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ABSTRACT

This paper presents the recent development of the HTK broad-
cast news transcription system. Previously we have used data type
specific modelling based on adapted Wall Street Journal trained
HMMs. However, we are now experimenting with data for which
no manual pre-classification or segmentation is available and there-
fore automatic techniques are required and compatible acoustic
modelling strategies adopted. An approach for automatic audio
segmentation and classification is described and evaluated as well
as extensions to our previous work on segment clustering. A num-
ber of recognition experiments are presented that compare data-
type specific and non-specific models; differing amounts of train-
ing data; the use of gender-dependent modelling and the effects
of automatic data-type classification. It is shown that robust seg-
mentation into a small number of audio types is possible and that
models trained on a wide variety of data types can yield good per-
formance.

1. INTRODUCTION

The transcription of broadcast radio and television news poses a
number of challenges for large vocabulary transcription systems.
The data in broadcasts is not homogeneous and includes a num-
ber of data types for which speech recognition systems trained
on read speech corpora such as the WSJ corpus have high error
rates. A typical news broadcast may include data of different
speech styles (read, spontaneous and conversational); native and
non-native-speakers; high or low bandwidth channels either with
or without background music or other background noise. Solv-
ing these problems will be of great utility in dealing with both the
broadcast news problem and more general transcription of “found”
speech.

We have previously investigated [8] the use of specific models
for different audio conditions for the somewhat unrealistic situ-
ation where the data has been pre-segmented into homogeneous
portions (same audio conditions and same speaker) and the audio
conditions associated with each segment is supplied to the system.
That system was constructed using HMMs trained on the Wall
Street Journal (WSJ) corpus as a base and then adapted to individ-
ual data types of broadcast news data using supervised maximum
likelihood linear regression (MLLR) [4, 2]. During recognition we
used iterative unsupervised MLLR to adapt clusters of segments
to the particular audio conditions. This system was shown to give
good performance in the 1996 DARPA/NIST broadcast news par-
titioned evaluation (PE) [8].

Our current research has concentrated on the more general sit-
uation where information about data segmentation and type is not
supplied to the recogniser (unpartitioned or UE data) . To extend
our previous approach to the UE case, it is necessary to first seg-
ment the data into homogeneous segments of differing data types
as well as rejecting segments of data that contain no speech (e.g.
background music). Furthermore given an automatic segmenta-
tion it is of interest to develop acoustic modelling techniques that
do not rely on detailed, manually derived, data classifications.
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The rest of the paper is arranged as follows. We first give de-
tails of the broadcast news data used, and then describe our work
on segment processing (segmentation, classification and cluster-
ing) which splits the unpartitioned data stream into moderate length
homogeneous segments. This is followed by an overview of the
recognition architecture and a number of recognition experiments
to determine the performance of the system. We compare the
performance of acoustic data specific modelling and non-specific
models on PE data; the effect of varying the amount of acous-
tic training data; the use of gender-dependent modelling; and the
effects of two automatic segmentation algorithms on recognition
performance.

2. BROADCAST NEWS DATA

This section describes the various data sets that have been used in
the experiments reported in the paper.

For acoustic training a number of US broadcast news shows
(both television and radio) transmitted prior to June 30th 1996
were recorded and labelled by the LDC. In total episodes from 11
different shows were present in the training data. About 35 hours
of transcribed data was made available in 1996. Some corrections
to these transcriptions were made by us and used to estimate the
HMMs described in [8]. This corpus will be referred to as BN-
train96. A further tranche of data of similar size was released in
1997 to form in total 72 hours of broadcast news training data.
We also modified these transcriptions and tried to remove portions
of the speech signal where two or more speakers were talking si-
multaneously. The 72 hour corpus is denoted BNtrain97. Each
resulting segment in the training corpora was labelled by speaker
and one of the audio “focus” conditions listed in Table 1.

Focus Description
FO baseline broadcast speech (clean, planned)
F1 spontaneous broadcast speech (clean)
F2 low fidelity speech (wideband/narrowband)
F3 speech in the presence of background music
F4 speech under degraded acoustical conditions
F5 non-native speakers (clean, planned)
FX all other speech (e.g. spontaneous non-native)

Table 1: Broadcast news focus conditions.

For development test purposes, data broadcast in July 1996
from six shows was used. The PE data, BNdev96pe, (given seg-
mentation and focus conditions) contained extracts from all the
shows while the unpartitioned data, BNdev96ue, contained data
from four of the shows. The data from an episode of NPR Mar-
ketplace is the only complete show that is common to both the
BNdev96pe and BNdev96ue data sets.



3. SEGMENT PROCESSING

The goal of the segment processing stages is to convert the contin-
uous input audio stream into clusters of reasonably-sized speech
segments. Ideally, each segment should be homogeneous (i.e. same
speaker and channel conditions) and the segments should be grouped
into clusters such that each cluster is sufficiently similar to share a
single set of MLLR adaptation transforms. It is also desirable to
remove as much of the non-speech from the input audio stream as
possible.

