Recent Developments at Cambridge in Broadcast News Transcription

D.Y. Kim, H.Y. Chan, G. Evermann, M.J.F. Gales, D. Mrva, K.C. Sim & P.C. Woodland

Nov 9th 2004

Cambridge University Engineering Department

RT04 EARS workshop

Presentation Overview

- RT03 Broadcast News System Review
- Training & Test Data
- Improved Acoustic Model Building
 - MPE training with MMI prior
 - Gender-dependent MPE training
 - NB model building using SPR-MPE
- RT04 Language Models
- RT04 Evaluation Systems
 - RT04 10xRT Primary System
 - RT04 10×RT Contrast System
 - RT04 1×RT System
- Post-Evaluation Experiments

RT03 CU-HTK BN-E Acoustic Models

- Training data: the 144 hours acoustic BN training data from LDC
- Acoustic Models:
 - state-clustered, cross-word triphones
 - 7k tied states, 16 Gaussian components per state
 - HLDA projected 39-dim features
 - gender-dependent & bandwidth-dependent acoustic modelling
- Minimum Phone Error (MPE) training of all acoustic model
 - lattice re-generation & combination
 - MPE-MAP training for GD models
- SPron & SAT models for lattice re-scoring and system combination

RT03 CU-HTK BN-E Language Models

- 59k entry wordlist
- Word-based language models
 - training texts of 1 billion words in total
 - 5 subsets of training data
 - Good-Turing discounting with the HTK HLM toolkit for large subsets
 - modified Kneser-Ney discounting with SRI toolkit for small to mid-size subsets
 - entropy-based pruning after merging into a single model
 - pruned model has 8.8M bigrams, 12.7M trigrams, and 6.6M fourgrams
- Class-based language model
 - 1,000 automatically derived classes based on word bigram statistics

RT03 CU-HTK BN-E 10xRT System

- Segmentation
- Pass1: initial transcription
- Gender labelling / Clustering
- Pass2: lattice generation
- Pass3: lattice rescoring
 - P3.1: SAT
 - P3.2: SPron
- Confusion network combination
 - P3.1+P3.2+P2
- Ran in 9.1xRT on eval03

Acoustic Model Training Data for RT04

• Additional sources made available for RT04 model training

data	description	period	size(hours)
bnac	RT03 data	1996/97	144
tdt4	TV+radio	Oct00-Jan01	330
tdt4a	TV	Mar01-Jul01	530
bn03	TV	Mar03-Nov03	6375

Available audio data for BN task

- tdt2 & tdt3 are also available (not used for RT04 system)
- For additional sources no manual transcriptions
- Available BN data dominated by TV shows (tdt4a & bn03)
 - radio shows from tdt4a period also released, no transcription/caption.

Lightly Supervised Training

Process to obtain training transcriptions:

- 1. Build a **biased language model** using available transcriptions
 - a data specific language model using closed caption text
 - interpolation of the data specific LM with a general LM
 - low perplexity for target data (hence biased)
- 2. Recognition with P1-P2 system
 - a simplified system architecture without lattice-rescoring
 - runs less than $5 \times RT$
- 3. Post processing:
 - possible deletion of unreliable segments
 - tagging segments/words with confidence scores

Post Processing Experiments/Comparisons

- Investigated techniques for reliability of segment hypothesis:
 - selection based on closed-caption filtering
 - selection based on confidence-based filtering
 - modified MPE training for:
 - * word/segment confidence scores in numerator lattices
 - * both recognised/CC word alternatives in numerator lattices
- Compared training on tdt4 corrected captions and lightly supervised
 - only 7% disagreement in word tokens between two transcripts
 - no significant difference in performance
- None of the approaches made a significant difference
 - use standard lightly supervised training with no selection/filtering

Training Data

• Four training sets used for development:

training set	description	size
bntr04-base	bnac+tdt4	375
bntr04-750h	+tdt4a	752
bntr04-1050h	$+bn03_1$	1050
bntr04-1350h	$+bn03_2$	1350

Selected BN-E training data sets and sizes

- Lightly supervised training for tdt4 & tdt4a
- Two 300hour subsets from BBN's 2515hour of bn03 transcriptions
 - bn03_1 300hrs from ABC, CNBC, CNN, CNNHL, CSPAN, PBS
 - bn03_2 300hrs from CBS, CNN, FOX, MSN, MSNBC, NBC, NWI

Test Data

• 4 sets of data were used for development

Test set	# Shows	Size	Period
dev03	6	3hrs	Jan01
eval03	6	3hrs	Feb01
dev04	6	3hrs	Jan01
dev04f	6	3hrs	Nov03

- dev04 shows selected by STT sites
 - dev03 and dev04 have 2 shows duplicated
- dev04f representative of the extended broadcast news corpus
- No epoch overlap with the acoustic training data.

