# **Ongoing Experiments with Fisher Data**

Ricky Chan, Gunnar Evermann Bin Jia, David Mrva, Phil Woodland

4th Dec 2003



Cambridge University Engineering Department

#### **Overview**

- Initial experiments on using large amounts of Fisher data
  - data processing
  - language modelling
  - ML training
  - MPE discriminative training
- Experimental results on
  - h5train03 (360 hours used in CUED 2003 eval system)
  - 500+ hours Fisher
  - combined set
- Evaluated using unadapted and adapted systems

# **Training and Test Data Sets**

Acoustic training data

h5train03b 360h data set.

- 290h LDC data (Swbl, CHE, Swb Cellular) with MSU/LDC careful transcriptions.
- 70h BBN data (Cellular, Swb2-2) with quick transcriptions
  fisher3896 520h Fisher data set, 3896 conversations
  fisher3896+h5 880h data set, the combined set of h5etrain03b and fisher3896
- Test sets

eval02 5h set from Swbl, Swb2 and Swb Cellular data, 60 conversations eval03 6h set from Fisher and Swb2-5 data, 72 conversations

### Fisher data processing

- Original transcriptions: 550h data (424h BBN data, 126h LDC data)
- Normalize the text, joining, padding
- Apply replacement rules
  - Abbreviations, typos, non-speech, ...
  - e.g. FBI  $\rightarrow$  F. B. I., MOULD  $\rightarrow$  MOLD, [NOISE]  $\rightarrow$  -
  - about 2000 replacement rules were produced
- Produce pronunciations for 950 unknown words with frequency greater than 2
- ullet 4900 unknown words remain  $\to$  remove 10h segments with unknown words
- aligning the segments and fixing silence boundaries
  - 10h segments fail to align
  - 520h fisher data remain (Gender imbalance: 340h female, 180h male)

### **Acoustic Modelling and Testing**

- Acoustic model
  - PLP + VTLN + HLDA front-end
  - cross-word triphone, 6200 tied states
  - 28 variable Gaussian mixture components per state
  - Gender Independent ML and MPE models
- Single Pass unadapted system
  - Trigram LM
  - No adaptation
  - Pruning set for  $\sim$  5xRT
- CU-HTK P1-P2 system (P2 adapted)
  - P1, P2 architecture of CU-HTK 2003 CTS 10xRT eval system
  - Trigram decoding, fourgram lattice rescoring
  - overall  $\sim$  5xRT include adaptation
- Word-list + basic LMs as CTS 2003 eval system

# Unadapted single pass decoding WER: Eval03

|                          |     | Total | Swb2-5 | Fisher | Male | Female |
|--------------------------|-----|-------|--------|--------|------|--------|
| h5train03b (360h)        | ML  | 31.9  | 36.5   | 27.0   | 32.8 | 31.0   |
| ML fisher3896 (520h)     | ML  | 31.2  | 35.2   | 26.8   | 32.8 | 29.5   |
| ML fisher3896+h5 (880h)  | ML  | 31.0  | 35.2   | 26.4   | 32.4 | 29.5   |
| MPE h5train03b (360h)    | MPE | 27.7  | 32.1   | 22.9   | 28.8 | 26.5   |
| MPE fisher3896 (520h)    | MPE | 26.4  | 30.5   | 22.1   | 28.3 | 24.6   |
| MPE fisher3896+h5 (880h) | MPE | 25.7  | 29.9   | 21.3   | 27.4 | 24.1   |

eval03, trigram LM, unadapted

- fisher3896: performs better than h5train03b, more gain for Swbd2-5 than Fisher, larger gains for Female than Male
- fisher3896+h5: perform better than fisher3896, more gain for Fisher than Swbd, lessens gender imbalance
- Larger gains obtained from MPE than ML with extra data

# Unadapted single pass decoding WER: Eval02

|                          | Overall | Swbl | SwbII | SwbC |
|--------------------------|---------|------|-------|------|
| ML h5train03b (360h)     | 33.4    | 27.9 | 34.6  | 36.7 |
| ML fisher3896 (520h)     | 33.4    | 29.4 | 34.8  | 35.5 |
| ML fisher3896+h5 (880h)  | 32.7    | 28.3 | 33.6  | 35.4 |
| MPE h5train03b (360h)    | 28.9    | 24.2 | 29.6  | 32.0 |
| MPE fisher3896 (520h)    | 28.5    | 25.2 | 29.5  | 30.4 |
| MPE fisher3896+h5 (880h) | 27.6    | 23.7 | 28.1  | 30.2 |

eval02, trigram LM, unadapted

- fisher3896: similar overall performance as h5train03b for ML but better for MPE (performs better for SwbC, similar for SwbII, poorer for SwbI)
- fisher3896+h5: performs better than fisher3896, obvious improvements for SwbI and Swb2, minor improvements in SwbC

#### **Revised LM**

- LM03: LMs/trainin texts used for 2003 eval
- LM03+Fi3896: LM03 + Fisher3896
- Built separate LMs for each component data source and then interpolate/merge
- Full models also interpolate with 03 eval class-based model (not retrained with Fisher data)
- Interpolation weights for word 4gram LM components for LM03+Fi

BN style 0.18 google 0.08 cell1 0.17 che+swbl 0.20 swbll 0.10 fisher3896 0.26

• Interpolation weights set on dev01, eval00, eval01, eval02 data (no Fisher ...)

