Progress in English Conversational Telephone Speech Transcription

Khe Chai Sim, Mark Gales, Xunying Liu, Phil Woodland & Kai Yu

March 2005

Cambridge University Engineering Department

Outline

- Increased number of model parameters
 - 9K states to 15K states
 - use of multiple STCs
- Combination results
- Initial experiments with fMPE
 - view fMPE as temporally varying *shift* of mean vectors
 - extension: pMPE as temporally varying *scale* of precision matrices

Acoustic Training Set-Up

- Acoustic Model Training Data (fsh2004h5train03b 2180hours):
 - h5train03b: 360hours used in 2003 evaluation
 - fsh2004: 1820hours BBN/Wordwave+LDC quick transcriptions
- Acoustic Model Test Data:
 - eval03 6 hours (3 hours Switchboard2 Phase 5, 3 hours Fisher)
 - dev04 3 hours Fisher data
- Front-end
 - 12 PLP cepstral parameters + C0 and 1st/2nd/3rd derivatives + HLDA
 - Side-based cepstral mean and variance normalisation plus VTLN
- Baseline Acoustic Models
 - Gender independent, decision tree state clustered triphones
 - MPE training with dynamic MMI prior
- Language Models (see RT04f workshop paper for details)
 - 2003 trigram (tgint03) unadapted decodes
 - 2004 evaluation LM for 10xRT experiments

System	# States	MPE		dev04		
	(# Comp)	lter	s25	fsh	Avg	
S1	6K (28)	0	34.1	26.0	30.2	26.4
S4	9K (36)	, i i i i i i i i i i i i i i i i i i i	33.0	24.8	29.0	25.3
S6	15K (36)	(ML)	32.1	24.3	28.3	24.3
S1	6K (28)		27.9	20.2	24.2	20.5
S4	9K (36)	8	26.8	19.5	23.3	20.0
S6	15K (36)		26.5	19.5	23.1	19.7

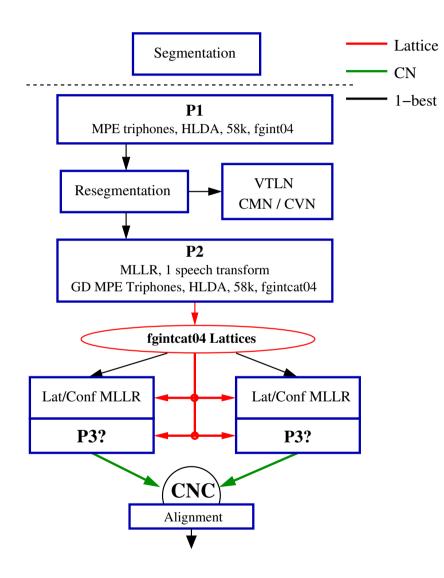
Varying Model Complexity

%WER GI unadapted decode 2003 trigram

- S6 system (540K) is $1.7\times$ larger than S4 system (320K) on dev04
 - S6 MLE 1.0%/MPE 0.3% better than S4 MLE/MPE system
- Unfortunately MPE gains consistently less than MLE gains
 - complexity affects MPE gains on dev04

S1 5.9% **S**4 5.3% **S**6 4.6%

10xRT Framework



- Evaluation 10xRT framework:
- Multi-pass framework
- Confusion network generation
- Confusion network combination
- Evaluation system used:
 - P3b: S4: Triphone GD MPron
 - P3q: Q1: Quinphone SAT SPron
- Use alternative P3 branches
 - ignore time constraints ...