Our approach to segment processing is to first classify the au-
dio data into three broad categories: wide-band speech (S), narrow-
band speech (T) and music (M). After rejecting the music, a gender-
dependent phone recogniser is used to locate silence portions and
gender change points [5] and segment boundaries are determined.
Finally, the resulting segments are clustered in preparation for adap-
tation.

3.1. Audio Classification

The initial audio classification uses Gaussian mixture models with
1024 mixture components and diagonal covariance matrices. Four
models are used, one for each of the required classes (S, T and M)
plus a model for music and speech. Audio selected by this latter
model is also labelled as (S) but its separate inclusion reduces the
misclassification of speech as music.

Each model was trained on data of the appropriate class ex-
tracted from the BNtrain97 data up to a maximum of three hours
per model. For the speech models, data was selected to ensure
that each training segment contained at least 90% speech. Since
the training (and test) data doesn’t explicitly identify narrow band-
width data, a simple classifier based on the ratio of energy above
4KkHz to that from 300Hz to 4kHz was used to label all data seg-
ments as either wideband or narrowband.

For classification, each frame of data was labelled using a con-
ventional Viterbi decoder with each of the four models in parallel.
An additional insertion penalty was applied to the music model in
order to control the misclassification of speech into music.

After an initial classification of the data, MLLR mean adap-
tation transforms were computed for each class and then the de-
coding was repeated. This adaptation was performed separately
for each of the four shows and only for classes with at least 15
seconds of data.

| || Baseline | Adapted |

Frame Accuracy || 95.72% | 95.98 %
Frames Lost 0.72% 0.48 %

Table 2: Overall audio classification accuracy and percentage loss
of speech to discarded music class on the BNdev96ue data set.

Table 2 shows the overall audio classification accuracy on the
four shows from BNdev96ue data measured as the percentage of
audio frames correctly labelled and the percentage of audio frames
which were incorrectly labelled as music and therefore erroneously
discarded.

Table 3 shows a confusion matrix for the adapted models. No-
tice that although some of the data is labelled as noise (N), the
classifier does not attempt to explicitly identify noise. Thus, noise
is distributed amongst the recognition classes. This table shows
that around 80% of the pure music and 15% of the noise is clas-
sified as music and discarded. Overall 63% of the non-speech is
discarded with only 0.5% loss of speech data.

3.2. Segmentation and Gender Detection

Segmentation and gender labelling is applied to both the narrow-
band (T) and wide band (S) data using a phone recogniser which
has 45 context independent phone models per gender plus a si-
lence/noise model. The output of the phone recogniser is a se-
quence of relatively short segments having male, female or silence
tags. Silence segments longer than 3 seconds are classified as non-
speech and discarded. Sections of male speech with high pitch are
frequently mis-classified as female and vice versa. Hence, a num-
ber of heuristic smoothing rules are applied. For example, a male
segment followed by a short female segment is merged to form a
single male segment when the following segment is silence. These
smoothing rules also ensure that segments with durations between
three seconds and 30 seconds are created.

Further improvements to the segmentation are effected using
a clustering procedure in which all segments are clustered using
a top-down covariance-based technique (see below). Segments
which appear in the same leaf node and are temporally adjacent
(ignoring intervening silences) are then merged into a single seg-
ment. This process corrects many of the gender misclassifications
but results in long segments. The clustering is then repeated taking
account of the inter-segment silences in order to obtain the final
segmentation. This approach makes it impossible to distinguish
between two consecutive speakers of the same gender unless they
are separated by silence. However, since approximately 85 % of
segments boundaries have at least a short silence segment at the
boundary, this does not cause severe degradation in performance.

Table 4 summarises the performance of the segmentation and
gender detection on the BNdev96ue set. As can be seen, the use
of segment clustering improves both the speaker segmentation and
the gender detection. For comparison, the segmentation given by
the CMU software [6] distributed by NIST is also included in Ta-
ble 4 along with the reference hand derived segmentation. It can be
seen the segmentation algorithms described here give a substantial
reduction in the number of multiple speaker segments compared to
the CMU approach. This should lead to better recognition perfor-
mance since subsequent cepstral mean normalisation and speaker
adaptation stages assume that individual segments are homoge-
neous.

L I M1 s [ T ]
M || 82.11 | 17.89 | 0.00
N || 15.27 | 8422 | 051
S || 056 | 98.24 | 1.20
T || 000 | 119 | 9881

Table 3: Confusion matrix for audio classification (%) for the BN-
dev96ue data set.

| | #seg | #MSseg | # Spkr/seg | Gen Detect |
0

Ref 439 1.000 100 %
CMU Seg | 491 144 1.318 -

S1 539 100 1.189 95.13 %
S2 553 64 1.108 97.07 %

Table 4: Segmentation results showing number of segments with
multiple speakers (#MSseg), average speakers per segment and
gender detection accuracy for the basic system with heuristic
smoothing (S1) and the improved system which combines smooth-
ing with segment clustering (S2).



