# Single Pronunciation Dictionaries Construction and Performance

Thomas Hain



Machine Intelligence Lab
Cambridge University Engineering Department

September 5, 2003

### **Outline**

- → Motivation
- → Pronunciation selection
  - **X** Based on probabilities or frequencies
- → Experiments
  - \* WSJ, CTS, BNE
- → Explorations
  - **X** Learning of pronunciation structure
  - **X** Towards discriminative pronunciation selection
- → Conclusions

# **Speech model construction**

### **Speech (Sentence) models**

→ A series of probability density functions

#### Decision on PDFs based on

- → Pronunciations in a dictionary
- → Context
  - **x** phone and/or state level: using decision trees
  - **x** word-level: for example with multi-words ...

### Question

→ What information is needed to choose the appropriate PDF at the right time?

# **Pronunciation representation**

How much is achieved by a manual encoding of variation ?

### Multi-modality (Substitutions)

- → Combination
  - **X** Mixture models
- → Divisive approach
  - **X** Decision trees

### **Durational variation** (Insertions/Deletions)

- → Forces multi-modality or broadening of distributions
  - **X** Mixture models
- → Use phonemic context to decide on appropriate model handling deletion
  - **X** Decision trees
- **→** ????

# A step back: SPRONs

Given a dictionary with multiple pronunciations, how to select the "best"?

### 1. Knowledge-based

→ Not discussed here

#### 2. Data-driven

- → Based on frequency of occurrence in alignment
- → Distinction between words observed and those unseen

#### 3. Model-based

→ Best representation of acoustic subspace

# **Basic approach**

### **Basic assumptions**

- → Simple substitutions of phonemes are irrelevant
- → There exists a "canonical" phonemic representation of a word

### Words observed in training data

- → Merge substitution pairs
- → Pick most frequent variant

#### Words not observed

→ We need a criterion!

Given two phoneme sequences a and b, which is the source  $\mathbf{s}$  and which is target  $\mathbf{t}$ ?

$$P(\mathbf{s} = a, \mathbf{t} = b) \leq P(\mathbf{s} = b, \mathbf{t} = a)$$

### **Selection - Probabilistic**

Simplify the criterion

$$P(\mathbf{s} = a, \mathbf{t} = b) \leq P(\mathbf{s} = b, \mathbf{t} = a)$$

1. Assume: **Equal priors** (  $P(\mathbf{s} = a) = P(\mathbf{s} = b)$  )

$$P(\mathbf{t} = b | \mathbf{s} = a) \leq P(\mathbf{t} = a | \mathbf{s} = b)$$

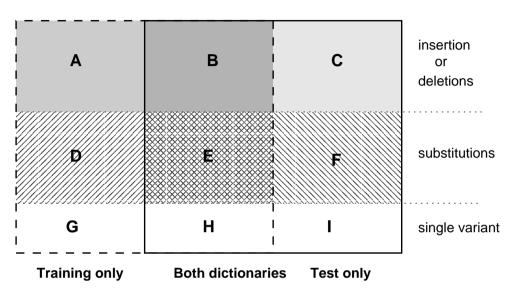
2. Assume: Phone strings are DP-aligned

$$k$$
 aa  $n$   $t$  -  $en$   $eh$   $n$   $t$   $el$   $k$  aa  $n$   $t$   $iy$   $n$   $eh$   $n$  -  $el$ 

3. This allows to construct a simple model

$$P(\mathbf{t}|\mathbf{s}) = \prod_{i=1}^{M} P(t_i|\mathbf{t}_1^{t-1}, \mathbf{s}) \approx \prod_{i=1}^{M} P(t_i|s_i)$$

### **Procedure**



- → Frequency based decision
  - 1. Sets (D,E) decision + summing up counts
  - 2. Sets (A,B) decision only

→ Training of statistical model using sets (A,B,D,E)

$$P(t_i|s_i) = \frac{N(t_i, s_i)}{N(s_i)}$$

Need Add-One smoothing to avoid zero probabilities.

