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Multiview Geometry: Profiles and Self-Calibration

Abstract

An important goal of computer vision is the simultaneous recovery of camera mo-

tion and scene structure from multiple views. Frequently, the solution of this prob-

lem demands the estimation of the epipolar geometry of the sequence of images,

encoded in fundamental matrices. These can be satisfactorily obtained through

a number of methods when image features corresponding to the same objects in

space — such as points, lines, texture etc. — can be easily matched. However,

when the scene is comprised of smooth, textureless surfaces, the determination of

such correspondences is a difficult problem.

In this situation the most prominent features of the objects being viewed are the

profiles or apparent contours. This dissertation develops an efficient technique to

estimate the epipolar geometry from profiles in the important case of circular mo-

tion. In contrast to previous methods, the solution proposed here can be used even

for surfaces with simple geometry. It also employs a sequential approach, obtaining

the independent components of the epipolar geometry step-by-step. Finally, it does

not demand the solution of any large scale optimisation problem.

Once the epipolar geometry is estimated, the projective structure of the scene

can be determined. To update this projective reconstruction to an Euclidean one, the

camera must be calibrated. In this dissertation a novel self-calibration technique is

introduced, based on obtaining the intrinsic parameters that update the fundamental

matrices to essential matrices. This simple approach provides an algorithm for the

linear computation of the varying focal lengths of the cameras, plus a nonlinear

method that can refine the initial solution and also obtain other intrinsic parameters.

xiii
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Glossary

[...] In geometry (which is the only science that it hath pleased God hitherto to bestow on
mankind), men begin at settling the significations of their words; which significations [...]

they call definitions, and place them in the beginning of their reckoning.

Thomas Hobbes (1588–1679), Leviathan, part I, chapter 4, 1651.
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Chapter 1

Introduction

1.1 Motivation

Two problems were tackled in this thesis: estimation of epipolar geometry from

profiles (section 3.3 and chapter 4) and camera self-calibration (chapter 5). They

both have a long history in computer vision, and much has been written about them

(an extensive bibliography to the subjects can be found in the corresponding chap-

ters). The amount of attention drawn by these topics is justified, for they are central

to the solution of a key problem in computer vision, which is the recovery of camera

motion and 3D scene structure from video sequences.

1.1.1 Shape from X

Several approaches have been used to attack these problems. In shape from shad-

ing the 3D structure of an object can be inferred from a single image by using

physical models that link the intensity of the light reflected from a surface to prop-

erties of the surface material and the orientation of the surface with respect to ex-

1



2 CHAPTER 1. INTRODUCTION

ternal light sources [74, 75, 160]. Shape from texture algorithms intend to recover

both 3D structure and motion from the relative deformation of homogeneous tex-

ture elements on a surface, denoted texels [157, 86, 105]. Another possibility is

shape from specularity, which uses specular reflection as a clue for scene structure

[88, 11, 119]. In shape from focus the blurring of the image at different distances

from the camera offers information about surface depth; a common variation of this

method is obtained when the focus of the camera is deliberately changed to blur the

image, a technique known as shape from defocus [120, 144, 117, 22].

1.1.2 Geometry-Based Algorithms

Although extremely useful for specific applications, none of the methods mentioned

above is as flexible as or produces results with accuracy comparable to stereo or

multicamera geometry-based systems [41, 70]. A common feature of this class of

techniques is the computation of projective invariants related to the set of cameras

in the form of the epipolar geometry, trilinear constraints, or generic multiview

camera relations (chapters 3 and 4), and the use of intrinsic camera parameters,

which can be either precomputed or computed after the estimation of the epipolar

geometry (chapter 5).

Direct versus Feature Based Methods. In order to obtain these projective invari-

ants it is necessary to match elements that can be seen simultaneously in images.

If the matched elements are whole areas of the image, or any other image quantity

directly measurable at each pixel, the technique is dubbed a direct method [77]. If,

alternatively, a sparse set of matched features is used, such as points, lines or con-

tours, the method is denoted to be feature based [149]. For a comparison between
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the two approaches see [3].

1.1.3 Structure and Motion from Profiles

To estimate the structure and the motion of smooth textureless surfaces, neither

direct nor feature based methods using points or lines are appropriate. In this sit-

uation the profile of the surface is the most dominant feature in the image, and it

offers important information for determining both the shape and the motion of the

surface [28]. Moreover, even when the matching of other features is possible, the

information provided by the profiles should not be neglected. One of the objectives

of this work was, therefore, the development of practical algorithms for estimating

the epipolar geometry of a sequence of images from profiles.

1.1.4 Camera Self-Calibration

The invariants encoded by the epipolar geometry or other multiview camera rela-

tions are projective ones, i.e., they allow the recovery of scene structure and camera

motion only up to a projective transformation [40, 63] . To upgrade this projective

transformation into an Euclidean one, or at least into a similarity transformation,

it is necessary to obtain the intrinsic parameters of the cameras that acquired the

images. If the Euclidean structure of the scene is already known, this knowledge

can be used to compute the camera parameters, in a technique called camera cali-

bration [49, 155]. For unknown scenes, a more general approach, denoted camera

self-calibration [109], must be employed.

Critical Motions for Self-Calibration. There is a rich pool of algorithms de-

signed to solve the self-calibration problem. However, there are theoretical limita-



4 CHAPTER 1. INTRODUCTION

tions to what these algorithms can achieve, due to the occurrence of critical-motions

(section 5.4.2), which are camera configurations that involve the self-calibration up

to the point of rendering it impossible. Until now, self-calibration and the analysis

of critical motions have been done independently, and this work attempted to close

this gap by developing a self-calibration algorithm with built-in critical motion de-

tection.

1.2 Approach

Although projective geometry was the main mathematical tool used to develop the

ideas presented in this thesis, greater emphasis was given to a rigorous analysis than

to pure geometric insight whenever that was possible. When needed, geometric

arguments were only complementary to the analytical ones, for it is the opinion of

the author that intuition is not a substitute for formalism, but only an aid and an

inspiration to the development of a scientific work.

As an engineering discipline, computer vision adopts the common paradigm of

representing the world through models that are complex enough to allow useful de-

scriptions of real phenomena, but nevertheless simple enough to render the analysis

of these phenomena mathematically tractable. From this perspective, it is more ben-

eficial to think of models as being useful or not, instead of simply qualifying them

as right or wrong. Consider the affine camera model [1]. Strictly speaking, its use as

a description of real cameras is, most of the time, wrong. However, it is well known

that the advantages obtained in employing it can, in some circumstances, surpass

possible gains attained from adopting the more complex projective camera model

[70]. The same is true for ignoring lens distortion or other optical aberrations.



1.2. APPROACH 5

1.2.1 Models and Approximations Adopted

The projective or pinhole camera, which is probably the most important model used

in geometric computer vision, was adopted almost everywhere in this work. An

exception can be found in section 3.3, which made use of affine approximation to

solve the problem of estimating the epipolar geometry from profiles under general

camera motion. Again in section 3.3 and also in chapter 4, smooth objects were

modelled as
� �

surfaces, i.e., subsets � of
���

such that for each point
��� � there

exists a proper patch in � whose image contains a neighborhood of
�

in � [118].

Still in chapter 4, the overlapping of a finite number of images of a rotating object

was approximated to the image of a surface of revolution.

Validity of the Models. Most of the success of geometric computer vision de-

pends on the validity of the pinhole camera model. Although some applications

demand the correction of lens radial distortion [32], for the range of focal lengths

used here the pinhole camera was an entirely appropriate model. The conditions for

the validity of the affine camera model are well-known: narrow field of view and

large focal length [73].

Since a B-spline was fitted to the profiles of the objects used in this work, it

was required to model these objects as
� �

surfaces or at least piecewise
� �

sur-

faces (if two control points are allowed to coincide). This condition is violated

by surfaces with fractal patches, which, although continuous everywhere, are not

differentiable anywhere in the fractal patch. This situation roughly corresponds to

highly spiky surfaces, for which, therefore, the algorithms presented here should

not be employed.

Finally, for the purposes of this work the assumption that the overlapping of
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a finite number of images of a rotating object can be regarded as the image of a

surface of revolution was empirically verified as valid for angles of rotation between

successive snapshots of up to ����� .

1.3 Contributions

The main contributions of this thesis are:

� a solution to the problem of motion estimation from profiles in the case of

circular motion, based on symmetry properties of images of surfaces of rev-

olution; this is the first solution to the problem of motion estimation from

profiles that is both practical to implement and general enough to allow the

Euclidean reconstruction of the scene;

� a novel self-calibration technique, based on the Huang and Faugeras con-

straints for essential matrices; the method introduced is flexible, for it can be

employed for image sequences with any combination of fixed and varying in-

trinsic parameters, and it also takes into account the proximity of the relative

motion of camera pairs to a critical configuration for self-calibration, greatly

improving its robustness.

Minor contributions include:

� a specialisation of a generic method for estimating epipolar geometry from

profiles to the affine case, aided by a new parameterisation of the affine fun-

damental matrix that is both minimal and general;

� a novel minimal parameterisation of the trifocal tensor that can be easily ex-

tended to provide minimal parameterisations for multiview tensors of any de-
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gree.

1.4 Outline of the Thesis

Chapter 2. This chapter presents a brief review of some topics of projective ge-

ometry used elsewhere in this thesis. It introduces homogeneous coordinates and

describes the representation of geometric primitives such as points, lines, planes

and surfaces in such coordinates. It then analyses the imaging process carried out

by a projective camera in the context of general projective transformations. Finally,

it discusses some issues related to the projection of planes and surfaces.

