Precision Matrix Modelling for LVCSR

K.C. Sim \& M.J.F. Gales

May 2004

Cambridge University Engineering Department

Overview

- Precision Matrix Modelling
- motivations;
- structured approximations;
- examples: STC, EMLLT, SPAM.
- MPE discriminative training
- Implementation Issues
- required statistics;
- variance flooring;
- determination of MPE smoothing constant.
- Initial performance evaluated on CTS and BN English.

Covariance vs. Precision Matrix Modelling

- Standard systems: HMM-based with GMM output distribution:

$$
p\left(\boldsymbol{o}_{t} \mid\left\{c_{m}, \boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m}\right\}\right)=\sum_{m=1}^{M} c_{m} \sqrt{\frac{\left|\boldsymbol{P}_{m}\right|}{(2 \pi)^{d}}} \exp \left(-\frac{\left(\boldsymbol{o}_{t}-\boldsymbol{\mu}_{m}\right)^{\prime} \boldsymbol{P}_{m}\left(\boldsymbol{o}_{t}-\boldsymbol{\mu}_{m}\right)}{2}\right)
$$

- Full covariance matrix modelling: impractical for LVCSR
- Covariance matrix dominates number of model parameters
- Covariance modelling is computationally expensive for decoding
- Precision matrix model, \boldsymbol{P}_{m}
- Compact model representation
- Efficient likelihood calculation

Structured Precision Matrix Approximations

- Structured approximation: linear superposition of symmetric basis

$$
\boldsymbol{P}_{m}=\sum_{i=1}^{n} \lambda_{i i}^{(m)} \boldsymbol{S}_{i}=\sum_{i=1}^{n} \lambda_{i i}^{(m)}\left(\sum_{r=1}^{R} \lambda_{i i}^{(r)} \boldsymbol{a}_{i r}^{\prime} \boldsymbol{a}_{i r}\right)
$$

- "Global" parameters: basis matrices \boldsymbol{S}_{i} or basis vectors $\boldsymbol{a}_{i r}$
- "Component" parameters: basis coefficients $\lambda_{i i}^{(m)}$
- Auxiliary function for EM parameters estimation:

$$
\mathcal{Q}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta})=K+\frac{1}{2} \sum_{m=1}^{M} \beta_{m}\left\{\log \left|\boldsymbol{P}_{m}\right|-\sum_{i=1}^{n} \lambda_{i i}^{(m)} \operatorname{Tr}\left(\boldsymbol{S}_{i} \boldsymbol{W}_{m}\right)\right\}
$$

where required statistics are

$$
\boldsymbol{W}_{m}=\frac{\sum_{t=1}^{T} \gamma_{m}(t)\left(\boldsymbol{o}_{t}-\boldsymbol{\mu}_{m}\right)\left(\boldsymbol{o}_{t}-\boldsymbol{\mu}_{m}\right)^{\prime}}{\beta_{m}} \quad \text { and } \quad \beta_{m}=\sum_{t=1}^{T} \gamma_{m}(t)
$$

Precision Matrix Model Examples

- STC: $R=1, n=d$
- Equivalent to feature transformation \boldsymbol{A}
- Closed-form update for $\lambda_{i i}^{(m)}$
- \boldsymbol{a}_{i} updated efficiently in an iterative row-by-row fashion
- EMLLT: $R=1, d<n \leq \frac{d}{2}(d+1)$
- Extension to STC: rectangular transform
- Closed-form update for $\lambda_{i i}^{(m)}$
- \boldsymbol{a}_{i} updated row-by-row using gradient descent method
- Initialise \boldsymbol{A} by stacking STC/HLDA transforms
- SPAM: $R=d, 1<n \leq \frac{d}{2}(d+1)$
- Extension to EMLLT with arbitrary symmetric basis matrices
- Conjugate gradient descent update for $\lambda_{i i}^{(m)}$
- Update of basis matrices is slow due to positive-definite constraint
- Initialise \boldsymbol{S}_{i} by selecting top n singular vector of average inverse covariance statistics

HLDA as a Precision Matrix Model

- Precision matrix expression for HLDA model

$$
\boldsymbol{P}_{m}=\sum_{i=1}^{n} \lambda_{i i}^{(m)} \boldsymbol{a}_{i}^{\prime} \boldsymbol{a}_{i}+\sum_{i=n+1}^{d} \lambda_{i i} \boldsymbol{a}_{i}^{\prime} \boldsymbol{a}_{i}
$$

- HLDA useful dimension, $n<d$
- Second summation corresponds to nuisance dimensions
- Extension of STC/EMLLT with global tying for nuisance coefficients, $\lambda_{i i}$
- $\lambda_{i i}$ initialised as inverse variances of nuisance dimensions
- $\lambda_{i i}$ estimated using conjugate gradient method
- Efficient updates for \boldsymbol{a}_{i} and $\lambda_{i i}^{(m)}$ (c.f. STC)

Minimum Phone Error Criterion

- MPE criterion

$$
\mathcal{F}(\mathcal{M})=\frac{\sum_{w} p\left(\mathbf{O} \mid \mathcal{M}_{w}\right)^{\kappa} P(w) \text { Raw Accuracy }(w)}{\sum_{w} p\left(\mathbf{O} \mid \mathcal{M}_{w}\right)^{\kappa} P(w)}
$$