→ Automatic decision using model for words in sets (C,F) using selection criterion

# **Selection - Frequency based**

Further simplification of the selection:

$$P(\mathbf{t} = b | \mathbf{s} = a) \leq P(\mathbf{t} = a | \mathbf{s} = b)$$

Take the counts as before

$$\prod_{i=1}^{M} \frac{N(b_i, a_i)}{N(a_i)} \le \prod_{i=1}^{M} \frac{N(a_i, b_i)}{N(b_i)} \qquad N(x, y) \ne N(y, x) !$$

Taking the log

$$C_a + \sum_{i=1}^{M} \log N(a_i; b_i) \le C_b + \sum_{i=1}^{M} \log N(b_i; a_i)$$

and use  $\log x \approx x - 1$ 

$$\sum_{i=1}^{M} N(a_i; b_i) \leqslant \sum_{i=1}^{M} N(b_i; a_i)$$

# **Experiments - WSJ**

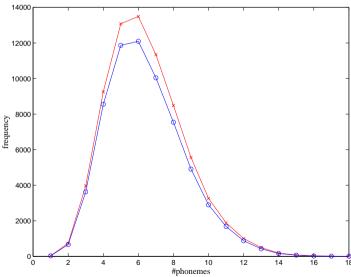
- → CU-HTK dictionary base
  - **✗** is the LIMSI'93 WSJ dictionary
  - ✗ Additions made using TTS system and checked manually
- → WSJ setup
  - **✗** Straight-forward MLE system
  - **✗** 65k test dictionary: 1.11 pronunciations/word
  - **✗** 13k training dictionary: 1.18 pronunciations/word
- → Dictionaries under investigation
  - **SPron1** Method P, using statistics from WSJ+Switchboard data
  - SPron2 Method P, using pronunciation statistics from WSJ only
  - SPron3 Purely random selection of pronunciations

### **SPRON** selection - WSJ

#### → Models trained from scratch

| Dict   | #states | H1 Dev | H1 Eval | Average |
|--------|---------|--------|---------|---------|
| MPron  | 6447    | 8.97   | 9.65    | 9.33    |
| SPron1 | 6419    | 9.05   | 9.95    | 9.53    |
| SPron2 | 6425    | 9.33   | 9.93    | 9.64    |
| SPron3 | 6486    | 9.65   | 10.95   | 10.24   |

%WER results on the WSJ 1994 H1 Dev and eval test sets using different dictionaries for both training and test. #states denotes the number of clustered states in the model set.



Distribution of pronunciation lengths MPron/SPron1

# Pronunciation variants in training and test

- → Combining different strategies in training and test
  - **✗** Using SPron1 dictionaries
  - ✗ Only re-estimation( broken decision trees!)

| Training Dict | Test Dict | H1 Dev | H1 Eval | Average |
|---------------|-----------|--------|---------|---------|
| MPron         | MPron     | 8.97   | 9.65    | 9.33    |
| Mpron         | SPron1    | 10.95  | 11.97   | 11.48   |
| SPron1-ReEst  | SPron1    | 9.37   | 10.31   | 9.86    |
| SPron1-ReEst  | MPron     | 9.07   | 9.50    | 9.30    |

%WERs on the WSJ H1 development and evaluation test sets. Results are obtained by rescoring trigram lattices. All models are are state-clustered 12 mixture triphone models.

- → SPron1-ReEst worse than re-clustering
- → MPron information remains after re-estimation

# **Experiments - CTS**

### → Training sets

- ★ h5train03 ( Swbd1 + Cell + CHE )
- ★ h5train03 + CTran data (Swbd2)

#### → Dictionaries

### **X** Training

- $\rightarrow$  36k (h5train03) 1.10 pronunciations/word
- → 40k (h5train03 + CTran) 1.10 pronunciations/word

#### **X** Test

- → 54k (2002 dictionary) 1.10 pronunciations/word
- → 58k (2003 dictionary) 1.10 pronunciations/word

# **Comparing selection criteria**

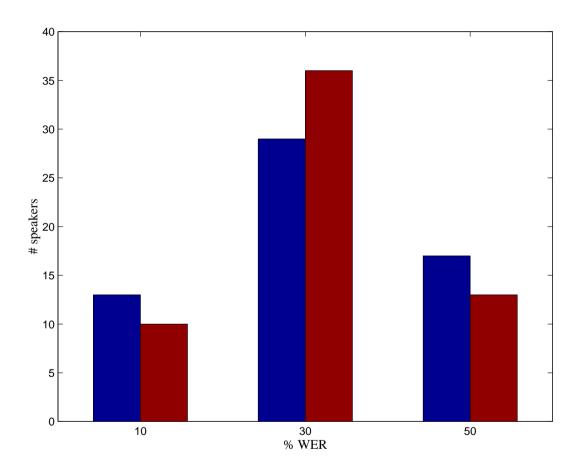
- → Straight-forward MLE models trained on h5train03, 54k test dictionary
- → Pronunciation statistics from BN training data + h5train03

| Dict  | SPRON Method | Swbd1 | Swbd2 | Cell | Average |
|-------|--------------|-------|-------|------|---------|
| MPron | -            | 26.4  | 41.2  | 40.7 | 36.0    |
| SPron | F            | 25.8  | 39.6  | 39.2 | 34.8    |
| SPron | Р            | 25.5  | 40.2  | 39.4 | 34.9    |

