Discriminative Adaptation & Adaptive Training

Lan Wang & Phil Woodland

December 5th 2003

Cambridge University Engineering Department

Introduction

- Investigate linear transform parameter estimation for
 - Adaptive training
 - Unsupervised test set adaptation
 - Supervised adaptation (enrollment)
- Use MPE and MMI optimisation
- For speaker adaptive training estimate with consistent training criterion both
 - Linear transforms
 - Canonical models

Adaptive Training

Data for our current tasks contains much variability

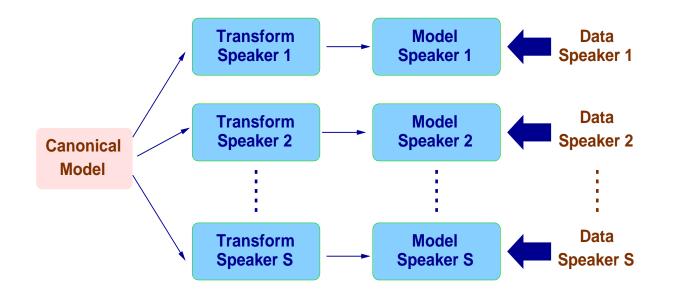
- thousands of speakers,
- noisy background (environment),
- diversity of channels.

Adaptive training tries to remove some variability from the data during training

- Common model "independent" approaches:
 - Cepstral mean/variance normalization (CMN/CVN)
 - vocal tract length normalization (VTLN).
- Common model dependent approach: estimate linear transforms for each speaker/condition in both training and adaptation.

Speaker Adaptive Training

• SAT: speaker-specific train-set transforms are applied to the HMM parameter so as to construct a **canonical** HMM set.



• The canonical models with testing adaptation perform better than non-SAT models.

Speaker Adaptive Training (II)

- Maximum likelihood (ML) framework for transform estimation.
 - maximum likelihood linear regression (MLLR):

$$\hat{\mu}_m = \mathbf{A}\mu_m + \mathbf{b} = W\xi_m$$

- constrained MLLR:

the same transforms are used to adapt means and covariances

$$\hat{\mathbf{o}}(t) = \mathbf{A}\mathbf{o}(t) + \mathbf{b} = W\zeta(t)$$

• Canonical model parameter re-estimation under ML criterion.

Discriminative Training

• Maximum mutual information (MMI) criterion.

$$\mathcal{F}_{MMI}(\lambda) = \sum_{r=1}^{R} \log \frac{P_{\lambda}(\mathcal{O}_r | \mathcal{M}^{w_r})^{\kappa} P(w_r)^{\kappa}}{\sum_{\hat{w}} P_{\lambda}(\mathcal{O}_r | \mathcal{M}^{\hat{w}})^{\kappa} P(\hat{w})^{\kappa}}$$

• Minimum phone error (MPE) criterion.

$$\mathcal{F}_{MPE}(\lambda) = \sum_{r=1}^{R} \frac{\sum_{s} p_{\lambda}(\mathcal{O}_{r} | \mathcal{M}^{w_{s}})^{\kappa} P(w_{s})^{\kappa} RawAccuracy(w_{s}, w_{r})}{\sum_{u} p_{\lambda}(\mathcal{O}_{r} | \mathcal{M}^{w_{u}})^{\kappa} P(w_{u})^{\kappa}},$$

where $RawAccuracy(w_s, w_r)$ measures the accuracy of hypothesis w_s .

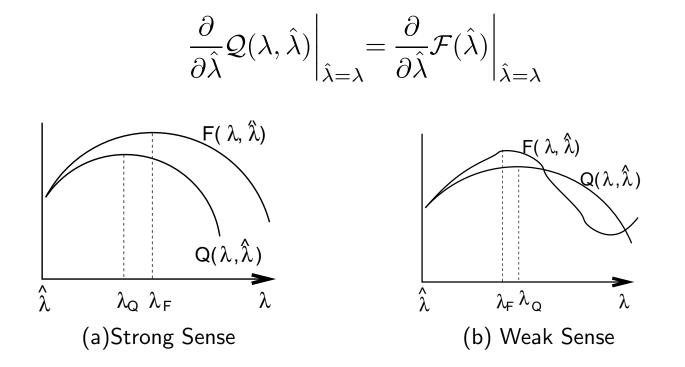
• Lattice-based framework.

Optimization of Discriminative Criteria

• Strong-sense auxiliary function for ML optimization.

$$\mathcal{Q}(\lambda, \hat{\lambda}) - \mathcal{Q}(\hat{\lambda}, \hat{\lambda}) \leq \mathcal{F}(\lambda) - \mathcal{F}(\hat{\lambda})$$

• Weak-sense auxiliary function for the optimization of discriminative criteria.