Chapter 3. An overview of epipolar geometry and multivew camera relations is

presented in chapter 3. It starts with the derivation of the fundamental matrix, dis-

cussing its degrees of freedom, a plane plus parallax representation and the essential

matrix. It also mentions methods for computing the fundamental matrix from point

matches and succinctly describes aspects of the epipolar geometry of affine cam-

eras. The summary of epipolar geometry is closed with a quick presentation of

epipolar geometry and smooth surfaces, and describes an algorithm for estimating

affine epipolar geometry from profiles, presenting results of implementation on real

data.

In addition, this chapter brings a summary of geometry of multiple cameras with

emphasis on the trifocal tensor. It derives a novel minimal parameterisation of the

trifocal tensor and discusses its computation. Furthermore, the chapter specialises

the discussion of the trifocal tensor to the affine case, and, at last, mentions some

aspects of multilinear camera relations.
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Chapter 4. This chapter describes in detail one of the main contributions of this

work, which is the development of an algorithm for estimating the epipolar geom-

etry of a turntable sequence based solely on profiles. It brings an extensive bibli-

ographic review on motion estimation and reconstruction from profiles, followed

by a discussion on symmetry of images of surfaces of revolution. A novel param-

eterisation of the fundamental matrix is derived, which is then used to develop an

algorithm to estimate the epipolar geometry of the cameras. The implementation

of this algorithm for real images is also shown in chapter 4, and examples of 3D

reconstruction using the motion obtained from the estimation of the epipolar ge-

ometry are presented. The results obtained in this chapter are the product of close

collaboration carried out with Kwan-Yee Kenneth Wong.

Chapter 5. This chapter begins with a summary of current and past literature on

self-calibration. It then proceeds to review some properties of the essential matrix,

the Huang and Faugeras constraints, which are used to develop a linear algorithm

for computation of focal lengths given the fundamental matrices related to a set

of cameras. An analysis of this algorithm provides a method for detecting critical

camera motions, and the solution provided by the linear algorithm is then refined

through a nonlinear procedure that also takes into account critical motion configu-

rations. Experimental results for both synthetic and real data are shown.

Chapter 6. The conclusion presents a summary of the work and points to direc-

tions for future research on the topics discussed in this thesis.



Chapter 2

Projective Geometry

Let no one enter who does not know geometry.

Plato (429–347 B.C.),
Elias Philosophus, Aristotelis Categorias Comentaria.

2.1 Introduction

Projective geometry is the invariant theory of the group of projective transforma-

tions [133, p. 41]. If Euclidean geometry is interpreted as the geometry of the

straight edge and compass, projective geometry is the geometry of the straight edge

alone [31].

This chapter presents a brief review of some fundaments of projective geometry

that will be necessary throughout the remainder of this dissertation. No attempt has

been made to provide a comprehensive survey, which can be found in many good

works on projective geometry [133, 140, 30, 31] and computer vision [8, 115, 41,

70]. Although the treatment of the subject presented here is non-standard and some

rather advanced topics are covered, a reader proficient in projective geometry may

want to skip this chapter and proceed to chapter 3.

9
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2.2 Homogeneous Coordinates

Homogeneous coordinates are an analytical tool most suitable for tackling problems

in projective geometry, playing a role equivalent to the one Cartesian coordinates

play to Euclidean geometry [108]. Consider a point
�

in the
�

-dimensional space

with Cartesian coordinates given by the
�

-tuple
� � ��� � � ��������� � � � � � � . The expres-

sion of
�

in homogeneous coordinates is the set of
� ���

�
�
-tuples 	�
 � � ��� � � ���������

� � � � ��
�� � � � 	������ . Conversely, given the homogeneous coordinates 	�
 � � ���
� � ��������� � � � � ��� � � � � ��� � � 	 � � � � ��������� � � � � � � 
 
 �� ��� of a point

�
in the

�
-

dimensional space, the Cartesian coordinates of
�

will be given by
� � ��� � � ���������

� � ��� � ��� � , if
� ��� � �� � . If

� ��� � � � , the point
�

is said to be at infinity in

direction
� � ��� � � ��������� � � � , and it cannot be represented in Cartesian coordinates.

A vectorial representation of
�

in the canonical basis and in homogeneous co-

ordinates is given by the set of column vectors
�

where

� ��� 
 � � �!����� � � � ��� �#" � 
 
 � � � 	����%$ � (2.1)

The corresponding representation of
�

in Cartesian coordinates is given by
� �

where

� � � � � � � � ��� �!����� � � � � ��� ��" � � (2.2)

if
� ��� � �� � . Henceforth, there will be made no distinction between a point and its

vectorial representation in the canonical basis, whether in homogeneous coordinates

or not, except where explicitly mentioned.

From the above discussion it can be seen that the representation of a point in
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homogeneous coordinates is actually a set, and the equation

� � ��� (2.3)

expresses, in fact, the equality between the sets
� 
 � � � � � ����� � � � ��� � " � 
 
 �

� � 	������ and
� 
 � � � �� � �� ����� � �� � ���� � " � 
 
 � � � � 	������ . Interpreting equality be-

tween representations in homogeneous coordinates as an equality between sets is

a formal way of avoiding having explicitly to write the free scale factors of the

terms involved, or having to use the symbol � to indicate “equality up to a nonzero

scale factor”, as it is commonly done [66]. Hereafter, the vectorial representation

	�
 � � � � � ����� � � � ��� � " � 
 
 � � � 	������ of an
�

-dimensional object
�

in homo-

geneous coordinates will be shortened to � � � � � ����� � � � ��� �#" � .

Wedge Product and Wedge Operator. Let
� +

, � ��� � �	� ��������� � , be a set of
���

-

dimensional homogeneous vectors, and let 
 be the
� � �

�
� � �

matrix given by


 � � ��� ����� ����� � � " . Finally, let 
 ( be the matrix obtained from 
 by removing its

-th row. The wedge product of

� +
, � ��� � ��� ��������� � , denoted

� �  � ���  �����  � � , is

defined as

� �  � �  �����  � � ��� �����	� 
 � ��� ����� � 
 � � ����� ���
�
� ��� � ����� � 
 ��� � ��� � � (2.4)

Moreover, given the set
� +

, � ��� � �	� ��������� � � � , of
� �

�
�

-dimensional homogeneous

vectors, the wedge operator of
� +

, � ��� � ��� ��������� � � � , is defined as the multilinear

(i.e., linear on each
� +

) mapping that takes
� +

, � ��� � �	� ��������� � � � to the unique
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� � �
�
� � � � �

�
�

antisymmetric matrix � � �  ��� �  �����  � � 
�� " � such that

� � �  � ���  �����  � � 
�� " � � � � �  � ���  �����  � (2.5)

for all
� � � �

.

2.2.1 Lines and Planes in Homogeneous Coordinates

Consider a point � in 2D space with vectorial representation in Cartesian coor-

dinates given by ��� � � � � � � " � and lying on a line
�
. Therefore � � satisfies an

equation of the form

� � � � � � � � � � � � � � � (2.6)

where
� � ,

� � and
� � are parameters defining the line. If � is represented in homoge-

neous coordinates, (2.6) can be rewritten as

� � � � � � (2.7)

where
� � � � � � � � � " � is the vectorial representation of

�
in homogeneous coordinates.

In general, the equation of an
�

-dimensional plane � in homogeneous coordinates

is given by

�
� � � � � (2.8)

where � � � � � � � ����� � ��� ��" � .

The intersection � of the lines
�

and
� �

can be conveniently expressed in homo-

geneous coordinates as � � �  � �
. In general, the intersection

�
of
� �

-dimensional
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planes �
+
, � � � � �	� ��������� � is given by the wedge product

� � �
�  

�
���  �����  �

�
.

The Duality Principle. From (2.7) and (2.8) it can be seen that, algebraically, the

role of a line or more generally, of a hyperplane, is dual to that of a point when these

objects are represented in homogeneous coordinates. Thus, a theorem
'

regarding

hyperplanes and points has a dual theorem
' �

where the word “point” is substituted

by “plane” and vice-versa, appropriate linguistic adjustments notwithstanding, as

stated by the duality principle [133, p. 79]. An immediate consequence of this

principle is that the
�

-dimensional plane � defined by the
�

points
� +

, � � � � �	� ��������� �
is given by � � � �  � ���  �����  � � .

2.2.2 Conics and Quadrics in Homogeneous Coordinates

Consider the equation

� � � � ����� � � � � ����� � � ��� � �� �	��
 � � ��� � � (2.9)

of a conic
�

. In homogeneous coordinates (2.9) becomes

� �
� � � � � (2.10)

where

� �
�����
�
� � �
� � 

� 
 �

������
� � (2.11)
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The matrix
�

is the representation of the conic
�

in homogeneous coordinates. In

general, the equation of a
�

-dimensional quadric � is given by

� ��� � � � � (2.12)

were
�

is a
� � �

�
� � � � �

�
�

symmetric matrix.

Given the quadric defined by the nonsingular matrix
�

, the set of planes � that

satisfy the equation �
� � 
��

� � � defines the envelope of the quadric
�

. Given

a point
�

and a quadric
�

, the plane � � � �
is defined as the polar of

�
with

respect to
�

(figure 2.1).

Figure 2.1. The plane � is polar to the quadric
�

with respect to the point
�

.

