Precision Matrix Modelling for LVCSR

K.C. Sim & M.J.F. Gales

May 2004

Cambridge University Engineering Department

EARS Workshop May 2004

Overview

- Precision Matrix Modelling
 - motivations;
 - structured approximations;
 - examples: STC, EMLLT, SPAM.
- MPE discriminative training
- Implementation Issues
 - required statistics;
 - variance flooring;
 - determination of MPE smoothing constant.
- Initial performance evaluated on CTS and BN English.

Covariance vs. Precision Matrix Modelling

• Standard systems: HMM-based with GMM output distribution:

$$p(\boldsymbol{o}_t|\{c_m, \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m\}) = \sum_{m=1}^M c_m \sqrt{\frac{|\boldsymbol{P}_m|}{(2\pi)^d}} \exp\left(-\frac{(\boldsymbol{o}_t - \boldsymbol{\mu}_m)'\boldsymbol{P}_m(\boldsymbol{o}_t - \boldsymbol{\mu}_m)}{2}\right)$$

- Full covariance matrix modelling: impractical for LVCSR
 - Covariance matrix dominates number of model parameters
- Covariance modelling is computationally expensive for decoding
- Precision matrix model, $oldsymbol{P}_m$
 - Compact model representation
 - Efficient likelihood calculation

Structured Precision Matrix Approximations

• Structured approximation: linear superposition of symmetric basis

$$\boldsymbol{P}_{m} = \sum_{i=1}^{n} \lambda_{ii}^{(m)} \boldsymbol{S}_{i} = \sum_{i=1}^{n} \lambda_{ii}^{(m)} \left(\sum_{r=1}^{R} \lambda_{ii}^{(r)} \boldsymbol{a}_{ir}^{\prime} \boldsymbol{a}_{ir} \right)$$

– "Global" parameters: basis matrices $m{S}_i$ or basis vectors $m{a}_{ir}$

- "Component" parameters: basis coefficients $\lambda_{ii}^{(m)}$
- Auxiliary function for EM parameters estimation:

$$\mathcal{Q}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = K + \frac{1}{2} \sum_{m=1}^{M} \beta_m \Big\{ \log |\boldsymbol{P}_m| - \sum_{i=1}^{n} \lambda_{ii}^{(m)} \operatorname{Tr}(\boldsymbol{S}_i \boldsymbol{W}_m) \Big\}$$

where required statistics are

$$\boldsymbol{W}_{m} = \frac{\sum_{t=1}^{T} \gamma_{m}(t) (\boldsymbol{o}_{t} - \boldsymbol{\mu}_{m}) (\boldsymbol{o}_{t} - \boldsymbol{\mu}_{m})'}{\beta_{m}} \quad \text{and} \quad \beta_{m} = \sum_{t=1}^{T} \gamma_{m}(t)$$

Cambridge University Engineering Department

EARS Workshop May 2004

Precision Matrix Model Examples

- **STC**: R = 1, n = d
 - Equivalent to feature transformation \boldsymbol{A}
 - Closed-form update for $\lambda_{ii}^{(m)}$
 - a_i updated efficiently in an iterative row-by-row fashion
- **EMLLT**: $R = 1, d < n \le \frac{d}{2}(d+1)$
 - Extension to STC: rectangular transform
 - Closed-form update for $\lambda_{ii}^{(m)}$
 - a_i updated row-by-row using gradient descent method
 - Initialise \boldsymbol{A} by stacking STC/HLDA transforms
- **SPAM**: R = d, $1 < n \le \frac{d}{2}(d+1)$
 - Extension to EMLLT with arbitrary symmetric basis matrices
 - Conjugate gradient descent update for $\lambda_{ii}^{(m)}$
 - Update of basis matrices is *slow* due to positive-definite constraint
 - Initialise \boldsymbol{S}_i by selecting top n singular vector of average inverse covariance statistics

HLDA as a Precision Matrix Model

• Precision matrix expression for HLDA model

$$\boldsymbol{P}_{m} = \sum_{i=1}^{n} \lambda_{ii}^{(m)} \boldsymbol{a}_{i}^{\prime} \boldsymbol{a}_{i} + \sum_{i=n+1}^{d} \lambda_{ii} \boldsymbol{a}_{i}^{\prime} \boldsymbol{a}_{i}$$

- HLDA useful dimension, n < d
- Second summation corresponds to *nuisance* dimensions
- Extension of STC/EMLLT with global tying for *nuisance* coefficients, λ_{ii}
 - λ_{ii} initialised as *inverse* variances of nuisance dimensions
 - λ_{ii} estimated using conjugate gradient method
- Efficient updates for a_i and $\lambda_{ii}^{(m)}$ (c.f. STC)

Minimum Phone Error Criterion

• MPE criterion

$$\mathcal{F}(\mathcal{M}) = \frac{\sum_{w} p(\mathbf{O}|\mathcal{M}_{w})^{\kappa} P(w) \operatorname{RawAccuracy}(w)}{\sum_{w} p(\mathbf{O}|\mathcal{M}_{w})^{\kappa} P(w)}$$

• Use weak-sense auxiliary function

$$\mathcal{Q}(oldsymbol{ heta}, \hat{oldsymbol{ heta}}) = \mathcal{Q}^{(n)}(oldsymbol{ heta}, \hat{oldsymbol{ heta}}) - \mathcal{Q}^{(d)}(oldsymbol{ heta}, \hat{oldsymbol{ heta}}) + \mathcal{Q}^{(sm)}(oldsymbol{ heta}, \hat{oldsymbol{ heta}})$$

where,

$$\mathcal{Q}^*(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = K + \frac{1}{2} \sum_{m=1}^M \beta_m^* \Big\{ \log |\boldsymbol{P}_m| - \sum_{i=1}^n \lambda_{ii}^{(m)} \operatorname{Tr}(\boldsymbol{S}_i \boldsymbol{W}_m) \Big\}$$