Discriminative SAT

• Discriminative SAT (DSAT):

discriminative criteria are used consistently to construct the canonical models in two sequential steps:

- discriminative linear transform (DLT) generation,
- discriminaitve model (canonical model) parameter re-estimation.
- DSAT implementations:
 - DLT & canonical model re-estimation.
 - constrained DLT & canonical model re-estimation.
- A simplified implementation:

ML-based transform is used for discriminative model parameter re-estimation.

DLT Estimation

- Applying linear transforms to tune Gaussian components.
 - mean transform W.
 - diagonal (full) variance transform: $\hat{\Sigma}_m = \mathbf{H}^T \Sigma_m \mathbf{H}$
- Weak-sense auxiliary function for the optimization MMI/MPE-based DLT.

$$\mathcal{Q}_{MMI}(W,\hat{W}) = \mathcal{Q}^{num}(W,\hat{W}) - \mathcal{Q}^{den}(W,\hat{W}) + \mathcal{Q}_{sm}(W,\hat{W})$$
$$\mathcal{Q}^{num}(W,\hat{W}) = \sum_{m} \sum_{t} \gamma_{m}^{num}(t) \log \mathcal{N}(\mathbf{o}(t),\hat{W}\xi_{m},\Sigma_{m})$$

• The smoothing term should satisfy: $\frac{\partial Q_{sm}(W,\hat{W})}{\partial \hat{W}}\Big|_{\hat{W}=W} = 0$

$$\mathcal{Q}_{sm}(W, \hat{W}) = \sum_{m} D_{m} \left[-\frac{1}{2} \left(\log |\hat{\Sigma}_{m}| + (W\xi_{m} - \hat{W}\xi_{m})^{T} \hat{\Sigma}_{m}^{-1} (W\xi_{m} - \hat{W}\xi_{m}) + \Sigma_{m} \hat{\Sigma}_{m}^{-1} \right) \right]$$

DLT Estimation (II)

- Transform estimation for each row: $\mathbf{w}^{(i)} = \mathbf{G}^{(i)^{-1}} \mathbf{k}^{(i)}$
 - ML accumulator:

$$\mathbf{G}^{(i)} = \sum_{m} \frac{1}{\sigma_{m(i)}^2} \gamma_m \xi_m \xi_m^T$$

- MMI/MPE accumulator:

$$\mathbf{G}^{(i)} = \sum_{m} \frac{1}{\sigma_{m(i)}^{2}} \Big((\gamma_{m}^{num} - \gamma_{m}^{den}) + D_{m} \Big) \xi_{m} \xi_{m}^{T}$$

where $D_m = E \gamma_m^{den}$ with constant E.

- The num/den occupancies are computed as in MMI/MPE training.
- I-smoothing for MPE-based DLT: using ML statistics.

DLT for DSAT Model Re-estimation

- Optimize MMI/MPE objective functions by applying transforms to the models.
- DLT for MMI/MPE-SAT model parameter re-estimation (e.g. for means).

$$\hat{\mu}_m = \mathbf{M}_m^{-1} \mathbf{V}_m + \mu_m$$

- ML statistics:

$$\mathbf{M}_m = \sum_{s}^{S} \gamma_m \mathbf{A}^{(s)^T} \Sigma_m^{-1} \mathbf{A}^{(s)}$$

– MMI/MPE statistics:

$$\mathbf{M}_{m} = \sum_{s=1}^{S} \left(\left(\gamma_{m}^{num} - \gamma_{m}^{den} \right) + D_{m} \right) \, \mathbf{A}^{(s)^{T}} \, \Sigma_{m}^{-1} \, \mathbf{A}^{(s)}$$

• Computational expensive.

Constrained DLT Estimation

- Weak-sense auxiliary function for the optimization of MMI/MPE-based constrained DLT.
- An iterative optimization to estimate transforms, like constrained MLLR.
 - ML accumulator: $\mathbf{G}^{(i)} = \sum_{m} \frac{1}{\sigma_{m(i)}^2} \sum_{t} \gamma_m(t) \zeta(t) \zeta(t)^T$
 - MMI/MPE accumulator:

$$\mathbf{G}^{(i)} = \sum_{m} \frac{1}{\sigma_{m(i)}^{2}} \left(\sum_{t} \left(\gamma_{m}^{num}(t) - \gamma_{m}^{den}(t) \right) \zeta(t) \zeta(t)^{T} + D_{m} \begin{bmatrix} 1 & \tilde{\mu}_{m}^{T} \\ \tilde{\mu}_{m} & \tilde{\Sigma}_{m} + \tilde{\mu}_{m} \tilde{\mu}_{m}^{T} \end{bmatrix} \right)$$

- The num/den occupancies are computed as in MMI/MPE training.
- Baseclass I-smoothing technique for MPE-based constrained DLT.

