# Metadata at CUED: Progress, Plans, and Issues

## Marcus Tomalin, Sue Tranter, and Phil Woodland

4th Feb 2004



# Cambridge University Engineering Department

Winter PI Meeting, Feb 2004

## Contents

### • Diarisation:

- New splitting algorithm and stopping criterion for BN speaker clustering.
- New results and cross site experiments for BN speaker clustering.

#### • Structural Metadata (SMD):

- CTS SU-Detection system for RT-03F evaluation.
- Modifying CTS Prosodic Feature Model (PFM) sample space.

#### • Issues for RT-04:

- Issues concerning the Metadata Extraction (MDE) tasks, data, and tools



# **Speaker Clustering - Splitting Algorithm**

### **RT-03s Clustering:**

- This algorithm was a legacy of minimising computational effort in previous work using MLLR-based clustering.
- Split a parent node into 4 children; if split is not accepted, try recombination to 3 then 2.
- Highly unstable algorithm: the stopping criterion has to cope with different numbers of children nodes.
- Too many tunable parameters: recombination adds more parameters.

### 2-way Clustering (Dec 2003):

- Split a parent node into 2 children.
- Increased stability (i.e. robustness to changes in input segmentation) and performance (around 5% abs reduction in Diarisation Error Rate (DER)).
- Fewer tunable parameters.



## **Speaker Clustering - Stopping Criteria**

2 BIC-based stopping criteria introduced :  ${\rm BIC}=\mathcal{L}-\alpha P$ 

$$P = \frac{1}{2} \left( d + \frac{d(d+1)}{2} \right) \log(N_z)$$
  

$$BIC_{x+y} = -\frac{1}{2} [N_x \log(|S_x|) + N_y \log(|S_y|)] - 2\alpha P + N_z C$$
  

$$BIC_z = -\frac{1}{2} N_z \log(|S_z|) - \alpha P + N_z C$$
  

$$\Delta BIC_{split} = \frac{1}{2} [N_z \log(|S_z|) - N_x \log(|S_x|) - N_y \log(|S_y|)] - \alpha P$$

- Split  $z \to x + y$  if  $\Delta \text{BIC}_{split} > 0$ .
- Use  $N_z$  (BIC-local) or  $N_{total}$  (BIC-global) in the penalty term P.

### **Speaker Clustering - Diarisation Results**

| Stopping            | Optimal Param |          | <b>Diarisation Error Rate</b> |          |
|---------------------|---------------|----------|-------------------------------|----------|
| Criterion           | bndidev03     | bneval03 | bndidev03                     | bneval03 |
| RT-03s 4-way system | -             | -        | 33.29                         | 32.30    |
| Cost-based (2-way)  | 0.825         | -        | 28.51                         | 27.24    |
| Cost-based (2-way)  | _             | 0.8      | 28.66                         | 27.09    |
| BIC-global (2-way)  | 6.25          | 6.25     | 26.13                         | 25.21    |
| BIC-local (2-way)   | 7.25          | -        | 25.54                         | 25.12    |
| BIC-local (2-way)   | -             | 6.75     | 26.47                         | 24.27    |

- There is a single parameter to tune which generalises well.
- Approx. 8% absolute ( $\sim$ 24% relative) reduction in DER.
- Stability also greatly increased: standard deviation when using many input segmentations reduced from 4.9% to 1.1%.



## **Diarisation - Cross-Site Experiments**

- 'Plug and Play' experiments conducted using MIT-LL/CUED components.
- 3 stages: Advert removal (optional), Segmentation, Clustering.
- Experiments use 2003 BN diarisation dev data (LDC forced alignments).

Advert removal CUED only:

DER when penalising adverts reduced on average by  $\sim 40\%$  relative (compared to no advert removal) whilst only increasing the standard DER (excluding adverts from scoring) by 1.2%.

**Segmentation** MIT-LL and CUED attain similar standard: Perfect clustering gives 12.0% (CUED), 12.3% (MIT-LL). Average over all automatic clusterings 25.8% (CUED) and 26.3% (MIT-LL).

**Clustering** MIT-LL slightly better than CUED: Average across segmentations is 26.6% (CUED) and 25.5% (MIT-LL). Both systems are robust to changes in segmentation: standard deviation = 1.1% (CUED) and 1.0% (MIT-LL).



## **SU-Detection System for RT-03F Evaluation**

CUED CTS SU-Detection System for the RT-03F Evaluation (RT-03F-SYS):

- **Training Data** = LDC Data (30hrs) + Meteer-mapped Data (10hrs).
- RT-03 CU-HTK CTS STT 187×RT system output (with optionally deletable tokens retained) used as input to MDE system.
- Prosodic Feature Model (PFM):
  - 10 prosodic features (1 pause, 1 duration, 5 F0, 3 energy).
  - PFM = CART decision tree (183 terminal nodes).
- Slash Unit Language Model (SULM):
  - N-gram and Class-based SULMs built.
  - Interpolation Weights and Perplexities calculated using stream info for SU tokens only (mod-streams).
  - SULM = Interpolated trigram, 40-class trigram and 40-class fourgram.
- Lattice-based Decoder:
  - Decoder = 1-Best Posterior Decoding, rather than 1-Best Viterbi Decoding.