- Component specific smoothing function weights, ${\cal D}_m$ to ensure convexity of auxiliary function

Projected Statistics

- Accumulation of full covariance statistics, $oldsymbol{W}_m$
 - impractical for LVCSR;
 - only required to initialise and update basis vectors/matrices
- Update of basis coefficients alone requires only the *projected* statistics, \tilde{w}_i , $\forall i = \{1, 2, ..., n\}$:
 - STC/EMLLT:

$$ilde{w}_i = oldsymbol{a}_i oldsymbol{W}_m oldsymbol{a}_i'$$

– SPAM:

$$\tilde{w}_{i} = \operatorname{Tr}\left(\boldsymbol{S}_{i}\boldsymbol{W}_{m}\right) = \sum_{r=1}^{R} \left(\lambda_{ii}^{(r)}\boldsymbol{a}_{ir}\boldsymbol{W}_{m}\boldsymbol{a}_{ir}^{\prime}\right)$$

- $ilde{w}_i$ is a scalar term for each basis, $oldsymbol{a}_i$ or $oldsymbol{S}_i$
- MPE training: only update basis coefficients

Implementation Issues

• Variance flooring

- Variance floor a technique to ensure training robustness.
- Computationally expensive for structured precision matrix models
- Apply variance floor on *full covariance statistics*
- Variance flooring on *projected* statistics possible for STC and EMLLT
- Non-trivial for SPAM models

• Determining smoothing constant, ${\cal D}_m$, for ${\rm MPE}$

- D_m is required to ensure convexity of auxiliary function
- A Quadratic Eigenvalue Problem (QEP)
- Requires full covariance statistics
- For STC/EMLLT, possible to solve independent quadratic equations with projected statistics
- For projected statistics with SPAM, use *pseudo* projections:
 - \ast Another set of projected statistics associated with rank-1 projections
 - * Examples: identity matrix or STC transforms

Experimental Setup

- Unadapted results
- Conversational telephone speech English (CTS):
 - Training dataset: h5etrain03 (296hr)
 - Test dataset: dev01sub (3hr) & eval03 (6hr)
 - CMN, CVN and VTLN are used
 - Basis vectors/matrices: ML trained
- Broadcast News English (BN):
 - Training dataset: bnac (144hr)
 - Test dataset: dev03 (3hr) & eval03 (3hr)
- System configurations
 - Front-end: PLP with log energy + 1st, 2nd & 3rd derivatives
 - Approx. 7000 distinct states
 - 16 components and 28 components
 - Trigram language model

System	# of	Dimension		WER (%)	
Jystem	xforms	μ	Σ	ML	MPE
HLDA		39	39	33.5	29.8
STC	1	52	52	33.3	29.7
HLDA-PMM		52	39	33.2	29.4
EMLLT		52	78	32.6	29.2
EMLLT	64	52	78	32.0	28.3

Initial Results – CTS

- 16-comp models trained on h5etrain03; evaluated on dev01sub
- Modelling mean vectors in 52 dim space gave slight improvement
- HLDA-PMM is 0.3% better than STC; less parameters for HLDA-PMM
- Single-transform EMLLT yields 0.6% absolute WER reduction
- EMLLT with 64 transforms gave 1.5% improvement over HLDA

28 component systems – CTS

- Selected systems for evaluation
 - 28-comp HLDA
 - 16-comp 64-transform EMLLT
 - 28-comp single-transform SPAM

System	# of	# of	Dimensions		dev01sub		eval03	
System	comps	xforms	μ	Σ	ML	MPE	ML	MPE
HLDA	28	1	39	39	32.3	29.1	31.7	28.4
EMLLT	16	64	52	78	32.0	28.3	31.7	28.1
SPAM	28	1	52	39	31.5	28.3	30.8	27.6

- SPAM gave 0.8% absolute WER reduction
- 64-transform EMLLT is only 0.3% better than the baseline on eval03

Broadcast News English Systems

- Selected 16-comp systems for evaluation on dev03 and eval03
 - SPAM
 - HLDA+SPAM (SPAM within HLDA subspace)

System	d	.ev03 W	/ER (%)	eval03 WER (%)			
	ML	MPE	MPE-MAP	ML	MPE	MPE-MAP	
HLDA	17.7	15.2	14.9	15.6	13.7	13.6	
SPAM	17.0	15.1	—	15.4	13.7	—	
HLDA+SPAM	16.9	14.9	14.6	15.1	13.4	13.4	

- SPAM did not yield any gain after MPE training
- MPE HLDA+SPAM is 0.3% better than HLDA, on both dev03 and eval03
- For MPE-MAP, HLDA+SPAM gave 0.3%(dev03) and 0.2% (eval03)

Summary

- Precision matrix modelling used in LVCSR;
- Successful discriminative MPE training;
- Best model was found to be:
 - *SPAM* for CTS;
 - HLDA+SPAM for Broadcast News.
- Candidate system combination branch for BN and CTS;
- Gains retained after MLLR adaptation;
- Further investigations:
 - HLDA+SPAM model for CTS;
 - Dynamic MMI prior for SPAM;
 - SPAM model training using 400h Fisher data.set