%WERs obtained using decoding dev01 with a tg LM. Models trained on the h5train03 training set (VTLN, 16 mixture components)

- → Approximately similar performance on all test sets
- → Word level difference MPron / SPron 21% (!) mostly SF words

# **%WER difference per Speaker**



Difference in word error rate per speaker on full dev01 set using PProbs Red bars corresponds to results obtained with SPron+PProb Blue bars with MPron+PProb.

### Performance on eval03

- → Adding pronunciation probabilities
  - **X** Based on frequency of variants, smoothing
  - ✗ Pronunciation variants include silence thus probabilities for SPron dictionaries
- → Performance of unadapted MLE/MPE systems (triphones/trigrams)

| Setup                    | PronProb | MPron | SPron |
|--------------------------|----------|-------|-------|
| MLE / 16mix              |          | 35.3  | 34.2  |
| MLE / 16mix              | ×        | 34.4  | 33.8  |
| 28mix, HLDA, VarMix, MPE |          | 27.4  | 26.9  |
| 28mix, HLDA, VarMix, MPE | X        | 27.2  | 26.8  |

→ Regeneration of word lattices with SPron models brings 0.1%

# **Entropies - Effects of SProns**

- → Measuring the effect of reducing the number of pronunciations on uncertainty
  - **X** Based on entropies  $H(\mathbf{Q})$  and  $H(\mathbf{Q}|\mathbf{W})$
- → Using a prior distribution, either uniform or measured on data

|                            | Perplexities $2^H$ |             |         |        |
|----------------------------|--------------------|-------------|---------|--------|
| Prior distribution         | uniform            |             | unigram |        |
| Dictionary type            | MPron              | MPron SPron |         | SPron  |
| $H(\mathbf{W})$            | 54598              | 54598       | 2071.9  | 2071.9 |
| $H(\mathbf{W} \mathbf{Q})$ | 1.128              | 1.125       | 1.082   | 1.065  |
| $H(\mathbf{Q})$            | 85417.0            | 85369.2     | 3457.5  | 3201.2 |
| $H(\mathbf{Q} \mathbf{W})$ | 1.765 $1.758$      |             | 1.834   | 1.672  |

→ Effect of SProns only visible when using unigram prior

# Experiments - BNE - dev03

- → Similar setup to CTS experiments
  - **✗** Comparison unadapted MLE/MPE systems
  - **X** Trained on  $\approx 140$  hours of data (bnetrain02)
  - **X** Gender independent wide-band triphone models
  - **✗** Automatic segmentation (RT03 system)
  - ✗ Probabilistic SPron selection due to large number of test dictionary words not seen in training

#### **MPron Dictionaries**

- → Training ( $\approx 35k$  words) 1.12 Prons/Word
- → Test (59k words) 1.10 Prons/Word

| Setup             | PProb | MPron | SPron |
|-------------------|-------|-------|-------|
| MLE               |       | 20.2  | 19.7  |
| MLE               | ×     | 19.0  | 18.9  |
| HLDA, VarMix, MPE |       | 15.3  | 14.8  |
| HLDA, VarMix, MPE | ×     | 14.9  | 14.7  |

# Where do we go from here?

#### **Observations**

- 1. SPron dictionaries consistently yield similar or better performance on complex tasks with high acoustic confusability
- 2. Implicit modelling seems to allow better control on confusability
- 3. Suboptimal pronunciations for at least certain words

### Probabilistic "pronunciation" networks

→ Automatically learn variation

### Discriminative pronunciation selection

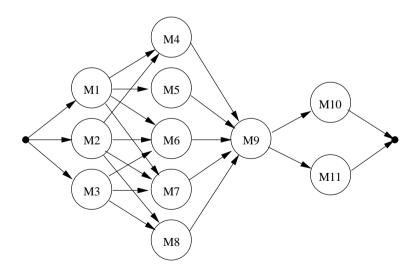
- → Find appropriate metrics for acoustic distance
- → SPron generation as test case (non-discriminative)

# **Automatic learning of structure - HMS-HMMs**

- → Hidden model sequence models (HMS-HMMs)
  - ✗ One example for learning of structure
- → Stochastic mapping between phoneme and HMM sequences
  - **x** a "pronunciation model"
- → Replaces phonetic decision trees
- → integrated approach, training using EM framework
- → allows modelling of temporal as well as substitution effects.