Cambridge University Engineering Department

System		dev04			
		s25	fsh	Avg	
P3b-cn	S4 GD	21.7	14.7	18.3	15.1
P3q-cn	Q1 SPRON-SAT	21.5	14.8	18.2	15.0
P3d-cn	S6 GD	21.3	14.5	18.0	14.9
P3s-cn	S4 SAT-SPAM	21.0	14.6	17.9	14.7
P3b+P3q		20.9	14.1	17.6	14.3
P3b+P3d		21.3	14.3	17.9	14.7
P3d+P3q	CNC	20.6	13.9	17.4	14.1
P3s+P3q		20.4	14.0	17.3	14.1
P3s+P3d		20.8	14.3	17.7	14.3

10xRT Framework Results

% WER 2004 10xRT rescoring/combination, 2004 RT04f LMs

- Best single branch S4 SAT-SPAM system (too slow for real 10xRT!)
- S6 GD about 0.2% better than S4 GD
- Gain maintained after combination with Q1, 0.2% better than eval system.

Semi-Tied Covariance Matrices (reminder)

- IBM investigated full covariance matrices
 - simpler updates than SPAM/EMLLT systems
 - but dramatic increase in number of parameters/decode cost
 - necessary to limit number of components (IBM: 144K vs 800K)
- Examine simpler precision matrix models semi-tied covariance matrices
 - simple/efficient update formulae
 - efficient likelihood calculation

$$\mathcal{L}(\mathbf{o};\boldsymbol{\mu}^{(m)},\boldsymbol{\Sigma}_{\text{diag}}^{(m)},\mathbf{A}^{(r)}) = |\text{det}(\mathbf{A}^{(r)})| \mathcal{N}(\mathbf{A}^{(r)}\mathbf{o};\boldsymbol{\mu}^{(m)},\boldsymbol{\Sigma}_{\text{diag}}^{(m)})$$

- HLDA subsumes a global STC transform
- Normally only a small number of semi-tied transforms considered
 - with more data, dramatically increase the number of transforms
 - no need to limit number of components

System	#STC	MPE		dev04		
System	XForms	lter	s25	fsh	Avg	
S4		0	31.6	24.3	28.1	24.6
	1K		31.3	24.0	27.8	
	9K	(ML)	30.7	23.1	27.0	23.5
S4		8	26.7	19.6	23.3	20.0
	9K		26.3	18.9	22.7	19.4
S6		8	26.5	19.4	23.0	19.5

Unadapted STC Results

%WER GI unadapted decode, HDecode, PronProbs, 2003 trigram

- S4 9K STC system is $1.6\times$ larger than standard S4 system
 - S4 9K STC system MLE 1.1%/MPE 0.6% absolute better than S4 system
 - slightly better (0.1%-0.3%) than S6 system
- Unfortunately adaptation more complex (same as full cov)

fMPE – from the Model Parameter Point of View

- IBM's fMPE a form of feature interpolation based on posterior information
- Equivalent to temporally varying *shift* of mean vectors

$$\boldsymbol{\mu}_{mt} = \boldsymbol{\mu}_m + \sum_{i=1}^n p(c_i | \boldsymbol{o}_t) \boldsymbol{b}_i = \boldsymbol{\mu}_m + \boldsymbol{b}_t$$

– c_i : cluster centroid, $n \gg d$

- Static $({m \mu}_m)$ & dynamic $({m b}_t)$ parameters
- Interleaving update of static and dynamic parameters:
 - static: update μ_m (ML); fix b_i
 - **dynamic**: update $oldsymbol{b}_i$ (fMPE); fix $oldsymbol{\mu}_m$

Update of Temporal Mean Vectors

• Update of
$$\boldsymbol{\mu}_m$$
 (ML): $\boldsymbol{\mu}_m = \frac{\sum_{t=1}^T \gamma_m(t) (\boldsymbol{o}_t - \boldsymbol{b}_t)}{\sum_{t=1}^T \gamma_m(t)}$

