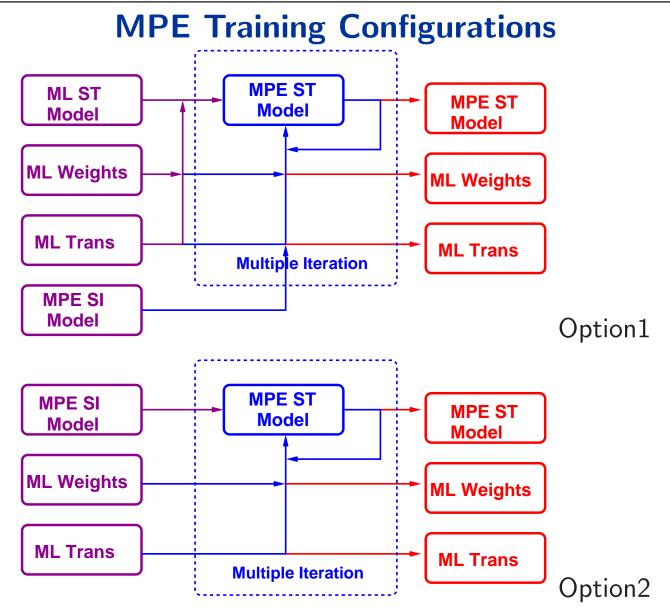
$$\mathbf{K}^{(m)} = \sum_{s,t} \gamma_m^{mpe}(t) \hat{\boldsymbol{\lambda}}^{(s)} \mathbf{o}^{(s)}(t)^T + D_m \mathbf{K}_D^{(m)} + \tau^I \tilde{\mathbf{K}}^{(m)}$$

where
$$\gamma_m^{mpe}(t) = \gamma_m^n(t) - \gamma_m^d(t)$$

Multi-cluster model re-estimation based on

$$\mathbf{M}^{(m)T} = \mathbf{G}^{(m)-1}\mathbf{K}^{(m)}$$

Initialisation of MPE training required.



Experiments on SwitchBoard System

- Switchboard (English): conversational telephone speech task
 - Training dataset: h5etrain03, 290hr, 5446spkr
 - Test dataset: dev01sub, 3hr, 59spkr
 - Front-end: PLP_0_D_A_T, HLDA and VTLN are used
 - Full decoding with trigram language model
- System based on option 1
 - 16 components and 28 components
 - 2 Sets of cluster means
 - adaptive training with structured transforms (CMLLR+CAT)
 - 4 MPE iterations used (possibly sub-optimal)
- Initialisation
 - Interpolation weights initialised using gender information;
 - CMLLR transforms initialised to identity transforms.

Initial Results on 16-Component System

System	Training	Test	Estimation	
	Adaptation	Adaptation	MLE	MPE
GI			33.4	30.4
		CMLLR	31.5	28.3
GD	gender		32.7	30.3
	info	CMLLR	30.9	28.4
GD	gender			29.7
(MPE-MAP)	info	CMLLR		27.8
SAT	CMLLR	CMLLR	31.0	27.8
CAT	CAT	CAT	32.6	29.3
		ST	30.8	27.7
ST	ST	ST	30.6	27.3

- MPE-GD similar to MPE-GI, MPE-MAP significantly outperforms MPE-GD
- ML-CAT performs similar to ML-GD, MPE-CAT performs similar to MPE-MAP
- Adaptive training with ST significantly outperforms SAT

Initial Results on 28-Component System

System	Training	Test	Estimation	
	Adaptation	Adaptation	MLE	MPE
GI			32.2	29.4
		CMLLR	30.3	27.5
SAT	CMLLR	CMLLR	29.7	27.2
ST	ST	ST	29.4	26.9

- Adaptive training with ST slightly outperforms SAT;
- Gain on 28 components system is smaller than 16 components system;
- Further investigation of smoothing/model priors required.

Summary

- Structured transforms used in adaptive training;
- Current system combines;
 - Interpolation of multiple cluster means (CAT);
 - Contrained MLLR (SAT);
- MPE extended for multi-cluster models (CAT and eigenvoices);
- Small gains over CMLLR adaptive training system;
- Further work required on:
 - number of CAT cluster means and form of initialisation;
 - form of prior for multi-cluster models;
 - appropriate adaptive training scheme.