Dynamic MMI Prior

- I-smoothing required for good generalisation of MPE:
 - standard scheme uses a *dynamic ML prior*
 - investigate IBM-style dynamic MMI prior
 - use *static GI-MPE prior* for GD models.

	dev03	eval03
MPE (dynamic ML prior)	13.9	12.6
+GD MPE-MAP	13.7	12.4
MPE (dynamic MMI prior)	13.6	12.5
+GD GI-MPE prior	13.5	12.3

Models built using bntr04-base. 16 comp/state. Single pass decoding with the RT03 trigram LM. NB segments decoded using the RT03 MPE NB models.

- Consistent (small) gains with dynamic MMI prior;
- Consistent (small) gains with static MPE prior for GD modelling

Efficient Way to Build Narrow Band Model

- Small consistent gains from using band-dependent models (NB models)
 - computationally expensive to rebuild using ML SPR and MPE training
- MPE Single Pass Re-training (SPR) from MPE trained WB model-set
 - assume numerator and denominator "occupancies" similar for NB and WB $\,$
 - use NB ML statistics to get "current" model parameters

Training	lter	%WER		
Method		dev03	eval03	dev04
NB MPE	8	14.9	13.6	16.5
MPE-SPR (ML prior)	-	15.0	13.8	16.6
+MPE	1	14.7	13.7	16.4

%WER with various bnac NB acoustic models. Single pass decoding with RT03 trigram LM. WB segments hypothesis using the RT03 WB MPE model.

• Similar performance using MPE-SPR to rebuilding using ML-SPR and MPE.

Increased Training Data/Model Complexity

• Investigate effects of increasing quantity of training data & components/states

Training Data		%WER			
		dev03	eval03	dev04	dev04f
bntr04-base	16/7k	13.6	12.5	_	
bntr04-750h	16/7k	13.4	12.1	_	_
bntr04-750h	32/7k	12.8	11.8	13.8	21.6
bntr04-1050h	32/9k	12.2	11.4	13.1	20.3
bntr04-1350h	32/9k	12.1	11.2	13.2	19.6

Single pass GI MPE decoding of WB segments with the RT03 trigram LM. NB segments decoded using the RT03 NB MPE model.

- bntr04-base to bntr04-750h gave significant gains
- Increasing components/states gave additional gains
- Largest gains on dev04f by adding bn03 (closer epochs)

P1-P2 System Performance

	I	1	• <i>i</i>			
Training Data		%WER				
		dev03	eval03	dev04	dev04f	
bntr04-base	16/7k	11.6	10.7	13.3	20.0	
bntr04-750h	16/7k	11.2	10.5	13.0	19.6	
bntr04-750h	32/7k	10.9	10.2	12.8	18.9	
bntr04-1050h	32/9k	10.5	9.7	12.2	17.6	

%WER of the P1-P2 system with the RT03 LM. NB segments decoded using the RT03 NB MPE model.

• Additional training data and increased number of model parameters are still giving gains after adaptation

Language Model Training Corpus

Training text	Size(MW)
PSM's broadcast news transcripts 1992-99, TDT2&3 closed	334
captions, LDC's broadcast news closed captions 2003	
transcripts from CNN's website 1999-2000, 2001-2003	147
TDT4 closed captions 2000-01, TDT4a in 2001	5
NIST's broadcast news training data from 1997/98,	2
Marketplace show transcripts	
Newswire texts from Los Angeles Times and Washington Post	928
1995-98, New York Times 1997-2000 & 2001-2002, Associated	
Press 1997-2000 & 2001-2002	

- Increased text corpus
 - 1.4 billion words in training (1 billion words in RT03)

Language Model Performance

• New word list, still 59k entries: reduced OOV rates in dev sets

	eval03	dev04	dev04f
RT03 wlist	0.66	0.57	0.54
RT04 wlist	0.45	0.49	0.42

- Pruned LM has 17M bigrams, 28M trigrams, and 23M 4-grams
- PPs for eval03, dev04 and dev04f were 120, 118, and 132.
- WER reductions of 0.3-0.5% abs with the new LM in P1-P2 framework.

LM	eval03	dev04	
RT03	9.7	12.2	
RT04	9.2	11.9	

% WER in P1-P2 system with <code>bntr04-1050h</code> models.

CUED RT03 segments.

Improved/Dual Segmentations

- LIMSI 2003 segmenter used along with CUED segmenter
 - able to compare effects of two segmentations
 - examine effects of poor/failed segmentation

Segment	%WER				
	eval03	dev04f			
CUED	9.2	11.9	16.6		
LIMSI	8.8	11.4	16.2		
ROVER	8.5	11.0	15.8		

%WER of P1-P2 system and ROVER using CUED and LIMSI segmentations. bntr04-1050h WB models, the RT03 NB models. RT04 LM.