3.3. Segment Clustering

The goal of segment clustering is to group segments in order to
optimise subsequent adaptation. This requires a compromise be-
tween the desire for homogeneity within clusters and the need for
clusters of sufficient size for robust unsupervised adaptation.

Two speaker clustering schemes have been studied using the
CMU clustering software distributed by NIST [6] as a baseline for
comparison. The first scheme was used in our 1996 BN system [8].
This is a bottom-up method in which each segment is modelled by
a single diagonal covariance Gaussian and segments are merged
based on a furthest neighbour divergence-like distance measure.
Cluster merging stops when the number of frames in the smallest
cluster exceeds a threshold.

The second method represents segments by the covariance of
the static and delta parameters and uses a hierarchical top-down
clustering process in which each node of the hierarchy is split into
a maximum of four child nodes. Segments are reassigned to the
closest node using an arithmetic harmonic sphericity distance mea-
sure [1]. Splitting continues until a minimum occupancy count is
reached in all clusters. At the end of the process, all segments
which were too small to compute a full covariance robustly are
assigned to the leaf node with the closest mean.

| [ FWB | M-WB | M-NB |
CMU | 2.183 (45) | 2.500 (53) | 4.593 (13)
BDIV | 2.337 (46) | 2.442 (66) | 4.183 (14)
TCOV | 2.297(44) | 2.363 (53) | 4.189 (13)

Table 5: Percentage improvement in log likelihood after MLLR
adaptation using the CMU segment clustering (CMU), bottom-
up divergence-based clustering (BDIV) and top-down covariance-
based clustering (TCOV). Numbers in brackets are the actual num-
bers of clusters formed. The three conditions tested are female
wide-band (F-WB), male wide-band (M-WB) and male narrow-
band (M-NB).

Table 5 compares the three speaker clustering methods in terms
of the percentage increase in log likelihood achieved by the sub-
sequent MLLR-based mean adaptation with a global MLLR trans-
form for each clustered group. The HMM-BN2 set (see Sec. 5.1)
was used and the likelihoods are calculated on automatically seg-
mented BNdev96ue data. In each case, the clustering thresholds
have been adjusted to give similar numbers of clusters so that mea-
suring the increase in log likelihood provides a reasonably valid
comparison. As can be seen, all of the methods give fairly similar
performance.

4. RECOGNITION SYSTEM OVERVIEW

The recognition system is a development of previous HTK large
vocabulary recognisers (e.g. [7]).

Each frame of input speech is represented by a 39 dimensional
feature vector that consists of 13 (including co) MF-PLP cepstral
parameters [8] and their first and second differentials. Cepstral
mean normalisation (CMN) is applied over a segment.

The system uses the LIMSI 1993 WSJ pronunciation dictio-
nary. This is augmented by pronunciations from a TTS system and
hand generated corrections. Cross-word context dependent deci-
sion tree state clustered mixture Gaussian HMMs are used with a
65k word vocabulary and a language model trained on 132 million
words of broadcast news texts, along with the 1995 newswire texts
and the transcriptions from BNtrain96.

In the full HTK system the decoder can operate in multiple
passes and use quinphone HMMs, 4-gram language models and

iterative unsupervised adaptation. However for all experiments re-
ported here the decoder was run in a single pass using triphone
models, a trigram language model and fairly tight beamwidths.
We have found that using the full system with adaptation results
in a 20% decrease in word error rate on broadcast news.

5. RECOGNITION EXPERIMENTS

5.1. Data specific models and extended training data

We first compared the performance of models which require knowl-
edge of data type with condition independent models which are
more suitable to automatically segmented data since fine classifi-
cation is not required. Furthermore, it has previously been shown
that data condition independent models can give surprisingly good
performance [5, 3].

The data type specific models used WSJ secondary channel
HMMs with 6399 speech states and were subsequently adapted to
broadcast news (used in [8]). Two sets of condition independent
models were trained: the BNtrain96 HMM-BN1 has 5628 states
and the BNtrain97 HMM-BN2 set 6944 states. All models used
12 component mixture Gaussian distributions. In all cases gender
independent models were used.

The results given in Table 6 show that the WSJ models are sig-
nificantly improved by broadcast news adaptation (4% absolute).
Perhaps more surprisingly the HMM-BN1 models give slightly
better overall performance than the data specific WSJ adapted mod-
els. Furthermore, doubling the amount of training data reduces the
error rate by a further 1.5% absolute.