Degenerate Cases If the matrix
�

of a quadric is singular, the quadric is said to

be degenerate. Let �
� � �

be the rank of the quadric
�

. Particular cases of interest

occur when:
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(i) � � � � � � — in this case the quadric corresponds to a hyperplane � , and it

can be expressed as
� � � �

�
;

(ii) � � � � � �
— in this case the quadric corresponds to a pair of hyperplanes �

and �
�
, and it can be expressed as

� � � �
� � �

�
�

�
�

;

Given the
� �

�
�

-dimensional points
� +

, � � � � �	� ��������� � � � , the pair of planes

tangent to the nondegenerate quadric
�

and containing the points
� +

, denoted as
�

, is given by

� � � � �  � ���  �����  � � 
�� " � � � 
�� � � �  � � �  �����  � � 
�� " � � (2.13)

2.3 Projective Transformations

A linear operator applied over the homogeneous representation of a point defines a

projective transformation. More formally, a projective transformation � from
� �

to
� 	

is defined as

� � � � ��� � 	

� � ��� � ��� � � (2.14)

where � is a nonzero
�


�
�
� � � � �

�
�

matrix. Since
�

and
�

are representations

of points in homogeneous coordinates, the matrix � in the definition of the projec-

tive transformation � can be considered as the equivalence class 	 � � � 
 � �� ��� .
Therefore, the equality between the matrices � and � � associated with projective

transformations � and � � corresponds to an equality between two sets. Hence-
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forth, there will be no distinction made between the projective transformation �
and the set

� � 
 � �� � (shortened to � ) that defines the transformation.

Of special interest are the projective transformations from
� �

to
� �

, from
� �

to
� �

and from
� �

to
� �

. The bijective projective mappings � ��� � � � � � �
and

� � � � � � � � �
are a 3D projective transformation and a 2D projective trans-

formation, respectively. There is a hierarchy of such transformations obtained by

successive specialisation of the projective transformation to affine, similarity, and

Euclidean transformations [42]. This can be understood by noting that any nonsin-

gular � � � or � � � homogeneous matrix � �����
	���
���������� such that

� �
� � ��� � � � � (2.15)

where
���

denotes the Moore-Penrose inverse of
�

, can be decomposed as

� �
��
� � �
� � �

���
�� ��� ��! � #" purely projective

transformation

��
� � $
�

�

���
�� ��� ��&%'" affine

transformation

(2.16)

and, moreover, the matrix �)( in (2.16) can also be decomposed as

�*( �
upper triangular

matrix��
�
�+���+�,.- �
�

�

� �
�� ��� ��  /% " purely affine

transformation

rotation matrix��
� 


�+���+�% &�
�

� �
�� ��� ��&01" similarity

transformation

� (2.17)

The similarity transformation �)2 corresponds to a scaling (by the factor 
 ), fol-

lowed by an Euclidean transformation (rotation (
%

) plus translation (
&
)). The treat-
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ment shown above for the stratification of projective transformations generalises the

one introduced in [62].

2.3.1 Projective Cameras

The imaging process produced by a projective camera can be interpreted as a se-

quence of three projective transformations [115, 41]:

(i) a
� � � � �

mapping from the 3D world coordinate system to the camera

coordinate system, represented by the matrix ��� given by

��� �
��
� % &� �

�

� �
� � (2.18)

where
%

is a � � � rotation matrix and
&

is a � � � translation vector.

(ii) a
� � � � �

mapping from the 3D camera coordinate system to a 2D image

plane, represented by the matrix ��� � such that

��� � ��� � � � � (2.19)

(iii) a
� � � � �

mapping corresponding to a change of coordinates on the image

plane represented by the matrix
#

given by [41]

# �
�����
�
� � �

� � � �

� � �

������
� �

�����
�
� � �	� ��
 �

� � � � � �
��� 
 �

� � �

������
� � (2.20)
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where � is the camera focal length1,
� � � � � � � 
 is the aspect ratio,


 �
� �	� � � ��� � � is the skew angle,

�
is the skew, and

� � � � � are the coordinates of

the principal point (for a geometric interpretation of these parameters, see

[41]).

The overall mapping corresponding to the imaging process is therefore given by the

matrix
$

where

$ � # � % & "�� (2.21)

The matrix
$

is denoted projective camera matrix, and the matrix
#

corresponds

to the matrix of intrinsic parameters. The matrices
%

and
&

are jointly named

matrices of extrinsic or external parameters. If the matrix
#

is known, the camera

is said to be calibrated. Hereafter, the expressions “the camera
$

” and “the intrinsic

parameters
#

” should be read as “the camera with projective camera matrix given

by
$

” and “the intrinsic parameters represented by the matrix
#

”, respectively.

Observe that the camera
$

given by (2.21) is not in the most general form of a full

row rank � � � matrix, because the matrices
#

and
%

are always invertible. If this

constraint is ignored, the general form of a projective camera matrix will be given

by

$ � � � � � " � (2.22)

The point � that results from applying the transformation corresponding to
$

to a

point
�

— see figure 2.2 — is denoted the projection or image of
�

on
$

.

1Strictly speaking, the term � is the product of the magnification factor by the focal length;
however, since these factors cannot be decoupled, it is common practice to refer to their product
simply as focal length.
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X

x

C

L

t

R

Figure 2.2. Sequence of projective transformations carried out by a projective camera:

rotation
%

and translation
&

from world to camera coordinate system, projection from

camera coordinate system to image plane, and transformation in image coordinates. The

point
�

is the camera optical centre, and the line
�

is the optical ray associated with the

point
�

.

The point
�

with homogeneous representation ��� corresponding to the right

null space of
$

is the optical centre of the camera, and for each point � in the camera

coordinate system the set of 3D points
��� � 
 � given by

��� � 
 � � 
 ��� � $ � �

defines a line
�

denoted as the optical ray or ray associated with the image point � ,

as seen in figure 2.2.
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2.3.2 Affine Cameras

Affine cameras are an important subclass of projective cameras. A camera
$ ( is

affine if [115]

$ ( �
�����
�
� � � � � � � � � � ���

� � � � � � � � � � � �
� � � � � �

������
� �

�����
�
� � � � ���� � � � � �� � � �

������
� � (2.23)

It has been shown [1, 115, 135] that if the depth of the scene in the direction of the

optical axis is much smaller than the average distance of the scene to the camera,

the projective camera can be approximated by an affine camera.

The right null space of
$ ( is a vector of the form � � � �  � � � � � " � . Therefore,

the optical centre of an affine camera is at infinity in direction � �  � � . An affine

camera can be obtained by substituting (2.19) by

��� � % �
�����
�
� � � �
� � � �
� � � �

� ����
� (2.24)

in the sequence of transformations involved in the imaging process of a projective

camera, where � � � % corresponds to the orthographic projection [115] of a point in

3D space onto the plane � � � .

2.4 Projection of Planes and Surfaces

Let � be a plane in 3D space such that it contains the optical centre � � of a camera
$

. Consider now a point
�

on � , with image on
$

given by � . It follows that there
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is a 
 � � such that

� � $ � � � 
 � � � (2.25)

and

�
� � � � � (2.26)

�
� � � � � � (2.27)

Multiplying (2.25) on the left by �
�

and substituting (2.26) and (2.27) in the result,

one obtains

�
� $ � � � � � � � � � (2.28)

and therefore the image of the plane � is a line
� � � $ � � �

� . Analogously it is easy

to show that the plane � whose image corresponds to a line
�

is given by

� � $ � � � (2.29)

2.4.1 Projection of Implicit Surfaces

Let
�

be a quadric in 3D space, where

� �
��
� � $
$ � �

� �
� � (2.30)



22 CHAPTER 2. PROJECTIVE GEOMETRY

and let
$

be the camera
$ � � � � " . Let now

��� � 
 � be the set of points on the

optical ray
�

of an image point � , i.e.,

� � � 
 � � � � � 
 " � � (2.31)

For each image point � the
�����

degree equation in 

� � � 
 � � � � � � 
 � � � (2.32)

may have zero, one, or two real solutions. When (2.32) has only one solution, the

line
�

will be tangent to
�

. Substituting (2.31) in (2.32) and imposing the constraint

that the equation must have only one (real) solution, one obtains

� � � � � � $!$ � � � � � � � � � � � (2.33)

which corresponds to the equation of a conic
�

[34] (also [28, p. 70]). Observe that

if the camera
$

is not of the form
$ � � � � " , but a generic � � � matrix with rank

three and right null space � � , the conic can still be found by the method described

if one considers the new pair camera-quadric
� $ � � � � � given by

� � � � " � � 
 � � � 
�� � � (2.34)

where � � � $ � � � " , resulting in the same expression as found in [34]:

� � � $ � � $ � � (2.35)
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where
���

denotes the adjoint of the matrix
�

. The method used to derive (2.33)

is in fact an application of elimination theory [103], which can be naturally used to

extend the results to higher order surfaces [123, 124], as will be shown next.

Projecting Cubic and Quartic Surfaces. A
�����

degree implicit surface in
� �

can

be represented as a symmetric tensor
,

of degree
�
, i.e.,

��� ��
+ 	�� + 
��	�	�	�	� +�
�� � '

+ 	 � + 
 �	�	�	�	� +�
 � + 	 � + 
 ����� � +

 � � � (2.36)

For a camera
$ � � � � " , consider the optical rays given by (2.31) associated with

each image point � . Substituting (2.31) in (2.36) one obtains a
� ���

degree polyno-

mial � � 
 � in 
 given by

� � 
 � � ��
( ���

�
��� �
�� ��

+ 	��	�	�	�	� + 
���� � � '
+ 	��	�	�	�	� +�
���� � ��� � �	�	�	�	� ��� � � + 	 ����� � + 
����

�
� 
 ( � � � (2.37)

The projection of
,

will correspond to solutions of � � 
 � with multiplicity greater

than one. A necessary and sufficient condition for any polynomial � � 
 � to have

multiple roots is that the resultant of � � 
 � and its derivative � � � 
 � is zero [90]. The

resultant of two polynomials is defined as the determinant of the Sylvester matrix

of the polynomials [90, 23]. Therefore, an analytical expression for the implicit

curve corresponding to the projection of
,

can be derived by applying this con-

dition to � � 
 � . It has been shown that if the degree of the implicit surface is
�
,

the degree of the projection will be
� � � �

�
�

[53]. Thus, the projection of implicit

surfaces of degrees three and four will produce implicit curves of degrees six and

twelve, respectively. As an example, figure 2.4 shows the twelfth-degree implicit

curve corresponding to the projection of the fourth-degree implicit surface shown
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Figure 2.3. Torus corresponding to the fourth-degree implicit surface �
� � � � ����� � � � � � � ����� � � � � ��� ���� ��� � �

� � ���� � � ��� � � �
���
	 � � rotated by �
� � about the

�
axis and translated

10 units along the � axis.

in figure 2.3.

