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Precision Matrix Modelling for LVCSR

Overview

e Precision Matrix Modelling

— motivations;

— structured approximations;
— examples: STC, EMLLT, SPAM.

e MPE discriminative training

e Implementation Issues

— required statistics;
— variance flooring;
— determination of MPE smoothing constant.

e Initial performance evaluated on CTS and BN English.
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Precision Matrix Modelling for LVCSR

Covariance vs. Precision Matrix Modelling

e Standard systems: HMM-based with GMM output distribution:

M /
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e Full covariance matrix modelling: impractical for LVCSR

— Covariance matrix dominates number of model parameters
e Covariance modelling is computationally expensive for decoding

e Precision matrix model, P,,

— Compact model representation
— Efficient likelihood calculation

Cambridge University

Engineering Department EARS Workshop May 2004




Precision Matrix Modelling for LVCSR

Structured Precision Matrix Approximations
e Structured approximation: linear superposition of symmetric basis

R
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r=1

— “Global” parameters: basis matrices S; or basis vectors a;,
— “Component” parameters: basis coefficients )\( ™)

e Auxiliary function for EM parameters estimation:

0(0,6) =K + - Zﬁm{log|Pm| ZA“”) Tr(S; W )}

where required statistics are
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Precision Matrix Modelling for LVCSR
Precision Matrix Model Examples
e STC: R=1,n=d
— Equivalent to feature transformation A

— Closed-form update for )\( m)
— a; updated efficiently in an iterative row-by-row fashion

e EMLLT: R=1,d<n< (d+1)
— Extension to STC: rectangular transform
— Closed-form update for A{7"
— a; updated row-by-row using gradient descent method

— Initialise A by stacking STC/HLDA transforms

e SPAM: R=d,1<n< (d+1)
— Extension to EMLLT W|th arbitrary symmetric basis matrices

— Conjugate gradient descent update for )\( m)

— Update of basis matrices is slow due to p05|t|ve—definite constraint

— Initialise §; by selecting top n singular vector of average inverse covariance
statistics
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Precision Matrix Modelling for LVCSR

HLDA as a Precision Matrix Model

e Precision matrix expression for HLDA model

Z)\(m)a a; + Z \iiaia;

1=n—+1

e HLDA useful dimension, n < d
e Second summation corresponds to nuisance dimensions

e Extension of STC/EMLLT with global tying for nuisance coefficients, \;;

— \;; Initialised as inverse variances of nuisance dimensions
— ;i estimated using conjugate gradient method

e Efficient updates for a; and )\7(;:"’) (c.f. STC)
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Precision Matrix Modelling for LVCSR

Minimum Phone Error Criterion

e MPE criterion

> P(O|My,)* P(w)RawAccuracy (w)

FM) = S p(O| M) P(w)

e Use weak-sense auxiliary function
Q(6,6) = Q™ (0,6) — Q' (6,6) + Q“"(6,6)

where,

M

Q*(H,@):KJr;Z {log|Pm|—Z>\(m)TrSW )}

m=1

e Component specific smoothing function weights, D,,, to ensure convexity of
auxiliary function
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Precision Matrix Modelling for LVCSR

Projected Statistics

e Accumulation of full covariance statistics, W,

— impractical for LVCSR;
— only required to initialise and update basis vectors/matrices

e Update of basis coefficients alone requires only the projected statistics,
w;, Vi={1,2,...,n}:

— STC/EMLLT:
UNJZ' = CLZ'WmCL;
— SPAM:
R
b= Te (SiW) = 3 (A Wal, )
r=1

e w, Is a scalar term for each basis, a; or S,

e MPE training: only update basis coefficients
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Precision Matrix Modelling for LVCSR

Implementation Issues
e Variance flooring

— Variance floor — a technique to ensure training robustness.