Data HMM training

Type WSJ | WSJ adapt | BNtrain96 | BNtrain97
FO 16.3 13.0 12.8 11.6
F1 35.2 31.8 285 27.3
F2 51.4 44.8 42.6 40.1
F3 36.4 32.7 35.3 33.9
F4 28.6 25.0 254 244
F5 28.6 23.8 27.1 26.5
FX 58.5 55.2 56.8 55.0
Avg. 36.0 32.0 31.7 30.2

Table 6: % Word error rates on BNdev96pe for different training
conditions. Only the WSJ adapt set is data condition dependent.

Whilst the results shown in Table 6 are encouraging, they mask
the separate effects on male and female speakers. Since two thirds
of the broadcast news training and test data is from male speakers
there is a significant gender bias which isn’t present in the WSJ
models. Hence the error rate on the female speakers in the test
is 29.8% for the WSJ adapt models but is 33.3% for the HMM-
BN1 models (and 31.3% for HMM-BNZ2). To try to improve the
performance on female speakers we investigated gender dependent
modelling.

5.2. Gender Dependent Modelling

Gender dependent versions of the HMM-BN2 set were created by
splitting the BNtrain97 data according to gender and retraining the
Gaussian means and mixture weights on the gender-specific data
portions. These gender dependent models were then tested only
on data of the corresponding gender (i.e. it is assumed that perfect
gender determination is possible). As shown in Table 7 this gave a
substantial increase in recognition performance (overall 1.2% ab-
solute and 1.9% for female speakers) and appears to have largely
mitigated the gender bias in the training data.



Data Model type and data type

Type [ GI7male [ GIffem | GD/male [ GD/fem
FO 9.2 147 8.7 13.8
F1 26.2 30.8 25.7 28.5
F2 40.2 39.0 38.4 36.4
F3 27.4 39.6 25.1 37.2
F4 24.1 24.7 245 22.6
F5 27.6 25.8 25.9 23.2
FX 57.8 52.3 57.0 50.3
Avg. 29.6 31.3 28.7 29.4

Table 7: % Word error rates on BNdev96pe split by gender for
gender independent (GI) and gender dependent (GD) models.

It should be noted that although the automatic gender classifi-
cation in Table 4 yields 3-5% error, using a forced alignment with
the above gender dependent models and making a likelihood based
gender choice (based on a first pass recognition with GI models)
yields an gender detection error rate of about 2%.

5.3. Automatic Segmentation/Classification

The effect of using the automatically derived segments from both
the CMU segmenter and the S1 segmenter described in Sec. 3 was
evaluated on the BNdev96ue data. It should be noted that some
of the data (that identified as pure music) is discarded by the S1
segmenter while the CMU approach retains the entire data stream.
As can be seen in Table 8 recognition performance improves with
the S1 segmenter, particularly on F3 segments due in part to the
removal of pure music. It is expected that S2 segmenter (which
uses clustering) would improve recognition performance further.

Data HMM training

Type CMU Segments | ST Segments

FO 12.3 11.7

F1 28.1 27.1

F2 41.1 415

F3 40.2 324

F4 28.3 27.8

F5 31.6 31.4

FX 67.6 67.3
Overall 30.7 29.7

Table 8: % Word error rates on BNdev96ue for different segmenta-
tions algorithms using the gender independent HMM-BN2 model
set.

The S1 segmenter also classifies data as narrow-band or wide-
band. A narrow band model version of HMM-BN2 was trained
using a reduced bandwidth data analysis (125Hz to 3.8kHz) and
use of these models improved performance on F2 data to 38.3%
error and reduced the overall error rate to 29.2%.

Finally the performance of the S1 segmenter was compared to
the hand-partitioned PE segments for the Marketplace show of the
development data using the GI HMM-BN2 model set. The results
are given in Table 9. It can be seen that automatic segmentation
has added 2% absolute to the PE error rate. However nearly half
of this increase is due to recognition of a Bosnian speaker who
is excluded from the PE segments but causes insertion errors in
the automatically segmented data, causing a substantial increase
in the error rate for FX data. Hence we expect that in general the

automatic segmentation will only add about 1% absolute to the
error rate from the PE segments.

Data Segmentation
Type PE Segments [ SI Segments
FO 11.1 11.9
F1 22.0 21.2
F2 18.8 22.2
F3 195 20.5
F4 27.3 32.7
F5 29.5 31.0
FX 56.0 77.8
Overall 19.0 21.0

Table 9: % Word error rates on the Marketplace dev-test show for
automatic and hand generated segmentations.

6. CONCLUSION

This paper has described a number of experiments in broadcast
news transcription. It has been shown that a segmentation scheme
which integrates clustering is particularly effective and that auto-
matically segmented broadcast news data can yield close to the
performance of hand partitioned data using data condition inde-
pendent modelling.
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