# Network of models or states

ax b ah v



## SPron + HMS-HMMs - Performance on WSJ

- → Same SPron dictionary (SPron1) as before
- → HMS-HMM is initialised from the baseline HMM
  - **x** same number of HMM parameters
  - **x** modelling of substitutions only

|         |        | H1 Dev | H1 Eval | Average |
|---------|--------|--------|---------|---------|
| HMM     | Mpron  | 8.97   | 9.65    | 9.33    |
| HMS-HMM | MPron  | 9.08   | 9.15    | 9.12    |
| HMM     | SPron1 | 9.05   | 9.95    | 9.53    |
| HMS-HMM | SPron1 | 8.65   | 9.43    | 9.06    |

%WER results on the WSJ H1 Dev and eval test sets.

→ Results on CTS indicate similar behaviour

### Other criteria - Acoustic distance

### When are pronunciations similar?

- → Pronunciation selection so far is based on symbolic similarity
- → Acoustic similarity is likely to be more appropriate

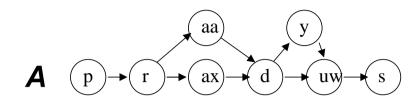
#### **Pronunciation distance**

- → Acoustic similarity measurement based on a simulated data approach (Printz & Olsen 2002)
- → HMM based
- $\rightarrow$  computing p(A M)

#### **Basic Idea**

- → Use model to represent the acoustic word space
- → Pick the pronunciation with the minimal distance to that space

### **Pronunciation Selection**



- 1. Form network with all prons of word w representing the acoustics  $\mathcal{A}(w)$
- 2. Form network for pronunciation  $q_i(w)$ :  $\mathcal{M}_i(w)$
- $\mathbf{M}$   $p \rightarrow r \rightarrow ax \rightarrow d \rightarrow uw \rightarrow s$
- 3. **Expand** to triphone models, **context** from possible neighbouring phones and weight with phone bigram, **pruning**

### **Implementation**

- $\rightarrow$  Compute of  $p(\mathcal{A}(w)|\mathcal{M}_i(w))$  using high-dimensional sparse matrix inversion
- → Use posteriors (using pronunciation length normalisation and scaling )

$$P(q_i(w)|\mathcal{A}(w)) = \frac{p(\mathcal{A}(w)|\mathcal{M}_i(w))^{\kappa} P(q_i(w))}{\sum_{l \in Q(w)} P(\mathcal{A}(w)|l)^{\kappa} P(l)}$$

→ Pick pronunciation according to largest posterior

### Results - MLE

### **Experiments on WSJ** (same setup as before)

| Dict  | SPron Method | H1 Dev | H1 Eval | Average |
|-------|--------------|--------|---------|---------|
| MPron | -            | 8.97   | 9.65    | 9.33    |
| SPron | Р            | 9.05   | 9.95    | 9.53    |
| SPron | Ac           | 9.18   | 9.99    | 9.60    |

### **Experiments on CTS** (same as dev01 setup before)

| Dict  | SPRON Method | Swbd1 | Swbd2 | Cell | Average |
|-------|--------------|-------|-------|------|---------|
| MPron | -            | 26.4  | 41.2  | 40.7 | 36.0    |
| SPron | F            | 25.8  | 39.6  | 39.2 | 34.8    |
| SPron | Ac           | 25.6  | 40.0  | 39.5 | 35.0    |

- → Similar performance to previous methods (note Swbd1 performance!)
- → Preliminary results (pruning, scaling,...)

### **Conclusions**

- → Presented 3 methods for generating SPron dictionaries
  - \* Probabilistic method gives best results so far
- → SPron dictionaries give similar or better performance
  - **X** Better performance on more complex tasks
  - **X** Considerable improvement on MLE model sets
  - **✗** Less so when comparing MPE models + PronProbs
  - **X** Automatic learning of pronunciation structure benefits
- → SProns useful for system combination (considerable difference on word level)
- → Future work
  - **X** Discriminative pronunciation selection