#### Revised LM contd..

Perplexities on eval02 & eval03 (Swb2 and Fisher subsets)

| Language Model     | eval03SW | eval03FI | eval03 | eval02 |
|--------------------|----------|----------|--------|--------|
| full LM03          | 56.9     | 59.4     | 58.1   | 61.8   |
| full LM03+Fi       | 55.2     | 55.7     | 55.4   | 60.3   |
| word 4gram LM03+Fi | 55.4     | 55.8     | 55.6   | 60.6   |
| fisher3896 only    | 68.5     | 65.7     | 67.2   | 79.4   |

- Adding fisher3896 to LM training data decreased the PP of full eval03 LM
  - by 2.7 points (4.6% rel.) on eval03
  - by 3.8 points (6.3% rel.) on Fisher part of eval03

## New LMs: Eval03 Unadapted

|               |         | Overall | Swbd | Fisher | Male | Female |
|---------------|---------|---------|------|--------|------|--------|
| h5train03b    | LM03 tg | 27.7    | 32.1 | 22.9   | 28.8 | 26.5   |
| h5train03b    | LM03+Fi | 27.2    | 31.7 | 22.3   | 28.2 | 26.1   |
| fisher3896    | LM03    | 26.4    | 30.5 | 22.1   | 28.3 | 24.6   |
| fisher3896    | LM03+Fi | 25.9    | 30.0 | 21.5   | 27.6 | 24.2   |
| fisher3896+h5 | LM03    | 25.7    | 29.9 | 21.3   | 27.4 | 24.1   |
| fisher3896+h5 | LM03+Fi | 25.2    | 29.5 | 20.6   | 26.8 | 23.5   |

MPE training, eval03, trigram LM, unadapted

- Consistent 0.5% overall improvement from LM03+Fi
- Both Fisher and Swbd obtain similar improvement from LM03+Fi

# New LMs: Eval03 with CU-HTK P1-P2 System

|               |         | Overall | Swbd | Fisher | Male | Female |
|---------------|---------|---------|------|--------|------|--------|
| h5train03b    | LM03    | 24.6    | 28.7 | 20.2   | 25.7 | 23.5   |
| h5train03b    | LM03+Fi | 23.9    | 28.2 | 19.3   | 25.0 | 22.8   |
| fisher3896    | LM03+Fi | 23.1    | 27.0 | 18.9   | 24.6 | 21.6   |
| fisher3896+h5 | LM03+Fi | 22.7    | 26.6 | 18.5   | 24.2 | 21.1   |

MPE training, eval03, 4-gram LM, adapted

- h5train03b: compare with LM03, LM03+Fi gives 0.7% overall improvement
- fisher3896: performs 0.8% better than h5train03b (LM03+Fi)
- fisher3896+h5: performs 0.4% better than fisher3896 (with LM03+Fi)
- Total 1.9% overall WER reduction adding fisher3896 to h5train03b for both acoustic model and LM training

## New LMs: Eval02 with CU-HTK P1-P2 System

|               |         | Overall | Swbl | SwbII | SwbC |
|---------------|---------|---------|------|-------|------|
| h5train03b    | LM03    | 26.0    | 22.0 | 26.0  | 29.3 |
| h5train03b    | LM03+Fi | 25.5    | 21.8 | 25.5  | 28.6 |
| fisher3896    | LM03+Fi | 25.5    | 22.7 | 25.8  | 27.6 |
| fisher3896+h5 | LM03+Fi | 25.0    | 21.6 | 25.2  | 27.5 |

MPE training, eval03, 4-gram LM, adapted

- h5train03b: compare with using LM03, using LM03+Fi gives 0.5% overall improvement
- fisher3896 gives same performance as h5train03b (LM03+Fi)
- fisher3896+h5: performs 0.5% better than fisher3896
- Total 1.0% overall improvement by adding fisher3896 to h5train03b in both acoustic model and language model training data

# **Summary/Conclusion**

- Experiments on 550 hours raw of Fisher data
- Fisher with quick transcription better than 360hour set with mainly careful transcription except for Swb1
- For Fisher subset of eval03
  - For unadapted system, for full training set, MPE training gives more improvement than ML (1.6% vs 0.6%)
  - Adding Fisher training to LM gains 0.6% abs
  - With adaptation, overall 1.9% abs better from adding to LM and acoustic training
- Current results are quick first try: same number of parameters as eval03 training: scope for further improvement