Implicit cubic surfaces are of particular interest for solid modelling. They are the

surfaces of highest degree that, in general, have a rational parameterisation [132],

and cubic surface patches can be easily joined to form more complex continuous

forms [131].

2.5 Summary and Conclusions

This chapter presented a review of some aspects of projective geometry necessary

for a better understanding of this dissertation. The main topics covered were:

Homogeneous coordinates — the presentation of homogeneous coordinates em-

phasised the interpretation of the homogeneous vector
�

as a class of equiva-

lence, simplifying the notation by avoiding the explicit representation of scale

factors and making use of concepts from set theory; homogeneous represen-

tations for important geometric primitives, such as points, lines, planes and
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Figure 2.4. Projection of the torus shown on figure 2.3. The curve shown is an implicit

twelfth-degree polynomial.

quadric surfaces were discussed;

Projective transformations — these were reviewed in a broad context, then spe-

cialised to the cases of particular interest to computer vision; the exposition

on the hierarchy of transformations — projective, affine, Euclidean — gener-

alises previous algebraic approaches; projective cameras were introduced in

the same framework as general projective transformations;

Imaging of planes and implicit surfaces — finally, the imaging process of planes

and implicit surfaces, regarded as a
� � � � �

projective transformation, was

briefly discussed and illustrated with an example of the projection of a � ���
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order implicit surface.



Chapter 3

Epipolar Geometry and Multicamera

Systems

This chapter presents an introduction to epipolar geometry, which is a set of ge-

ometric relations derived from stereo camera systems. Besides the general case,

two particular configurations of the generic relations are also studied: one for affine

cameras, and one for cameras viewing smooth surfaces. A new parameterisation

of the affine fundamental matrix is introduced and applied to the problem of esti-

mation of affine epipolar geometry from images of smooth surfaces. The chapter

also briefly reviews some aspects of multicamera systems, in particular the trifocal

tensor and its affine specialisation. A novel minimal parameterisation of the trifocal

tensor is presented, which can be easily extended to parameterise multiview tensors

of any degree, such as the quadfocal tensor.

27
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3.1 Introduction

This section follows the approach of Zhang [164], which unifies the treatment of

the fundamental matrix for projective and affine cameras.

3.1.1 The Fundamental Matrix

Consider a pair of cameras
$

and
$ �

with distinct optical centres. The image of a

point
�

on each camera will be given by the points � and � � , where

� � $ � � (3.1)

� � � $ � � � (3.2)

Let � � be the homogeneous representation of the optical centre of
$

. Therefore,

the points
� �

on the line connecting � � to
�

can be expressed in terms of the

parameter 
 as

� � � 
 � � 
 $ � � � � � � (3.3)

For a particular choice 
 � of the parameter 
 , the point
��� � 
 � � will be equal to

�
.

Therefore, � � � $ � � � � 
 � � , and

� � � 
 � $ � $ � � � $ � � � � (3.4)
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Multiplying both sides of (3.4) by � � � � $ � � � " � , which is nonzero since the optical

centres of
$

and
$ �

are distinct, one obtains

� � � � $ � � � " � $ � $ � � � � � (3.5)

This equation is the algebraic expression of the epipolar constraint, and the matrix

" � � $ � � � " � $ � $ � (3.6)

defines the fundamental matrix or
"

matrix of
$

and
$ �

. From (3.5) and (3.6) it

can be seen that the image � � on
$ �

of a point with corresponding image � on
$

will satisfy
� � � � � � � where

� �
is a line given by

� � � " � , denoted epipolar line.

This configuration is symmetric, i.e., there is an epipolar line
� � " � � � on which

the point � lies. A geometric interpretation of the epipolar constraint can be seen

in figure 3.1. The right and left null spaces of
"

, denoted as
� � � " �

and
� � � " �

,

respectively, are given by

� � � " � � � $ � $ � � 
�� $ � � � � � � (3.7)

��� � " � � $ � � � � � � � (3.8)

The homogeneous vectors � and � � are denoted right and left epipoles, and they

represent the image of the optical centre of each camera as seen from the other (see

figure 3.1). The points
�

and the optical centres of
$

and
$ �

define an epipolar

plane.

Degrees of Freedom of
"

. A generic � � � matrix has nine degrees of freedom

(dof), one for each of its entries. The fundamental matrix, however, is defined only
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P’

l’
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e e’
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Figure 3.1. The epipoles � and � � correspond to the images of the optical centres
� �

and�
, respectively. The point � � on camera

$ �
corresponding to � on camera

$
must lie on

the epipolar line
� �

. The points
�

,
�

and
� �

define the epipolar plane � .

up to a scale factor, since if a matrix
"

satisfies the epipolar constraint for point

correspondences between images on cameras
$

and
$ �

, so does 
 " , for any 
 �� � .
Therefore, it can be imposed that � " ��� � � , where ������� indicates any matrix norm,

e.g., Frobenius norm or � -norm [58]. Moreover, since
"

corresponds to the product

of a rank two matrix and a nonsingular matrix, as can be seen in (3.6),
����� � " � � � .

These two constraints reduce the number of dof of
"

to seven.

3.1.2 Plane Plus Parallax Representation

It has been show [63] that the fundamental matrix relating any two cameras is invari-

ant to the application of a common projective transformation to the world coordinate
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system, i.e., the fundamental matrix
" � associated with the pair of cameras

$
and

$ �
is the same as the one associated with the cameras

$ � � $ � and
$ � � � $ � �

for any full-rank matrix � . This can be easily checked by substituting
$ � and

$ � �
in (3.6)

" � � � $ � � � �� " � $ � � $ ��� � $ � � � 
�� � � " � $ � � � $ � � �
(3.9)

and substituting the identity (where it is assumed that � � ��� � � � � � )

� � $ � $ � � � � � � � � � (3.10)

in (3.9), which then becomes

" � � � $ � � � " � $ � � $ � $ � � � � � � � � � � � $ � � �

� � $ � � � " � $ � $ � $ � � $ � � � � � $ � � � " � $ � � � � � � � � � � $ � � �

� � $ � � � " � $ � $ � � � � $ � � � " � $ � � � � �
� "

(3.11)

By choosing � � � $ � � � " , the matrices
$ � and

$ � � become
$ � � � �*� " and

$ � � � � $ � $ � $ � � � " , or, denoting
$ � $ �

by � and using (3.8),
$ � � � � � � � " . In this

notation the expression of the fundamental matrix is simplified to

" � � � � " � � � (3.12)
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Observe that if the matrix � in (3.12) is substituted by any matrix

� � ��� � � ��� � � (3.13)

the resulting fundamental matrix is the same [63]. However, since
$

and
$ �

are full

row rank, choosing � � $ � $ �
ensures that � is nonsingular.

Let now � � ��� � � � " � be the homogeneous representation of a given plane

such that

� � � �
�
� � 
�� � � � �� � � (3.14)

One can verify that this condition enforces the optical centres of
$ � and

$ � � not

to lie on � . Let now � be the image of a point
�

lying on � . The optical ray

associated with
�

and the camera
$ � can be parameterised as

� � 
 � � � � � 
 " � ,

where
�

is the free parameter. However, for a given 
 � 
 � , � � 
 � � must lie on � ,

or �
� � � 
 � � � � , and therefore, 
 � � �

� � � � . Projecting
� � 
 � � on the camera

$ � � one obtains a point � � given by

� � � � � � � � � �� � �
� � � � � (3.15)

if
�

in (3.13) is chosen as �
� �

. The condition (3.14) prevents the matrix � � from

being singular, and therefore the images of points lying on � are related by the

invertible map � � , henceforth denoted plane induced homography [100, 102]. Note

that if no reference is made to the fundamental matrix in the derivation of (3.15),

the condition of distinct optical centres could be dropped, e.g., the cameras related
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by a rotation about their common optical centre.

Still assuming distinct optical centres, the vector � � can be seen to correspond

to the vectorial representation of the Cartesian coordinates of the direction of the

translation from
$ � � to

$ � in the coordinate system of
$ � � (the translation from

$ �
to
$ � � in the coordinate system of

$ � is given by � ). Thus, the fundamental matrix

is determined by an arbitrary plane induced homography and the relative translation

between the cameras. This is the basis of the plane plus parallax approach [29, 92,

2, 78, 152] for analysing the geometry of multicamera systems.

3.1.3 The Essential Matrix

Assume now that the cameras
$

and
$ �

have the form indicated in (2.21), i.e.,

$ � # � % & " (3.16)

$ � � # � � % � & � " (3.17)

Substituting (3.16) and (3.17) into (3.6), one obtains [102]

" � # � 
 � � & � � % � % � & " � % � % � # 
�� � (3.18)

Multiplying (3.18) on the left by
# � �

and on the right by
#

results in a matrix
!

,

denoted essential matrix or
!

matrix [96], given by

! � # � � " #
(3.19)

� � & � � % � % � & " � % � % � (3.20)
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Observe that the essential matrix depends only on the relative motion between the

two cameras:
& � � % � % � &

and
% � % �

are the translation and rotation of
$ �

with

respect to
$

, respectively.

Degrees of Freedom of
!

. Analogously to the fundamental matrix, the essential

matrix is defined only up to a scale factor and its determinant is zero. However,

for the decomposition given by (3.20) to be possible, two further constraints must

be imposed [76], and, as a result, the matrix
!

has only five dof This fact can be

exploited in self-calibration algorithms, as will be shown in chapter 5.

