Optimisation of Fast LVCSR Systems

Gunnar Evermann, Phil Woodland & Rest of the CU-HTK STT team

December 5th 2003

Cambridge University Engineering Department

EARS STT Meeting December 2003 - St. Thomas

Overview

- Introduction
- 2003 CU-HTK 10xRT CTS system: structure, results and analysis
- Speed/accuracy trade-off
- Tuning lattice size
- System Combination & Pruning rescoring branches
- Conclusions

Introduction

- Current CU-HTK CTS "fast" system runs at 10×RT and based on models from full (200×RT) system
- Performance is about 5-7% relative worse than full system
- Target in 4 years is 1xRT while sustaining rate of accuracy improvements
- Achieving target relies on
 - *much* faster computers
 - better acoustic models (fancy techniques, more data)
 - more acoustic models for system combination
 - better LMs (higher-level knowledge, more data)
 - optimised software (decoders, adaptation, etc.)
 - improved system structure (can't run dozens of systems and cross-adapt)

General system structure for 10xRT (BN/CTS)

1xRT

- Segmentation
- Initial transcription
- Normalisation (re-segment, VTLN, etc.)
 Adaptation
 0.5xRT
- Lattice generation with word fourgram LM **4xRT**
- Lattice rescoring: for each model set: **2xRT**
 - Adaptation: MLLR (1-best + lattice), FV
 - Lattice rescoring
 - Confusion network generation

• System combination

Choosing Rescoring Model Sets

• Select 2 models from Four MPE triphone sets

A: SAT HLDA B: HLDA C: SPron HLDA D: non-HLDA

Results of pairwise system combination using CNC:

System	А	В	C	D
	23.0	23.6	23.4	24.8
+A		23.1	22.6	22.7
+B			22.9	23.3
+C				22.8

Individual Systems and pairwise combination %WER on cts-eval02 after lattice-MLLR/FV and CN

• Best 3-way combination (A+C+D) gave 22.4

Error Analysis: Variation in Speaker WER

• The speaker WER varies widely, SAT and SPron WER are highly correlated but there are outliers

Cambridge University Engineering Department

EARS STT Meeting December 2003 - St. Thomas

P1 (initial transcription): Speed/accuracy trade-off

• Accuracy of initial pass has little influence on overall result

P1 speed	WER			
×RT	P1	P2 trigram	P2 fourgram	
0.48	37.4	26.3	25.5	
0.83	35.2	26.3	25.4	
1.50	34.4	26.1	25.2	

P1 speed-accuracy trade-off (CTS eval02)

- In eval chose middle operating point for safety
 - \Rightarrow Should have used fast setup and use time elsewhere

P2 (lattice generation): Tuning lattice size

use "Oracle" to find path with lowest WER (compared to reference) in lattice

Oracle word error rate against lattice density (CTS eval02, P2-fg)

• Larger rescoring lattices are more likely to contain the correct answer...

Tuning lattice size (cont'd)

• ...but we probably won't find it anyway:

Oracle Search WER: rescore big lattices and take result as "reference" for oracle

Lattice search word error rate against lattice density (CTS eval02, P2-fg)

P3 (lattice rescoring): Predicting rescoring time

 To hit xRT target it is useful to predict rescoring time (P3) and prune lattices accordingly

Rescoring runtime against lattice density & fit of log function (CTS eval02)

- Curves are roughly log-shaped
- Reason: size of search network grows logarithmically with lattice size

System Combination

- Overall system combination helps, but not on all segments
- In the 2003 system 2-way combination SAT+SPRON
- Order of processing: latgen, SAT, SPron, combination
- SAT and SPron 1-best often identical \Rightarrow no gain from CNC
- example eval02: 6388 segments
- 1-best identical in 3824 segments (60%)

Pruning Rescoring Branches

- even if 1-bests differ often CNC output same as SAT hypothesis
- take final CNC output as reference and compare with earlier passes

	Word Accuracy	Sent Accuracy
P2 trigram	8.88	57.5
P2 4-gram	90.1	60.1
P3.1 SAT	94.9	71.9
P3.2 SPron	95.2	71.9

- idea: try to predict for which segments CNC output is same as SAT hypothesis. prune further rescoring branches for these segments.
- train decision tree to predict that SAT and CNC 1-best are the same

Pruning Rescoring Branches (cont'd)

- information available: system output up to P3.1 (i.e., P1, P2, P3.1)
- features: length, confidence scores, #words change in hypotheses
- best predictors: minimum confidence score and similarity of SAT and P2 hyps
- trained tree on eval02 & choose thresholds (skip 64% of segments)
- test on eval03: skip 66% segments, 43% audio, 32% rescoring runtime i.e. segments are short and easy.
 ⇒ < 0.1% WER change

New 10xRT system

Changes:

- Faster P1 configuration
- Use SPron model for lattice generation (about 10% faster)
- Interpolate word 4-gram with class trigram
- Adaptively prune rescoring branches
- Add third branch: non-HLDA MPE MPron

ongoing, current results:

- P2 SPron is 0.3% better and faster
- SAT, SPron and 2-way combination 0.1% better

Future Work

- Prune branches more aggressively
- Choose rescoring models for each speaker
- Optimise models (HMMs and LMs) for fast systems