Constrained DLT for DSAT Model Re-estimation

- Constrained DLT for MMI/MPE-SAT model parameter re-estimation.
- Applying to the features makes canonical model parameter re-estimation more straightforward.
- The same updating formulas for MMI/MPE training can be used with adapted observations.

$$\hat{\mu}_{m} = \frac{\theta_{m}^{num}(\hat{\mathcal{O}}) - \theta_{m}^{den}(\hat{\mathcal{O}}) + D_{m}\mu_{m}}{\{\gamma_{m}^{num} - \gamma_{m}^{den}\} + D_{m}}$$
$$\hat{\sigma}_{m}^{2} = \frac{\theta_{m}^{num}(\hat{\mathcal{O}}^{2}) - \theta_{m}^{den}(\hat{\mathcal{O}}^{2}) + D_{m}(\sigma_{m}^{2} + \mu_{m}^{2})}{\{\gamma_{m}^{num} - \gamma_{m}^{den}\} + D_{m}} - \hat{\mu}_{m}^{2}$$

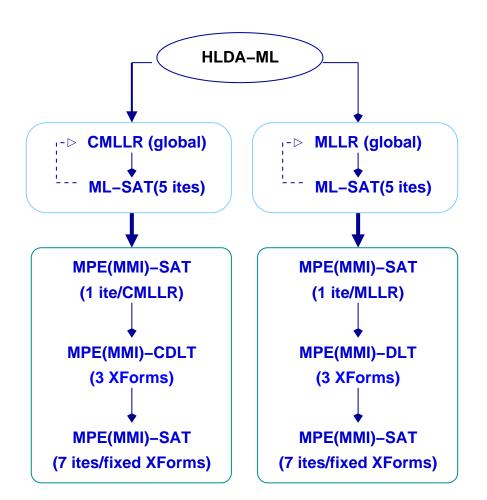
• The num/den statistics are calculated in the same way as MMI/MPE training.

CTS Experimental setup

- Experiments on conversational telephone speech (CTS) transcription.
 - Training set: 76 hours CTS data/1118 conversation sides.
 - Test set (dev01): 6 hours CTS data/118 conversation sides.
- The front-end:
 - MF-PLP cepstral parameter (+ Δ , + $\Delta\Delta$ + $\Delta\Delta\Delta$),
 - HLDA projection (52 dim to 39 dim),
 - VTLN analysis.
- Basic GI HMM sets: 5920 tied-states/12 Gaussian components.

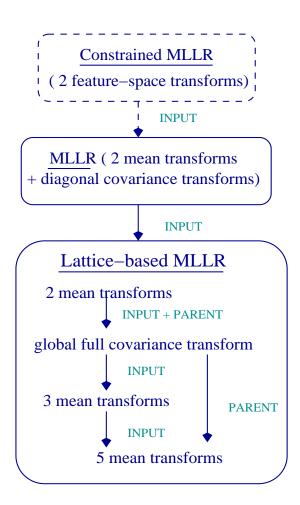
Training setup

- Start with the HLDA-ML model.
- Five iterations of interleaved (global) transform estimation and model parameter updating for ML-SAT models.
- Re-estimate MMI/MPE-SAT models with MLLR/CMLLR.
- Generate unconstrained (or constrained) MMI/MPE-based DLT (3 transforms per side).
- Seven iterations model parameter update with fixed transforms for MMI/MPE-SAT models.



Testing setup

- Unsupervised style testing adaptation in a sequential process.
 - 1-best CMLLR: for DSAT models with constrained linear transforms.
 - 1-best MLLR + lattice MLLR: for all DSAT systems.
- Lattice rescoring to evaluate the discriminative SAT models.
- Lattice generation in the same way as CTS RT03 system.



DSAT with Constrained Linear Transform

	transform generation/parameter re-estimation
MMI-SAT(+CMLLR)	constrained MLLR/MMI
MMI-SAT(+MMI_CDLT)	MMI-based constrained DLT/MMI
MPE-SAT(+CMLLR)	constrained MLLR / MPE
MPE-SAT(+MMI_CDLT)	MMI-based constrained DLT/MPE
MPE-SAT(+MPE_CDLT)	MPE-based constrained DLT/MPE

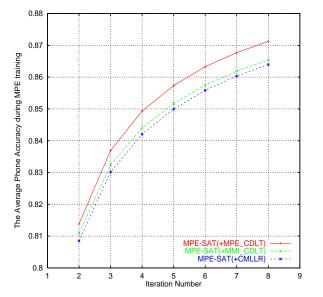
DSAT systems with constrained MLLR/DLT.