### **SU-Detection System for RT-03F Evaluation**

Results for the dev03 (3hrs) and eval03 (3hrs) test sets:

| SYSTEM                      | dev03 %Err | eval03 %Err |
|-----------------------------|------------|-------------|
| SULM                        | 51.63      | 53.03       |
| PFM+SULM (viterbi-decoding) | 47.55      | 49.29       |
| + mod-streams               | 47.28      | 48.68       |
| + posterior-decoding        | 45.88      | 46.04       |

The # Ins errors is  $\sim \frac{1}{2}$  the # Del errors:

| System              | %Del  | %Ins  | %Err  |
|---------------------|-------|-------|-------|
| RT-03F-SYS (dev03)  | 31.75 | 14.12 | 45.88 |
| RT-03F-SYS (eval03) | 30.60 | 15.44 | 46.04 |

All scores obtained using su-eval-v15.pl with the '-w -W -t 1.00' settings.



### **PFM Research**

Del-Ins error ratio due in part to the distribution of SU tokens in the sample space.

Given the sample space for LDC training data (all-ldc), create a modified sample space (samp-ldc).

#### SU tokens Key: N = # Non-SU tokens S = # Statements, Q = # Questions, I = # Incompletes, B = # Backchannels

The samp-ldc space is created by random sampling from all-ldc:

- Eliminate some Non-SU tokens in all-ldc sample space in order to reduce N.
- Stop when the arbitrary threshold N = (S + Q + I + B) is reached.

| Sample Space | Total # Toks | % Non-SU Toks |
|--------------|--------------|---------------|
| all-ldc      | 465,000      | 86%           |
| samp-ldc     | 126,000      | 50%           |

The random sampling that creates samp-ldc reduces the all-ldc space by c.73%.



### **PFM Research**

- **CUED PFM**: PFM decision tree created using CUED software.
- **R PFM**: PFM decision tree created using R.
- **SULM**: same SULM as for RT-03F, but constructed using only the LDC training data.

| System                     | # Terminal Nodes | Del   | Ins   | %Err  |
|----------------------------|------------------|-------|-------|-------|
| RT-03F-SYS†                | 183              | 31.75 | 14.12 | 45.88 |
| all-ldc CUED PFM $+$ SULM  | 167              | 33.02 | 14.45 | 47.47 |
| all-ldc R PFM $+$ SULM     | 100              | 46.24 | 5.46  | 51.70 |
| samp-ldc CUED $PFM + SULM$ | 123              | 32.62 | 14.27 | 46.89 |
| samp-ldc R PFM $+$ SULM    | 100              | 32.74 | 11.99 | 44.73 |

 $\dagger$  This system was built using the LDC training data + 10hrs Meteer-mapped training data.

- The 'samp-ldc R PFM + SULM' system reduces the SU Err by 2.5% abs compared to 'all-ldc CUED PFM + SULM' system.
- The 'samp-ldc R PFM + SULM' system reduces the SU Err by 1% abs compared to RT-03F-SYS.



# MDE at CUED: Progress Summary

### • Diarisation:

- The new BN 2-way clustering algorithm gives a  ${\sim}5\%$  abs reduction in DER compared to the RT-03s system.
- The new BIC-based stopping criterion gives a further  ${\sim}3\%$  abs reduction in DER.
- Ongoing cross-site experiments involving CUED and MIT-LL explore the performance and robustness of the diarisation system components.

#### • Structural Metadata:

- A CTS SU-Detection system was developed for RT-03F.
- The 'samp-ldc PFM + SULM' system can reduce SU Err by  $\sim$ 2.5% abs compared to the 'all-ldc PFM + SULM' system.
- The 'samp-ldc R PFM + SULM' system reduces the SU Err by  ${\sim}1\%$  abs compared to RT-03F-SYS.



# MDE Plans at CUED

### • Diarisation:

- Ongoing research into a "cluster voting" scheme to combine information from different clusterer outputs.
- The diarisation system will be adapted for the SA-STT RT-04 task.
- Different features, parameters, algorithms etc. will be evaluated in more detail when new RT-04 diarisation dev data becomes available.

#### • Structural Metadata:

- Ongoing PFM-related SU research (sample spaces, neural nets vs. decision trees).
- Ongoing SULM-related SU research (e.g. SULM interpolation strategies).
- Ongoing Decoder-related SU research (e.g. posterior decoding strategies).
- A BN SU-Detection system will be constructed.
- A CTS Disfluency Detection system will be constructed.



## **Diarisation Issues for RT-04**

### • Scoring Reference:

 Are there advantages to using manually marked boundaries for diarisation? An experiment to judge the size of the effect to be carried out by CUED/MIT-LL/?ICSI.

#### • Tools:

- What are the schedules for providing/debugging the new scoring tools for diarisation/SA-STT? Are these schedules realistic for everyone?

### • New Data:

- Which new episodes will be in the new RT-04 diarisation dev data? (same as STT dev please!).
- How will the speaker times be marked?
   (e.g. using NIST's 'cookbook'? if so who will provide the forced alignment?).
- When will the diarisation dev data be released? Can this be released independently of (and before) the SMD dev data release?



# **SMD** Issues for RT-04

#### • Tools:

- Which SMD scoring tool will be used during the RT-04 eval and when will it be released?

#### • Data:

- Is the current V6 dev/training data annotation schedule realistic?
- When will the independent annotator QC information become available?

#### • Scoring Reference:

- Who will provide the forced alignments for SMD dev and eval reference data, and what is the schedule for creating these?