- LIMSI segmenter consistently better than CUED segmenter, 0.4% abs
- ROVER two segmentation outputs gave consistent 0.3-0.4% abs gain

BN-E RT04F 10xRT Primary System

- Two separate sub-systems:
 - sub-system 1: CUED segmenter
 - sub-system 2: LIMSI segmenter
- Each sub-system:
 - fast MPron P1 (no fg expansion)
 - P2: MPron bntr04-1350h, 3xRT
 - P3: SPron bntr04-1350h
 - CNC using P2 and P3
- Combining outputs using ROVER
- Ran in $9.9 \times RT$ on eval04

shows	CUED	LIMSI	ROVER
20031204_130035_cnn	14.9	12.1	12.8
20031203_183814_abc	17.5	16.4	16.3
20031217_184122_abc	16.6	15.8	15.7
20031215_204057_cnnhl	12.0	11.5	11.2
20031215_231058_wbn	11.5	11.0	10.8
20031218_004126_pbs	18.9	18.6	18.6
20031202_203013_cnbc	11.2	11.1	10.5
20031209_193152_abc	7.8	7.7	7.2
20031202_050216_cnn	10.2	10.2	9.9
20031209_193946_pbs	10.0	10.0	9.7
20031206_163852_cspan	17.1	17.2	16.1
20031219_202502_cnbc	10.0	10.2	9.8
Total	13.3	12.8	12.6

$10 \times RT$ Primary System Results

%WER and run-time of the RT04 10 \times RT primary systems on eval04

• Similar performance to development numbers (fairly consistent on show basis)

BN-E RT04F 10×RT Contrast System

System		%WER		
		eval03	dev04	dev04f
RT03 10×		10.6	13.2	18.6
RT04 10 \times Contrast	P1	10.9	13.8	19.1
	P2	8.6	11.1	15.9
	P3.1	8.3	10.8	15.6
	P3.2	8.1	10.4	15.2
	Final	8.0	10.4	14.9

$10{\times}RT$ Contrast Performance

Performance of the Contrast system in comparison with the RT03 $10 \times \text{RT}$ system.

- Consistent gains over 2003 RT03S system:
 - a 22% relative reduction in WER for dev sets
- small gains from confusion network combination
- Ran in $8.4 \times RT$ on eval04

CUED 1xRT System Design

• Need to do adaptation estimation - fast initial P1 required

- Plot shows effect of P1 pass (in terms of xRT) on accuracy dev04
 - P2 relatively insensitive to P1 pass

CU-HTK RT04 1xRT System Structure

- LIMSI segmentation
- Very fast P1 system (0.15xRT)
- P2 pass (0.6×RT)
 - MPron bntr-1350 trained
 - LSLR mean adaptation
 - diagonal variance adaptation
- Confusion network decoding
- Delete low confident words
- Forced alignment

CU-HTK RT04 1xRT System Performance

Pass	%WER			
	eval03	dev04	dev04f	eval04
P1	17.2	21.7	27.8	25.6
P2	9.9	12.7	17.4	15.4
Final	9.8	12.5	17.3	15.3

%WER of the RT04 1xRT system

- Only 21% worse on eval04 than the primary $10 \times$ system (12.6%)
- Better performance than the RT03 10 \times system

Performance Summary in RT03 & RT04

	System	%WER		
		eval03	eval04	progress
10 imes	RT03	10.6	_	12.7
	RT04 Contrast	8.0	12.9	9.8
	RT04 Primary	7.8	12.6	9.4
1 imes	RT03	14.6	_	16.8
	RT04	9.8	15.3	11.8

System performance comparison in the RT03 and RT04 evaluations.

- 10×RT: 26% relative error reduction on progress set
- $1 \times RT$: 30% relative error reduction on progress set

Post Evaluation: SAT and SPron-SAT

- SAT model re-training: using bntr04-1350h training set
 - improved branch performance, no difference after CNC
- SPron-SAT model
 - comparable performance with the SPron model

Pass	%WER		
	eval03	dev04	dev04f
P3.1-cn SAT (1050h)	8.3	10.8	15.6
P3.1a-cn SAT (1350h)	8.2	10.6	15.3
P3.2-cn SPron	8.1	10.4	15.2
P3.3-cn SPron-SAT	8.1	10.5	15.0
P2+P3.1+P3.2	8.0	10.4	14.9
P2+P3.1a+P3.2	8.0	10.4	14.9
P2+P3.2+P3.3	8.0	10.3	14.8

%WER of various P3 branches after confusion network decoding in the RT04 10xRT contrast system framework.

Post Evaluation: System Combinations

- More system combinations with various models
 - evaluated different acoustic models in the 10 $\times {\sf RT}$ primary system framework
 - a small gain on eval04 with SPron & SPron-SAT combination

CUED-seg	LIMSI-seg	dev04	eval04
SPron	SPron	10.0	12.6
SPron	SPron-SAT	10.0	12.5
SPron-SAT	SPron	10.0	12.6
SPron-SAT	SPron-SAT	10.1	12.5

%WER for dev04 & eval04 using SPron & SPron-SAT models in the RT04 $10 \times \rm RT$ primary system.

Conclusions

- For the $10\times RT$ system, a good relative gain of 26% was made on progress set based on
 - huge amount of training data with lightly supervised training
 - improvements in acoustic model training
 - increased language model
 - combining dual segmentations
- A high performing $1 \times RT$ system was developed which is better than the RT03 $10 \times RT$ system