Systems	SW-I	SW-II	Cell	total
MMI	21.1	33.4	33.1	29.2
MMI-SAT(+MMI_CDLT)	20.3	32.9	32.6	28.6
MPE	20.2	33.0	32.7	28.6
MPE-SAT(+MPE_CDLT)	20.1	31.8	31.8	27.8

%WER on test set dev01 after (1-best) constrained MLLR adaptation

 After 1-best CMLLR, MMI/MPE-SAT give 0.6%-0.8% abs lower WER than non-SAT MMI/MPE systems.

MPE-SAT with Constrained Linear Transform



Systems	lattice MLLR
MPE	27.9
MPE-SAT(+CMLLR)	27.0
MPE-SAT(+MMI_CDLT)	26.9
MPE-SAT(+MPE_CDLT)	26.9

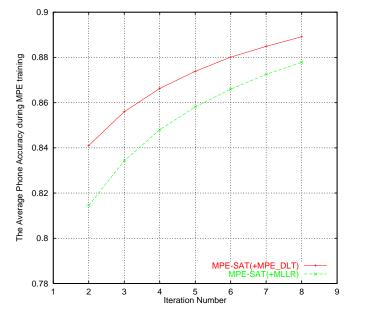
 $\% {\rm WER}$ for MPE-SAT systems on dev01 after

lattice-based MLLR adaptation.

Average phone accuracy during MPE-SAT training.

- During training, MPE-SAT with MPE_CDLT outperforms the simplified implementation.
- After lattice MLLR, MPE-SAT with MPE_CDLT just improves the WER by abs 0.1% over MPE-SAT with CMLLR.

MPE-SAT with Unconstrained Linear Transform



Average phone accuracy during MPE-SAT training

	transform generation/ parameter re-estimation
MPE-SAT(+MLLR)	MLLR / MPE
MPE-SAT(+MPE_DLT)	MPE-based DLT/MPE

MPE-SAT systems with MLLR/DLT.

Systems	lattice MLLR	
MPE-SAT(+MLLR)	27.0	
MPE-SAT(+MPE_DLT)	27.0	

%WER for MPE-SAT on dev01 after lattice-based

MLLR adaptation.

- During training, MPE-SAT with MPE_DLT significantly outperforms the simplified implementation.
- After lattice MLLR, MPE-SAT with MPE_DLT gets almost same performance as MPE-SAT with MLLR.

DLT for Supervised Adaptation

- Supervised adaptation on WSJ task.
- The front-end: 39 dimensional MF-PLP features.
- The cross-word triphone HMMs.
 - ML training.
 - 6399 states/12 Gaussians.
- Testing set: NAB Spoke 3 (s3-dev/s3-eval) with enrollment set.
- H-criterion DLT (a version of MMI criterion) and MPE-based DLT:
 - mean + diagonal variance transforms.
 - regression tree with 16 baseclasses for sp/1 baseclass for sil.

DLT for Supervised Adaptation (II)

Test sets	iterations	MLLR	H-cri	MPE-DLT
s3-dev	1 ite	13.2	12.4	12.2
s3-eval	1 ite	11.1	10.3	10.1
s3-dev	3 ite	12.4	11.9	11.8
s3-eval	3 ite	10.4	10.1	10.0

%WER on NAB Spoke 3 after MLLR, H-criterion and MPE-based DLT adaptation.

- MPE-based DLT achieves 1% abs WER reduction over MLLR and 0.2% over H-criterion DLT (after 1 iteration).
- MPE-based DLT converges fast.

MPE-based DLT for Unsupervised Adaptation

- The cross-word triphone HMMs built with MPE training on CTS transcription.
- MLLR and MPE-DLT: 2 mean+diagonal variance transforms
- Using the hypothesis as supervision:
 - 1-best Viterbi outputs after lattice MLLR adaptation and confusion network (CN) decoding (WER: 27.0%).

Adaptation	hypothesis		true trans
MLLR	27.7 (+CN) 27.0		26.1
MPE-DLT	27.3	(+CN) 26.9	23.2

%WER on *dev01sub* for MPE system.

• For unsupervised style, MPE-based DLT gets 0.1% gain after CN decoding over MLLR.

Discussions and Conclusions

- MMI/MPE-SAT can improve the performance by 0.7%-1.0% compared with non-SAT MMI/MPE training.
- Using MLLR/CMLLR to build MMI/MPE-SAT models is a simplified implementation.
- Using consistent discriminative criteria for MMI/MPE-SAT can give slight improvements under current testing adaptation scheme.
- DLT to adapt discriminative SAT models with unsupervised estimation
- Can also use for supervised adaptation which shows good performance