Diarisation Research at CUED

Sue Tranter and Srinivasan Umesh

1st May 2004

Cambridge University Engineering Department

MDE technical meeting, May 2004

Diarisation Research

- Cluster Voting
 - Definition
 - Description of Implementation
 - Current Results
 - Future Work
- LIMSI-Style Segmentation
 - Motivation
 - Preliminary Results

Cluster Voting - Definition

Aim:

• Combine information from different diarisation systems to improve diarisation performance.

Combination after final output allows:

- Different architectures of systems to be combined directly.
- Different stopping criteria to be used. (Stopping criteria can be the most important factor in diarisation systems.)

Difficulties:

- Relatively few 'tokens' (unlike e.g. ROVER for STT).
- Potential complexity issues when large differences between inputs.

Cluster Voting - Implementation

Stage 1: Generate CVOS

- Find all the members of the Cluster Voting Output Set (CVOS) which minimise the sum of the diarisation error rate (DER) from the output to the 2 inputs.
- Currently done with exhaustive search of all possible segment clusterings after several techniques to reduce the complexity.

Stage 2: Pick Final Output from CVOS

- Could be rule-based e.g. 'always combine if < x duration'
- Could be confidence score-based for more than 2 inputs.
- Current 2-input methods based on BIC-type model selection criterion.

Cluster Voting Results

bneval03 data (6 shows, LDC forced alignment, no collar, 0.3s smoothing)

System	TOTAL	#shows DER	#shows DER
	DER	\leq inputs	\geq inputs
CUED-diary-bic (input 1)	25.12	-	-
CUED-diary-cost (input 2)	27.09	-	-
Best CVOS score	22.79	6	0
Worst CVOS score	29.44	0	6
standard-BIC-judge, full cov*	24.62	2	2
standard-BIC-judge, diag cov*	23.90	3	1
standard-BIC-judge, 128mix GMM*	23.76	5	1
IDIAP-BIC-judge, full cov	25.02	2	2
IDIAP-BIC-judge, 15mix GMM†	23.48	5	0

* best result when varying α value. \dagger best result when varying number of Gaussians in base GMM.Breakdown by show is given as an appendix.

Best system gives 1.64% absolute reduction in DER over the best input.

Cambridge University Engineering Department

MDE technical meeting, May 2004

Cluster Voting - Future Work

Documentation:

S. E. Tranter Cluster Voting for Speaker Diarisation

Tech Report CUED/F-INFENG/TR-476, Cambridge Uni. Engineering Dept

Generalisation:

- Reduce complexity by using spkr-mapping between inputs to restrict possible output clusterings.
- Test on different systems, architectures and data sets.
- Allow more than 2 inputs.

LIMSI-Style Segmentation - Motivation

bneval03 data (6 shows, LDC forced alignment, no collar, 0.3s smoothing)

	Num Segs	Ideal DER	Actual DER	WER †
LIMSI-feb04-seg	571	7.07	18.95	10.22
LIMSI-feb04-spkr	"	" "	12.06	10.18
CUED-rt03s-stt	876	9.10	(58.25)	10.65
CUED-dec03-spkr	869	9.09	25.12	(10.76)

† WER using CUED 10×RT system, generated April 2004

• LIMSI segmenter output and spkr output both outperform CUED system for diarisation and STT

Reference: The LIMSI Broadcast News transcription system

Jean-Luc Gauvain, Lori Lamel and Gilles Adda

Speech Communication, Volume 37, Issues 1-2, May 2002, Pages 89-108

LIMSI-Style Segmentation - Progress

Preliminary Implementation:

- Use existing CUED classifier to get WB/NB/music labels
- Use dual-phone recogniser to remove long silences
- Use LIMSI-style segmentation/clustering algorithm [NB parameters have been chosen on the test data]

	Num Segs	Ideal DER	Actual DER	WER
CUED-rt03s-stt	876	9.10	(58.25)	10.65
CUED-dec03-spkr	869	9.09	25.12	(10.76)
CUED-LIMSI-style	718	8.13	29.73	10.44
+ P1 gender/silence	641	7.60	29.16	-
+ CUED-dec03-spkr	"7	"	22.81	(10.56)

bneval03 data (6 shows, LDC forced alignment, no collar, 0.3s smoothing)

• Still very preliminary work, but some reduction in WER and DER.

Appendix - Cluster Voting Results by Show

		-		-	-		-
System	ABC	VOA	PRI	NBC	CNN	MNB	TOTAL
CUED-diary-bic (input 1)	32.03	20.78	21.40	32.06	37.92	10.74	25.12
CUED-diary-cost (input 2)	29.26	19.82	20.48	31.56	37.18	29.34	27.09
Best CVOS score	26.71	18.43	18.11	29.84	37.18	10.74	22.79
Worst CVOS score	34.58	22.48	23.56	33.78	37.92	29.34	29.44
BIC-judge, full cov*	30.30	19.94	19.15	32.06	37.92	10.74	24.62
BIC-judge, diag cov*	30.30	19.94	18.11	31.05	37.92	10.74	23.90
BIC-judge, 128mix GMM*	27.66	20.78	19.15	30.83	37.18	10.74	23.76
IDIAP-BIC, full cov	32.85	20.48	21.15	32.06	37.18	10.74	25.02
IDIAP-BIC, 15mix GMM†	30.30	19.27	18.11	29.84	37.18	10.74	23.48

* best result when varying lpha value

† best result when varying number of Gaussians in base GMM