• Update of b_{ij} (fMPE): $\hat{b}_{ij} = b_{ij} + \eta_{ij} \frac{\partial \mathcal{F}}{\partial b_{ij}}$

$$\frac{\partial \mathcal{F}}{\partial b_{ij}} = \sum_{t=1}^{T} p(c_i | \boldsymbol{o}_t) \left\{ \sum_{m=1}^{M} \left(\frac{\partial \mathcal{F}}{\partial \mathcal{L}^m} \frac{\partial \mathcal{L}^m}{\partial \mu_{mjt}} + \frac{\partial \mathcal{F}}{\partial \mu_{mj}} \frac{\partial \mu_{mj}}{\partial \mu_{mjt}} + \frac{\partial \mathcal{F}}{\partial \sigma_{mj}^2} \frac{\partial \sigma_{mj}^2}{\partial \mu_{mjt}} \right) \right\}$$
$$\mathcal{L}^m = K - \frac{1}{2} \sum_{j=1}^{d} \left(\log(\sigma_{mj}^2) - \frac{(o_{jt} - \mu_{mjt})^2}{\sigma_{mj}^2} \right)$$

- Exactly the same as fMPE ...
- But, motivates the extension for *temporal precision matrices*

Temporal Precision Matrices (pMPE)

• Temporal scaling of diagonal precision elements $(s_{mj} = 1/\sigma_{mj}^2)$

$$s_{mjt} = \left(1 + \sum_{i=1}^{n} p(c_i | \boldsymbol{o}_t) a_{ij}\right)^2 s_{mj} = a_{jt}^2 s_{mj}$$

- Positive temporal scaling, a_{jt}^2 , to ensure positive variances
- Similar interleaving update as fMPE
- Likelihood calculation more expensive:

$$\mathcal{L}^{m} = K + \frac{1}{2} \sum_{j=1}^{d} \left(\log(s_{mj}) + \log(a_{jt}^{2}) - a_{jt}^{2} s_{mj} (o_{jt} - \mu_{mjt})^{2} \right)$$

- cache
$$a_{jt}^2$$
 and $\sum_{j=1}^d \log(a_{jt}^2)$
- extra d multiplications and 1 addition

Update of Temporal Precision Matrices

• Update of σ_{mj}^2 (ML):

$$\sigma_{mj}^2 = \frac{\sum_{t=1}^T \gamma_m(t) a_{jt}^2 (o_{jt} - \mu_{mjt})^2}{\sum_{t=1}^T \gamma_m(t)}$$

• Update of
$$a_{ij}$$
 (pMPE):

$$\hat{a}_{ij} = a_{ij} + \eta_{ij} \frac{\partial \mathcal{F}}{\partial a_{ij}}$$

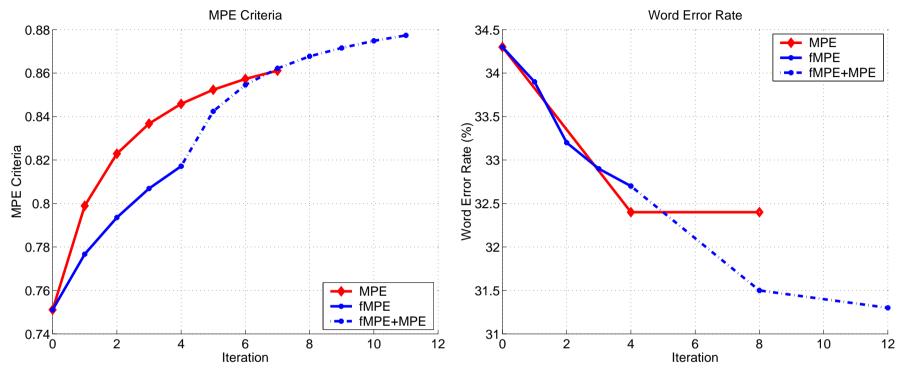
$$\frac{\partial \mathcal{F}}{\partial a_{ij}} = 2 \sum_{t=1}^{T} a_{jt} p(c_i | \boldsymbol{o}_t) \left\{ \sum_{m=1}^{M} \left(\frac{\partial \mathcal{F}}{\partial \mathcal{L}^m} \frac{\partial \mathcal{L}^m}{\partial s_{mjt}} + \frac{\partial \mathcal{F}}{\partial \sigma_{mj}^2} \frac{\partial \sigma_{mj}^2}{\partial s_{mjt}} + \frac{\partial \mathcal{F}}{\partial \mu_{mjt}} \frac{\partial \mu_{mjt}}{\partial s_{mjt}} \right) \right\}$$