3.1.4 Computation of the Fundamental Matrix

Given two sets of images of the 3D points
� + , � � � � � ��������� � , obtained from the

cameras
$

and
$ �

, denoted as � + and � �+ , respectively, each correspondence
� � + � � �+ �

provides, when substituted in (3.5), one equation on the entries of
"

. If enough (at

least seven) of such equations are available, a system of equations can be solved for
"

. Different methods for solving these equations will produce different algorithms

to compute the fundamental matrix.

Analytical Methods. Denoting
� � � ��� � " � as the vector built out of the matrix

"

by stacking its columns [104], the constraint � �+ � " � + � � can be rewritten as

� � �+ � � �+ � � � � � � (3.21)
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where
�

indicates the Kronecker product. If seven correspondences are available,

(3.21) can be augment to a system of seven linear equations given by (with � ��� )
��������
�

� � � � � � � �
� � � � � � � �

...

� � � � � � � �

���������
�

� ��� � � � � (3.22)

Let
� � and

� � be any two linearly independent vectors in the null space of � . There-

fore, any solution of (3.22) can be expressed as
� � 
 � � � �

�
� 
 � � � . Substituting

the general solution into the constraint
�����	� " � � � , one obtains a third degree poly-

nomial on 
 that will have, in general, three solutions, each corresponding to a

different fundamental matrix [63, 164].

For noise-free data the rank of � will be seven even for � � � . However,

the detection of image features is not a perfect process. There are a number of

algorithms for feature detection, whether the features are points or corners [60,

59, 139], edges [107, 16, 17, 38], contours [83, 26, 36, 21, 12] etc. In the case

of corners, the effect of noise is modelled by considering that the true position of

the points is disturbed by an additive error with Gaussian distribution. Denoting

the singular value decomposition (svd) of � as � �
� � � � ���
	��
	�� �	 , with ��	 �

� � � � � ����� ��� " , the least-squares solution of (3.22) becomes
� � ��� . However,

the fundamental matrix
"

such that
� � � � ��� " � does not necessarily fulfill the

criteria
�����	� " � � � . To obtain a matrix

" �
that satisfies this constraint, one can

compute the singular value decomposition of
"

, obtaining
" ����������� �� , and

make
" � ������� � � � �� , where � � � is obtained from �
� by zeroing the last element

in the diagonal of ��� .
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A common feature to analytical methods is that they minimise algebraic error

[100, 68], which is an error measure that does not have a geometric or physical

interpretation. Under the assumption of isotropic and homogeneous Gaussian noise,

best solutions can be achieved by minimising the geometric error [100, 68, 164],

which corresponds to the average of the Euclidean distance between each point � �
and the epipolar line

� � � " � , as shown in figure 3.2.

di

x’i

xi

’l =Fxi i

l =Fx’i i

id’

Figure 3.2. For each point correspondence
� � � � � � the epipolar lines

� � � " � and
� � " � �

can be computed. The square of the geometric error for the pair
� � � � � � is then given by

� �+ � � � �+ � � �+ � ��� � , and the average geometric error will be
���� �+ � � � �+ .

Iterative Methods. In order to minimise the geometric error when estimating the

epipolar geometry, it is necessary to make use of iterative procedures, since this

formulation does not allow for an analytical solution to the problem. Given the

pair of corresponding points
� � + � � �+ � and a fundamental matrix

"
, let

� � � " � �
� � � � � �� � �� " � and

� � " � � � � � � � � � � " � be the associated epipolar lines. Thus, the

square of the geometric error of this configuration will be given by [102, 164]

� �+ � � �
� �� � � �� � �

� � � � � � �� � � � � � " � � �� � (3.23)
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If � correspondences are available, the average geometric error for the configura-

tion will be

� � �
�

��
+ � � � �+ � (3.24)

The problem is then to find a � � � , rank two matrix
"

that minimises the cost func-

tion (3.24). This can be achieved by using standard numerical methods [99, 126]

such as Newton-Rhapson or Levenberg-Marquardt and an appropriate parameteri-

sation of the fundamental matrix. The most natural parameterisation, where
� " � + ( �� + ( , � � 
 � � � � � � , suffers from two problems: first it is not minimal, i.e., it involves

more parameters than the number of dof of
"

; second, it does not ensure the condi-

tion
�����	� " � � � . Two other possibilities were discussed in [102]:

" �
�����
�

� � � � � �� � � � � �� � � � � � � ��� � � � � � � � ��� � � � � � � � ���

������
� (3.25)

and

" �
�����
�

� � � � � � � �� � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � �
������
� � (3.26)

Both parameterisations are not minimal, since they involve eight parameters. More-

over, they are also not general, for they cannot represent configurations in which the

epipoles are at infinity. As will be shown in section 3.2, this an important particu-

lar case of the epipolar geometry. An alternative parameterisation is introduced in
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the appendix A, which, although not general, is minimal and does not preclude the

epipoles from being at infinity. The gradient and the Hessian of
�

in (3.24) for this

parameterisation are also given in the appendix A.

A thorough evaluation of several analytical and iterative methods for estimating

the epipolar geometry from point matches can be found in [45, 102, 65, 164].

3.2 Affine Epipolar Geometry

For affine cameras, the epipolar geometry has some special properties. These prop-

erties can be derived by using different approaches, such as Grassman-Cayley alge-

bra [46], direct substitution of the affine cameras onto the expression for the funda-

mental matrix [115], or projective geometry [110]. The latter method is more in the

spirit of this work, and therefore it will be discussed here in more detail.

3.2.1 The Affine Fundamental Matrix

Consider two affine cameras
$ � � ( and

$ � � ( . Without loss of generality, it can be

imposed that

$ � � ( �
�����
�
� � � �
� � � �
� � � �

������
� � (3.27)

If
$ � � ( has a different format, there is an affine transformation that when applied

to both cameras will transform
$ � � ( to the form of (3.27). As discussed in subsec-

tion 3.1.2, the fundamental matrix
" ( related to

$ � � ( and
$ � � ( is invariant to the

application of such a transformation. Consider now the projective transformation
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� given by

��� �
��������
�

� � � �
� � � �
� � � �

� � � �

� �������
�
� (3.28)

The transformation ��� is a very particular projective transformation. It does not

satisfy condition (2.15), and it can be used to produce quasi-affine reconstructions

[67]. By applying this transformation to both
$ � � ( and

$ � � ( , the result is a new pair

of matrices given by

$ � � ( � � � � � "��
$ � � ( � �

�����
�
� � � �

� � � �

� � � �

������
� � (3.29)

where
�

represents a possibly nonzero value. Substituting (3.29) in (3.12), one

obtains

" ( �
�����
�
� � �

� � �

� � �

������
�
�����
�
� � �

� � �

� � �

������
� �

�����
�
� � �

� � �

� � �

������
� � (3.30)



40 CHAPTER 3. EPIPOLAR GEOMETRY AND MULTICAMERA SYSTEMS

Therefore, a natural parameterisation for the affine fundamental matrix is

" ( �
�����
�
� � �
� � �
� � 


� ����
� � (3.31)

where
� � � � � � � � � 
 � � � � . Since the overall scale factor is not important, the affine

fundamental matrix has only four dof. Therefore, the parameterisation in (3.31) is

not minimal, since it has five parameters. It could be argued that to turn (3.31) into

a minimal parameterisation it would be enough to make any of the entries � ,
�
,
�
,�

or



equal to one. However, the resulting parameterisation would not be general,

for it would prevent the fixed parameter from being zero, which is a perfectly valid

situation. A better alternative is to express (3.30) as

" ( �
�����
�
� � �
����� �
� � � �	� ��� �

� � � ��� � � � � ��� �

� ����
� � (3.32)

where �
��� � 	���� , � � � and

� � � � � � � � � � � �
� � � � � � �

�
. The right and left null

spaces of
" ( are

� � � " ( � � � �	� ��� � � ��� � " ��� (3.33)

� � � " ( � � � �	� ��� � �
����� � � " � � (3.34)

Therefore, � and � � are the directions of the right and left epipoles, respectively.

This parameterisation is similar to the one introduced in [111], and it can be shown

that, if
�

is the distance of an epipolar line to the origin of the coordinate system on
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the right image, the distance of the corresponding epipolar line to the origin of the

coordinate system on the left image is �
� � � . Thus, the parameterisation shown in

(3.32) is minimal, general, and it allows for a geometric interpretation of each one

of the parameters � , � � , � and � .

3.3 Epipolar Geometry and Smooth Surfaces

A detailed exposition of estimation of epipolar geometry from images of smooth

surfaces is given in the chapter 4. This section considers only some background

material and results related to the affine epipolar geometry of smooth surfaces.

Consider a surface � of type
� �

, as defined in section 1.2.1, viewed by two

pinhole cameras
$ � and

$ � . The following definitions are presented as a quick

review [28]:

� a contour generator associated with the surface � and the camera
$ � cor-

responds to the space curve ��� � such that for all points
� � � the line

passing through the optical centre of
$ � and

�
is tangent to � at

�
;

� the image of the contour generator associated with the camera
$ � is a profile

or apparent contour;

� if two contour generators associated with the surface � and the cameras
$ �

and
$ � intersect, the points of intersection are denoted frontier points;

� the epipolar plane � defined by the optical centers of the two cameras
$ � and

$ � and an associated frontier point
���

is tangent to the surface � at
���

;

� the epipolar lines corresponding to the epipolar plane � are tangent to their

associated profiles and are called epipolar tangents;
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The tangent points of associated epipolar tangencies correspond to the images of

the same point on the surface � , namely, the frontier point. The above definitions

are illustrated in figure 3.3. The key observation about the epipolar geometry of

cameras viewing smooth surfaces is the following property [125, 28]:

Property 1 Epipolar lines tangent to the profile in one image correspond to epipo-

lar lines tangent to the profile at the other image.

epipolar plane

frontier point

apparent contour

epipolar tangency

epipole

camera center

contour generator

Figure 3.3. The frontier point is a fixed point on the surface, corresponding to the intersection

of two contour generators. The epipolar lines corresponding to the frontier point are tangent

to the profiles. Images courtesy of Kwan-Yee Kenneth Wong.