— Computationally expensive for structured precision matrix models

— Apply variance floor on full covariance statistics

— Variance flooring on projected statistics possible for STC and EMLLT
— Non-trivial for SPAM models

e Determining smoothing constant, D,,, for MPE

— D,, is required to ensure convexity of auxiliary function

— A Quadratic Eigenvalue Problem (QEP)

— Requires full covariance statistics

— For STC/EMLLT, possible to solve independent quadratic equations with
projected statistics

— For projected statistics with SPAM, use pseudo projections:
« Another set of projected statistics associated with rank-1 projections
« Examples: identity matrix or STC transforms
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Precision Matrix Modelling for LVCSR

Experimental Setup
e Unadapted results

e Conversational telephone speech — English (CTS):

— Training dataset: h5etrain03 (296hr)
— Test dataset: devO1lsub (3hr) & eval03 (6hr)

— CMN, CVN and VTLN are used
— Basis vectors/matrices: ML trained

e Broadcast News — English (BN):

— Training dataset: bnac (144hr)
— Test dataset: dev03 (3hr) & eval03 (3hr)

e System configurations

— Front-end: PLP with log energy + 1st, 2nd & 3rd derivatives
— Approx. 7000 distinct states

— 16 components and 28 components

— Trigram language model
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Precision Matrix Modelling for LVCSR

Initial Results — CTS

# of | Dimension | WER (%
System xforms | u by ML I(\/IP)E
HLDA 39 39 33.5 | 29.8
STC 1 52 52 33.3 | 29.7
HLDA-PMM 52 39 33.2 | 294
EMLLT 52 78 32.6 | 29.2
EMLLT 04 52 78 32.0 | 28.3

e 16-comp models trained on h5etrain03; evaluated on devO1sub

e Modelling mean vectors in 52 dim space gave slight improvement

e HLDA-PMM is 0.3% better than STC; less parameters for HLDA-PMM
e Single-transform EMLLT vyields 0.6% absolute WER reduction

e EMLLT with 64 transforms gave 1.5% improvement over HLDA
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Precision Matrix Modelling for LVCSR

e Selected systems for evaluation

28 component systems — CTS

— 28-comp HLDA

— 16-comp 64-transform EMLLT

— 28-comp single-transform SPAM

System +# of # of | Dimensions | devO1sub evalO3
comps | xforms | w )Y ML | MPE | ML | MPE
HLDA 28 1 39 39 323 | 29.1 | 31.7 | 28.4
EMLLT 16 64 52 78 32.0 | 283 | 31.7 | 28.1
SPAM 28 1 52 39 315 | 283 | 30.8 | 27.6

e SPAM gave 0.8% absolute WER reduction

e 64-transform EMLLT is only 0.3% better than the baseline on eval03
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Precision Matrix Modelling for LVCSR

Broadcast News English Systems

e Selected 16-comp systems for evaluation on dev03 and evalO3

— SPAM

— HLDA+SPAM (SPAM within HLDA subspace)

System dev03 WER (%) evalo3 WER (%)
ML | MPE | MPE-MAP | ML | MPE | MPE-MAP
HLDA 17.7 | 15.2 14.9 15.6 | 13.7 13.6
SPAM 170 | 15.1 - 154 | 13.7 -
HLDA+SPAM | 16.9 | 14.9 14.6 15.1 | 134 13.4

e SPAM did not yield any gain after MPE training

e MPE HLDA+SPAM is 0.3% better than HLDA, on both dev03 and eval03

e For MPE-MAP, HLDA+SPAM gave 0.3%(dev03) and 0.2% (eval03)
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Precision Matrix Modelling for LVCSR

Summary

Precision matrix modelling used in LVCSR;

Successful discriminative MPE training;

Best model was found to be:

— SPAM for CTS:
— HLDA-+SPAM for Broadcast News.

Candidate system combination branch for BN and CTS;
Gains retained after MLLR adaptation;

Further investigations:

— HLDA+SPAM model for CTS;
— Dynamic MMI prior for SPAM;
— SPAM model training using 400h Fisher data.set
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