- Use weak-sense auxiliary function

$$
\mathcal{Q}(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}})=\mathcal{Q}^{(n)}(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}})-\mathcal{Q}^{(d)}(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}})+\mathcal{Q}^{(s m)}(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}})
$$

where,

$$
\mathcal{Q}^{*}(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}})=K+\frac{1}{2} \sum_{m=1}^{M} \beta_{m}^{*}\left\{\log \left|\boldsymbol{P}_{m}\right|-\sum_{i=1}^{n} \lambda_{i i}^{(m)} \operatorname{Tr}\left(\boldsymbol{S}_{i} \boldsymbol{W}_{m}\right)\right\}
$$

- Component specific smoothing function weights, D_{m} to ensure convexity of auxiliary function

Projected Statistics

- Accumulation of full covariance statistics, \boldsymbol{W}_{m}
- impractical for LVCSR;
- only required to initialise and update basis vectors/matrices
- Update of basis coefficients alone requires only the projected statistics, $\tilde{w}_{i}, \forall i=\{1,2, \ldots, n\}$:
- STC/EMLLT:

$$
\tilde{w}_{i}=\boldsymbol{a}_{i} \boldsymbol{W}_{m} \boldsymbol{a}_{i}^{\prime}
$$

- SPAM:

$$
\tilde{w}_{i}=\operatorname{Tr}\left(\boldsymbol{S}_{i} \boldsymbol{W}_{m}\right)=\sum_{r=1}^{R}\left(\lambda_{i i}^{(r)} \boldsymbol{a}_{i r} \boldsymbol{W}_{m} \boldsymbol{a}_{i r}^{\prime}\right)
$$

- \tilde{w}_{i} is a scalar term for each basis, \boldsymbol{a}_{i} or \boldsymbol{S}_{i}
- MPE training: only update basis coefficients

Implementation Issues

- Variance flooring

- Variance floor - a technique to ensure training robustness.
- Computationally expensive for structured precision matrix models
- Apply variance floor on full covariance statistics
- Variance flooring on projected statistics possible for STC and EMLLT
- Non-trivial for SPAM models
- Determining smoothing constant, D_{m}, for MPE
- D_{m} is required to ensure convexity of auxiliary function
- A Quadratic Eigenvalue Problem (QEP)
- Requires full covariance statistics
- For STC/EMLLT, possible to solve independent quadratic equations with projected statistics
- For projected statistics with SPAM, use pseudo projections:
* Another set of projected statistics associated with rank-1 projections
* Examples: identity matrix or STC transforms

Experimental Setup

- Unadapted results
- Conversational telephone speech - English (CTS):
- Training dataset: h5etrain03 (296hr)
- Test dataset: dev01sub (3hr) \& eval03 (6hr)
- CMN, CVN and VTLN are used
- Basis vectors/matrices: ML trained
- Broadcast News - English (BN):
- Training dataset: bnac (144hr)
- Test dataset: dev03 (3hr) \& eval03 (3hr)
- System configurations
- Front-end: PLP with log energy + 1st, 2nd \& 3rd derivatives
- Approx. 7000 distinct states
- 16 components and 28 components
- Trigram language model

Initial Results - CTS

System	\# of xforms	Dimension		WER (\%)	
		$\boldsymbol{\Sigma}$	ML	MPE	
HLDA		39	39	33.5	29.8
STC		52	52	33.3	29.7
HLDA-PMM	1	52	39	33.2	29.4
EMLLT		52	78	32.6	29.2
EMLLT	64	52	78	32.0	28.3

- 16-comp models trained on h5etrain03; evaluated on dev01sub
- Modelling mean vectors in 52 dim space gave slight improvement
- HLDA-PMM is 0.3% better than STC; less parameters for HLDA-PMM
- Single-transform EMLLT yields 0.6% absolute WER reduction
- EMLLT with 64 transforms gave 1.5% improvement over HLDA

28 component systems - CTS

- Selected systems for evaluation
- 28-comp HLDA
- 16-comp 64-transform EMLLT
- 28-comp single-transform SPAM

System	\# of	\# of	Dimensions		dev01sub		eval03	
	comps			$\boldsymbol{\mu}$	$\boldsymbol{\Sigma}$	ML	MPE	ML
HLDA	28	1	39	39	32.3	29.1	31.7	28.4
EMLLT	16	64	52	78	32.0	28.3	31.7	28.1
SPAM	28	1	52	39	31.5	28.3	30.8	27.6

- SPAM gave 0.8% absolute WER reduction
- 64 -transform EMLLT is only 0.3% better than the baseline on eval03

Broadcast News English Systems

- Selected 16-comp systems for evaluation on dev03 and eval03
- SPAM
- HLDA+SPAM (SPAM within HLDA subspace)

System	dev03 WER (\%)			eval03 WER (\%)		
	ML	MPE	MPE-MAP	ML	MPE	MPE-MAP
HLDA	17.7	15.2	14.9	15.6	13.7	13.6
SPAM	17.0	15.1	-	15.4	13.7	-
HLDA+SPAM	16.9	14.9	14.6	15.1	13.4	13.4

- SPAM did not yield any gain after MPE training
- MPE HLDA+SPAM is 0.3% better than HLDA, on both dev03 and eval03
- For MPE-MAP, HLDA+SPAM gave $0.3 \%(\operatorname{dev} 03)$ and 0.2% (eval03)

Summary

- Precision matrix modelling used in LVCSR;
- Successful discriminative MPE training;
- Best model was found to be:
- SPAM for CTS;
- HLDA+SPAM for Broadcast News.
- Candidate system combination branch for BN and CTS;
- Gains retained after MLLR adaptation;
- Further investigations:
- HLDA+SPAM model for CTS;
- Dynamic MMI prior for SPAM;
- SPAM model training using 400h Fisher data.set