The problem in estimating the epipolar geometry from profiles lies in the difficulty

of establishing image correspondences to be used in the computation of the cost

function (3.24). The solution comes from property 1: the geometric error to be

minimised will be the distance between epipolar lines and the closest tangent points

on the profiles [25, 24, 28], as shown in figure 3.4.
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(a) (b)

Figure 3.4. Geometric error for corresponding epipolar tangencies. The dashed line on each

image is the epipolar line corresponding to the solid epipolar line on the other image. The

distance between the dashed lines and the tangency point on the solid line is the geometric

error to be used in the minimisation of (3.24).

The direct application of this method, however, is not practical. First, seven

epipolar tangencies must be available, which is only possible when the object being

viewed has a very rich geometry. Second, unless the initialisation of parameters in

the optimisation process is made very close to the true solution, the algorithm will

be poised to get trapped in a local minima. An example of this situation is shown in

figure 3.5.

3.3.1 Affine Epipolar Geometry of Smooth Surfaces

When an affine approximation can be made, the application of property 1 can be

greatly simplified [111]. Instead of searching for the full set of parameters of the

fundamental matrix, one can initialise � and � � at arbitrary values. Then, epipolar

lines tangent to the profiles at these angles can be easily obtained. Let
� � and

� � be

two such lines, and let
� � � and

� � � be the corresponding epipolar lines at the second

image. The distances from these lines to the origins of the respective image coor-
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(a) (b)

Figure 3.5. Result of a direct search for epipolar tangencies satisfying property 1. Although

there is no ground truth available, a qualitative analysis shows that the solution found

corresponds to a local minima: since the camera motion is roughly planar, one of the

epipolar lines should be nearly parallel to the horizon [4], which does not happen. Images

courtesy of Roberto Cipolla.

(a) (b)

Figure 3.6. Estimation of epipolar geometry from profiles under affine approximation. The

epipolar lines are parallel to the horizon, as expected from planar motion (compare with

figure 3.5), and therefore the result is qualitatively correct.

dinate systems can be computed as
� + and

� �+ , � � � � � . Finally, the solution of the
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system of equations

� � � � � � � �� � � � � � � � � � (3.35)

gives the parameters � and � . The remaining tangent lines can be used to com-

pute a cost function similar to (3.24). The minimum number of epipolar tangencies

necessary to solve the problem is now four, a more realistic figure. Moreover, the di-

mension of the search space has been reduced to two. This procedure is summarised

in algorithm 3.1, and experimental results are shown in figure 3.6.

Algorithm 3.1 Estimation of the affine epipolar geometry from profiles.
initialise angles � and � � in (3.32);
while not converged do

find tangents to the profiles at the angles � and � � ;
select any two tangents

� � and
� � at the first image corresponding to tangents

� � �
and

� � � at the second image;
compute the distances

� + and
� �+ , � � � � � from the lines to the origins of the

respective image coordinate systems;
solve the equations (3.35);
update � and � � to minimise (3.24) for the remaining epipolar lines;

end while

3.4 Geometry of Multiple Cameras

The fundamental matrix is the specialisation for two views of general multicamera

tensors [64, 45, 71], which are algebraic expressions for the constraints the match-

ing of features along images imposes on the projective basis of the scene and the

cameras. Besides the fundamental matrix, the best known of these multicamera

tensors are the trifocal tensor [136, 137, 64, 66, 45, 46, 47, 18] and the quadfocal
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tensor [45, 19, 71, 138]. It has been shown in [45] that the quadrilinear relations are

linear combinations of the bilinear ones (expressed by the fundamental matrices)

and the trilinear ones (expressed by the trifocal tensor), and that any higher mul-

tilinear relation can be obtained from the bilinear, trilinear and quadrilinear ones.

This section will briefly review some aspects of the trifocal tensor and generic mul-

tilinear relations.

3.4.1 Trifocal Tensors

This section makes extensive use of the Einstein notation for tensors [39] and defi-

nitions introduced in [66]. The matrix
�

given by

� �
�����
�
� � � � � � � ���
...

. . .
...� � � � � � � � �

������
� (3.36)

can be written as
� � � ( + , where the subscript is the index of the column, and

the superscript is the index of the row. Therefore, � + represents a row vector and� ( represents a column vector. In general, � ( 	 ( 
��	�	� (��+ 	 + 
 �	�	� +�� represents a tensor of degree

� � � . Finally, any equation of the type
�
�
+ � � � + � + � � is shortened to � + � + � � ,

following the Einstein summation convention.

Consider the projective cameras
$ � � � � " ��� (+ , $ � � � �+ ( and

$ � � � � � �+ ( , and

let � �
	 + , � � ��	 �+ and � � � ��	 � �+ be the homogeneous representation of the images

at
$

,
$ �

and
$ � �

of a line � in space. Therefore, the planes � ( � � +( 	 + , �
�
( � � �( + 	 +

and �
� �
( � � � �( + 	 + intersect at � . This condition can be used to derive the expression

	 + �
	 �( 	 � �* ' ( *+ � (3.37)
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where

' (�*+ � � ( + � *� � � ( � � *+ (3.38)

defines the trifocal tensor [136, 66]. Let now � , �
�
and �

� �
be the images of a point

in 3D space, each one taken from the camera with corresponding superscript (see

figure 3.7). Then,

� � ��� � � * � � � + ' ( �
*
� � � ( ' + �

*
� � (3.39)

The trifocal tensor is a � � � � � tensor that plays for triplets of cameras the same

role that the fundamental matrix plays for stereo systems. Observe that (3.37) and

(3.39) are linear equations in the entries of the tensor that can be used to transfer

points and lines matched in a pair of views to a third one. Since (3.37) is an equality

in homogeneous coordinates, it provides three equations in the entries of
' (�*+ , two of

which are linearly independent. Analogously, (3.39) provides nine equations in the

entries of
')(�*+ , four of which are linearly independent [66]. The general expression

of the trilinear constraint is

� + 	 �( 	 � �* ' (�*+ � � � (3.40)

Parameterisation of the Trifocal Tensor. There are twenty-seven entries in the

trifocal tensor. However, these entries are not independent. Consider three arbitrary

camera matrices, which, together, hold � � � � � � � dof. The trifocal tensor does

not depend on the underlying projective frame, i.e., the same trifocal tensor can be

obtained by transforming the cameras according to an arbitrary projective transfor-
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mation
� 	

� , which has fifteen dof. Thus, the trifocal tensor has � � � � � � ��� dof.

The twenty-seven entries of the trifocal tensor are related through a set of nonlinear

constraints that have been thoroughly investigated [46, 47, 18].

Minimal parameterisations of the trifocal tensor has been given in [148, 91, 47].

The parameterisation in [148] is given in terms of the invariants of six points in three

views [127, 162], and it does not describe an explicit function that maps any given

eighteen numbers into a trifocal tensor. This difficulty is overcome in [47], where

the trifocal tensor is explicitly described in terms of eighteen parameters. However,

a simpler parameterisation can be obtained, in which it is not necessary to solve

any polynomial equation to obtain the tensor, therefore avoiding multiple solutions.

Consider the transformation
� 	

� given by

� �
��
� 
 � � �

�
� 
 �

���
� � (3.41)

where 
 + � � � 	���� , � � � � � . Applying this transformation to the camera matrices
$

,
$ �

and
$ � �

, the form of � ( + is preserved for whichever values of
�
, � and

�
are

used, which can then be chosen such that

$ � �
�����
�
� � � �� � � � � �� � ��� � � � �� � �� � ��

������
� � � ��� " � (3.42)

Now there is no remaining degree of freedom in � , but the overall scale of
$ � �

can
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still be set so that

$ � � �
�����
�
� �� � �� � �� �� � � � �� � �� � �

�� � � � �� � �� � �
�

������
� � ����� " � (3.43)

Using (3.38) to compute
' (�*+ one obtains an explicit minimal parameterisation of

the trifocal tensor:

, * �
�����
�

� � * � � � *� � � *�� *
� � � � � � �� � * � � *

�
� � �� � �� � *

� � �� � � �� � *�� *
� � � � � � �� � * � � *

� � �� � � �� � *� � *
� � �� � � �� � *�

������
� � (3.44)

where
� �
� � � . The parameterisation discussed in [47] is not general, since the

entry 111 of the tensor is arbitrarily made equal to one, which may not always

be possible, although the conditions under which this situation is verified are not

known. The parameterisation given in (3.44) is also not general: in order to make
$ �

and
$ � �

as shown in (3.42) and (3.43), the left epipoles of the fundamental matrices

obtained from
$

and
$ �

and from
$

and
$ � �

must have � -coordinate different from

zero. However, this is a condition whose validity can be verified in advance, and an

alternative parameterisation can be employed should it be found untrue.

Computation of the Trifocal Tensor. Given ��� triplets of points and ��� triplets

of lines matched in three views such that � ��� � � ���
	 � � , (3.37) and (3.39) can

be used to compute the entries of the trifocal tensor by a linear algorithm [66],

albeit the solution will not satisfy the eight nonlinear constraints described in [18].

However, using the parameterisation in (3.44) it is possible to recover matrices
$ �
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Figure 3.7. Geometric representation of the trilinear constraint.

and
$ � �

as in (3.42) and (3.43) by solving an overconstrained set of linear equations.