• Learning rate:

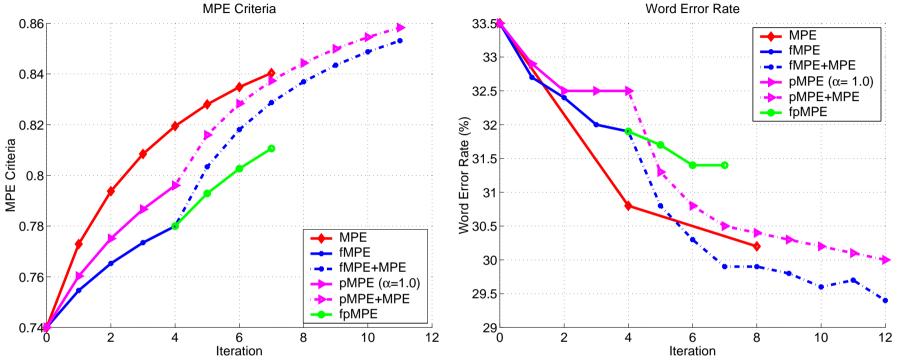
$$\eta_{ij} = \frac{\alpha}{(p_{ij} + n_{ij})}$$

Experimental Setup

- Acoustic model data sets:
 - **Training data**: 76 hours h5etrain03sub & 296 hours h5etrain03
 - **Test data**: 3 hours dev01sub & 6 hours eval03
- Front-end: Standard CUED CTS set-up
- Posterior calculations:
 - $\sim 70 {\rm k}$ & $\sim 100 {\rm k}$ Gaussians for posterior calculation
 - Gaussians grouped into 1024 clusters
 - Evaluate the top 5 Gaussians with ~ 2 active posteriors/frame
 - Single frame posteriors without context
- Baseline Acoustic Models
 - 12 & 16 component VarMix gender independent
 - Decision tree state clustered triphones (~ 6000 states)
 - MPE training *without* dynamic MMI prior
- Trigram Language Models



- fMPE (4 iter): 32.7% (+1.6% over ML)
- fMPE+MPE (8 iter): 31.1% (+1.4% over MPE & +3.2% over ML)
- pMPE & pMPE+MPE: less robust to overtraining



- fMPE & fMPE+MPE: similar gain as before
- pMPE converged quicker (\sim 2 iterations) with \sim 1.0% gain over ML
- pMPE+MPE gave 0.2-0.3% gain over MPE alone
- fpMPE further 0.5% gain over fMPE

eval03 results of fMPE & pMPE trained on h5etrain03

System	lter 0			lter 4			Iter 8		
	s25	fsh	Avg	s25	fsh	Avg	s25	fsh	Avg
MPE	36.4	27.1	31.9	33.6	24.2	29.1	33.2	23.6	28.6
fMPE+MPE	34.5	25.4	30.1	32.7	23.3	28.1	32.3	22.9	27.8
pMPE+MPE	35.1	26.0	30.7	33.2	24.1	28.8	32.9	23.6	28.4

%WER of 16-component systems on eval03

- Performance of fMPE and pMPE on eval03 similar to dev01sub
- Gains over ML: fMPE (1.8%), pMPE (1.2%), fpMPE (2.0%)
- Improvement over MPE alone: fMPE+MPE (0.8-1.0%), pMPE+MPE (0.2-0.3%) and fpMPE+MPE (0.4-0.5%)

Summary

- S6 (15k states) gave \sim 0.2-0.3% absolute gain
- STC 9K system:
 - alternative approach to building full covariance matrix system
 - gave \sim 0.6% absolute gain (unadapted MPE)
- Initial fMPE results similar gains to IBM
- Gains from pMPE smaller compared to fMPE
- Future work:
 - apply fMPE to larger training set (fsh2004h5etrain03b)
 - investigate interaction between fMPE and pMPE
 - lattice regeneration for fMPE+MPE training