This is another advantage of using (3.44) over the parameterisation described in

[47], which demands the iterative solution of a nonlinear set of equations to obtain

the camera matrices and simultaneously impose the necessary constraints over the

entries of the tensor computed from the linear algorithm.
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To recover the matrices
$ �

and
$ � �

, one must first solve the linear system

�������������������������
�

� � � ' � �� � � � ' � �� � �
� �

� ' � �� � � � ' � �� � �
� � � ' � �� � � � ' � �� � �
� � � � ' � �� � � � ' � �� �
� � � � ' � �� � � � ' � �� �
� � � � ' � �� � � � ' � �� �
� � � � � ' � �� � � � ' � ��
� � � � � ' � �� � � � ' � ��
� � � � � ' � �� � � � ' � ��

� ������������������������
�

���������������������
�

� � �� ��� ��
� 
�� 
�
� 
�� ��


 � ��

 � ��

����������������������
�

�

�������������������������
�

�
��
�

�
��
�

�
��
�

� ������������������������
�

� (3.45)

where 
 is the scale factor of the tensor. Then, � � � ( + can be computed as

� ( + � � 
 ' � (+ � (3.46)

The remaining parameters are � �+ , � � � ��������� � , which can be obtained as the least

squares solution of

�����
�
� � ' � �+ � �

� �
�
� � ' � �+ � �

� �
�
� � ' � �+ � �

� ����
�
��
� � � �+ � �� ��

���
� �

�����
�
� ' � �+ �
�

� ' � �+ � �

� ' � �+ �
�

� ����
� � (3.47)

Once the matrices
$ �

and
$ � �

are found, an iterative procedure can be used to refine

the eighteen parameters in (3.44) in order to minimise the geometric error in the

transfer of points and lines.
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Affine Trifocal Tensor. In the affine case (see section 2.3.2), the trifocal tensor

must hold �
� � � � � � �

�
dof, corresponding to the � � � dof of three affine

cameras, minus the twelve dof of a general affine transformation. Therefore, by

specialising the cameras
$ �

and
$ � �

to be affine, a simpler parameterisation of the

trifocal tensor
' (�*+ can be obtained, given by

, � �
�����
�
� � �� � � �� � � ��� � � � � �� � �� �

� � �� � �� � �� � � �� � ��
� � � ��

� ����
� � (3.48)

, � �
�����
�

� � � � � � �� � � � �� �
� � � � � � �� � � � � �

�
� � �� � �� � �

� � �� � � �� � ��
� � � �

� � �� � � �� � ��

� ����
� � (3.49)

, � �
�����
�
� � � � ��
� � � � �� � ��
� � � � �� � ��

� ����
� � (3.50)

Although in a different form, this is the same result obtained in [110, 46], but now

the parameterisation is minimal, involving only twelve terms.

3.4.2 General Multilinear Relations

A natural extension of the trifocal tensor is the quadfocal tensor [45, 19, 71, 138],

which is a � � � � � � � tensor encoding the geometric relations between four images.

By considering the cameras
$

,
$ �

,
$ � �

as before plus a new camera
$ � � �

, the entries
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� 
 � �
of a quadfocal tensor � can be given by [71]

�
+ (�* � � �����

��������
�

$ +
$ �
(

$ � �
*

$ � � �
�

� �������
�
� (3.51)

If the matrix
$ � � �

is assumed to have the same format as the matrix
$ � �

in (3.43), a

parameterisation of the quadfocal tensor with only
��� � � � � �

�
� � terms can be

directly obtained from (3.51). This approach can be easily extended to parameterise

tensors of any degree.

3.5 Conclusions

This chapter presented a summary of epipolar geometry and multicamera relations.

It followed [164] in its approach to the introduction of the fundamental matrix,

and discussed different parameterisations for
"

. It also addressed some properties

of the essential matrix, which are further developed in chapter 5 to produce a self-

calibration algorithm. Some techniques for computing the fundamental matrix were

also discussed in this chapter.

The review of the fundamental matrix was then specialised to affine cameras,

and a novel parameterisation of the affine fundamental matrix was derived. This

was followed by a brief overview of the connection between epipolar geometry

and smooth surfaces, culminating in the development of a practical algorithm for

estimating the affine epipolar geometry of a stereo rig from profiles. Experiments

with real data were performed, and the results were compared to those of a well-
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known method [24]. A qualitative analysis demonstrated the validity of the new

approach.

The chapter was closed with a review of geometry of multicamera systems, both

projective and affine. This review focused on the trifocal tensor, for which a novel

minimal parameterisation was introduced. This parameterisation was shown to be

easily extendable, providing minimal representations for higher degree multiview

tensors.



Chapter 4

Epipolar Geometry from Profiles

Under Circular Motion

Men go abroad to wonder [...] at the circular motions of the stars; and they pass by
themselves without wondering.

St. Augustine (354–430), Confessions, book X.

4.1 Introduction

Methods for motion estimation and 3D reconstruction from point or line correspon-

dences in a sequence of images have achieved a high level of sophistication, with

impressive results [147, 84, 50]. Nevertheless, if corresponding points are not avail-

able the current techniques cannot be applied. That is exactly the case when the

scene being viewed is composed of non-textured smooth surfaces, and in this situa-

tion the dominant feature in the image is the profile or apparent contour of the sur-

face [85]. Besides, even when point correspondences can be established, the profile

55
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still offers important clues for determining both motion and shape, and therefore it

should be used whenever available.

This chapter addresses the problem of motion estimation and reconstruction of

3D models from profiles of an object rotating on a turntable, obtained from a fixed

camera. Its main contribution is the development of a practical and accurate tech-

nique for solving this problem from profiles alone, which is accurate enough to al-

low the reconstruction of the object. No correspondence between points or lines are

necessary, although the method proposed can be equally used when these features

are available, without any further adaptation. Symmetry properties of the surface

of revolution swept out by the rotating object are exploited to obtain the image of

the rotation axis and the homography relating epipolar lines, in a robust and elegant

way. These, together with geometric constraints for images of rotating objects, are

then used to obtain first the image of the horizon, which is the projection of the

plane that contains the camera centres, and then the epipoles, thus fully determin-

ing the epipolar geometry of the sequence of images. The estimation of the epipolar

geometry by this sequential approach (image of rotation axis — homography —

image of the horizon — epipoles) avoids many of the problems usually found in

other algorithms for motion recovery from profiles. In particular, the search for the

epipoles, by far the most critical step, is carried out as a simple one-dimensional

optimisation problem. The initialisation of the parameters is trivial and completely

automatic for all stages of the algorithm. After the estimation of the epipolar geom-

etry, the Euclidean motion is recovered using the fixed intrinsic parameters of the

camera, obtained either from a calibration grid or from self-calibration techniques.

Finally, the spinning object is reconstructed from its profiles, using the motion es-

timated in the previous stage. Results from real data are presented, demonstrating
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the efficiency and usefulness of the proposed method.

4.2 Previous Works and Bibliographic Review

The first attempts to approach the problem of motion estimation from apparent con-

tours date back to Rieger, in 1986 [128], who introduced the concept of frontier

point, interpreted as “centers of spin” [sic] of the image motion. That paper dealt

with the case of frontoparallel orthographic projection, which is a rather restric-

tive situation. This idea was further developed by Porrill and Pollard [125], who

recognised the frontier point as a fixed point on the surface, corresponding to the

intersection of two consecutive contour generators [27] (see section 3.3). The con-

nection between the epipolar geometry and the frontier points was established in

[56], and an algorithm for motion estimation from profiles was introduced in [25].

Related works also include [6], where a technique based on registering the images

using a planar curve was first developed. This method was implemented in [33],

which also showed results of reconstruction from the estimated motion. In [111]

the algorithm presented in [25] was specialised to the affine case. The work in

[79] presents a method where the affine approximation is used to bootstrap the full

projective case.

Initial steps towards a solution for the problem of reconstruction from appar-

ent contours with known camera motion were given by Barrow and Tenenbaum, in

1981 [7], where a technique to compute surface normals was introduced. Koen-

derink [85, 87] established relations between the differential geometry of a sur-

face and the differential geometry of its profiles. This work was extended in [55],

where algorithms for computing the curvature of a surface from its profiles were

developed and implemented for orthographic projection. In [158] a reconstruction
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method based on parameterising the surface by radial curves was developed. Bet-

ter results can be achieved by using an epipolar parameterisation, together with an

interpolation using the osculating circle, as introduced in [27]. Further refinements

were obtained in [14, 146], and a simple technique was developed in [161], based

on a finite-difference implementation of [27]. Despite its simplicity, the method

developed in [161] renders results comparable to those in [14] and [27], and was

therefore the technique used here.

This work makes use of symmetry properties [165, 95, 167, 37] of the surface

of revolution swept out by the rotating object to overcome the main difficulties and

drawbacks present in other methods that have attempted to estimate motion from

profiles, namely: the need for a very good initialisation for the epipolar geometry

and an unrealistic demand for a large number of epipolar tangencies [25, 6, 5] (here

as few as two epipolar tangencies are needed), restriction to linear motion [130]

(whereas circular motion is a more practical situation), or the use of an affine ap-

proximation [111, 161] (which may be used only for shallow scenes, section 3.3.1).

After obtaining the motion, the reconstruction can be achieved by a simple tech-

nique [161], based on the epipolar parameterisation [27], which extends the com-

mon triangulation methods from points to profiles.

An interesting comparison can be made between the work presented here and

[50]. Both papers tackle the same problem, but while in [50] hundreds of points

were tracked and matched for each pair of adjacent images, it will be shown here

that a solution can be obtained even when only two epipolar tangencies are avail-

able, with at least comparable results.

This chapter begins by describing a method to obtain the image of the rotation

axis and the coordinates of a special vanishing point, used in the parameterisation of
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the fundamental matrix under circular motion, from symmetry properties of the pro-

file of the surface of revolution swept out by an object placed on a turntable. These

provide the homography component of the fundamental matrix in a plane plus par-

allax representation. The epipolar constraint is then used to estimate the epipoles

for each pair of images in the sequence. These epipoles should be collinear, and the

line containing them corresponds to the horizon. Due to noise, this alignment will

not be verified, and a line is robustly fitted to the cloud of epipoles to provide an esti-

mate for the horizon. Once this estimate is available, the epipolar constraint is again

employed to recompute the epipoles with a minimal parameterisation specialised to

circular motion [159]. The epipoles are now constrained to lie on the horizon, pro-

viding an accurate estimate for the epipolar geometry of each pair of images in the

sequence. Intrinsic parameters, either computed from a self-calibration algorithm

or precomputed by any standard calibration technique, can then be used together

with the fundamental matrices to determine the camera motion.

Section 4.3 reviews the symmetry properties exhibited by the image of a sur-

face of revolution summarised in the form of the harmonic homology. Section 4.4

establishes the relationship between this transformation and the epipolar geometry,

and also presents two useful parameterisations of the fundamental matrix. These

parameterisations allow the estimation of the epipoles to be carried out as inde-

pendent one-dimensional searches, avoiding local minima and greatly reducing the

computational complexity of the estimation. Section 4.5 presents the algorithm for

motion recovery, and the implementation of the algorithm for real data is shown

in section 4.6, which also makes comparisons with previous works. Experimental

results using the estimated motion for reconstruction are shown in Section 4.7.
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4.3 Symmetry in the Image of a Surface of Revolu-

tion

An object rotating about a fixed axis sweeps out a surface of revolution [54]. Sym-

metry properties of the image of this surface of revolution can be exploited to esti-

mate the parameters of the motion of the object in a simple and elegant way, as will

be shown next. In the definitions that follow, points and lines will be referred to by

their representation as vectors in homogeneous coordinates, as usual.

A 2D homography that keeps the pencil of lines through a point � and the set

of points on a line
�

fixed is called a perspective collineation with centre � and axis
�
. A homology is a perspective collineation whose centre and axis are not incident

(otherwise the perspective collineation is called an elation). Let
�

be a point mapped

by a homology onto a point
� �

. It is easy to show that the centre of the homology, � ,

and the points
�

and
� �

are collinear. Let � � be the line passing through these points,

and � � be the intersection of � � and the axis
�
. If

�
and

� �
are harmonic conjugates

with respect to � and � � , i.e., their cross-ratio is one, the homology is said to be

a harmonic homology (see details in [133, 30] and also figure 4.1(a)). The matrix
�

representing a harmonic homology with centre � and axis
�

in homogeneous

coordinates is given by

� � � � � � � �

� � � � (4.1)

The profile of a surface of revolution exhibits a special symmetry property,

which can be described by a harmonic homology [95]. The next theorem gives

a formal definition for this property:
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Theorem 1 The profile of a surface of revolution � viewed by a pinhole camera

is invariant to the harmonic homology with axis given by the image of the rotation

axis of the surface of revolution and centre given by the image of the point at infinity

in a direction orthogonal to a plane that contains the rotation axis and the camera

centre .

The following lemma will be used in the proof of theorem 1.

Lemma 1 Let
, ��� � �� � � be a harmonic homology with axis

� �
and centre � �

on the plane � � , and let � ��� � �� � be a bijective 2D homography between the

planes � � and � . Then, the transformation
� � � , � 
�� ��� �� � is a harmonic

homology with axis
� � � 
 � � �

and centre � � �
� � .
Proof: Since � is bijective, � 
��

exists. Then

� � � � � � � � � � � �
� � � � � � � 
��

� � � � � � �

� � � � (4.2)

since � � � � � � � � �
. �

The following corollary is a trivial consequence of lemma 1:

Corollary 1 Let
,

, � ,
�

, � � and � be defined as in lemma 1. The transformation

� is an isomorphism between the structures
� , � � � � and

� � � � � , i.e,

�� � � � ,

� , � � � � � .

An important consequence of lemma 1 and corollary 1 is that if a set of points
��
,

e.g., the profile of a surface of revolution, is invariant to a harmonic homology T, the
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set
�

obtained by transforming
��

by a 2D projective transformation � is invariant

to the harmonic homology
� � � , � 
��

.

Without loss of generality assume that the axis of rotation of the surface of

revolution � is coincident with the
�

-axis of a right-handed orthogonal coordinate

system. Considering a particular case of theorem 1 in which the pinhole camera
�$

is given by
�$ � � � & " , where

& � � � � � " � , for any � � � , symmetry considerations

show that the profile
��

of � will be bilaterally symmetric with respect to the image of

the
�
-axis [116, 113], which corresponds to the line ��2 � � � � � " � in (homogeneous)

image coordinates.

Proof of theorem 1 (particular case): Since
��

is bilaterally symmetric about � 2 ,
there is a transformation

,
that maps each point of

��
onto its symmetric counterpart,

given by

, �
�����
�
�
� � �
� � �
� � �

� ����
� � (4.3)

However, as any bilateral symmetry transformation,
,

is also a harmonic homology,

with axis � 2 and centre ��� � � � � � " � , since

, � � � � ��� �
�2

�
�
� � 2 � (4.4)

The transformation
,

maps the set
��

onto itself (although the points of
��

are not

mapped onto themselves by
,

, but onto their symmetric counterparts), and thus
��

is invariant to the harmonic homology
,

. Since the camera centre lies on the � -axis

of the coordinate system, the plane that contains the camera centre and the axis of
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rotation is in fact the
�
� -plane, and the point at infinity orthogonal to this plane is

�
�
� � � � � � " � , whose image is ��� . �

Let
$

be an arbitrary pinhole camera. The camera
$

can be obtained by rotating
�$

about its optical centre by a rotation
%

and transforming the image coordinate

system of
�$

by introducing the intrinsic parameters represented by the calibration

matrix
#

. Let
#�% � � . Thus,

$ � � � ��� & " , and the point � � in space with image

��� in
�$

will project to a point � � � � ��� in
$

. Analogously, the line � 2 in
�$

will

correspond to a line
� 2 � � 
 �

� 2 in
$

. It is now possible to derive the proof of

theorem 1 in the general case.

Proof of theorem 1 (general case): Let
�

be the profile of the surface of revolution

� obtained from the camera
$

. Thus, the image of the bijection � acting on the

profile
��

is
�

(or � �� � �
), and, using lemma 1, the transformation

� � � , � 
��

is a harmonic homology with centre ��� � � ��� and axis
� 2 � � 
 �

� 2 . Moreover,

from Corollary 1,
� � �� � � , ��

, or
� � � � , ��

. From the particular case of the

theorem 1 it is known that the profile
��

will be invariant to the harmonic homology,
, so

� � � � �� � � . �

When the camera is pointing directly towards the axis of rotation, the trans-

formation that maps
�

onto its symmetric counterpart will be reduced to a skewed

symmetry [81, 114, 20], which corresponds to a particular case of the harmonic

homology in which the pole is at infinity. It is given by

��� ��	��

���������
�����
�
���	��
�������������� 
"!$#%�&�	��
'� �)(*�	��
'�
��� 
"!$#+���	��
,� �	��
-�������,� �)(*
"!$#+�

. . �	��
������/���

021111
354 (4.5)
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(a) (b) (c)

Figure 4.1. (a) Profile of a surface of revolution under general viewing conditions. The

symmetry of the profile is represented by a harmonic homology defined by the image of the

rotation axis and the pole. (b) When the camera is pointing towards the axis of rotation the

transformation reduces to a skewed symmetry, which is a particular case of the harmonic

homology with the pole at infinity. (c) If, additionally, the camera has zero skew and aspect

ratio one, the transformation becomes a bilateral symmetry, in which the lines of symmetry

are perpendicular to the image of the rotation axis.

where
� 2 � � �	� � � � � � � � � " � is the image of the rotation axis, with

� � � � �	� � � �
� � � ��� � . The angle � gives the orientation of the lines of symmetry, which are the

lines joining each point to its skew-symmetric counterpart (see figure 4.1(b)). The

transformation � has three dof.

If the camera also has zero skew and aspect ratio one, the transformation is

further reduced to a bilateral symmetry, given by

� �
�����
�
� �	� � � � � �
��� � � ��� � � � �� � � � � � �	� � � � ��� �
��� �
� � �

� ����
� � (4.6)

The transformation now has only two dof, since the lines of symmetry are orthog-

onal to
� 2 . A graphical representation of the bilateral symmetry , skewed symmetry

and harmonic homology is shown in figure 4.1.
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4.4 Parameterisations of the Fundamental Matrix

4.4.1 Fundamental Matrix under Circular Motion

The fundamental matrix corresponding to a pair of cameras related by a rotation

around a fixed axis has a very special parameterisation, as shown in [159, 50],

which can be expressed explicitly in terms of fixed image features under circular

motion (image of rotation axis, pole and horizon, jointly holding 5 dof) and the

relative angle of rotation (1 dof). A simpler derivation of this result will be shown

here. Moreover, a novel parameterisation based on the harmonic homology will be

introduced, providing a connection between the geometry of the complete sequence

(harmonic homology) with the geometry of a single pair of images (fundamental

matrix).

Consider the pair of camera matrices
�$ � and

�$ � , given by

�$ � � � � & "
�$ � � � %�� ����� & " � (4.7)

where

& � � � � �
� � (4.8)

and

%�� ����� �
�����
�
� � � � � � � � �

� � �� � � � � � �	� � �

������
� � (4.9)
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for
� �� � . Let

�"
be the fundamental matrix relating

�$ � and
�$ � . From (4.7), (4.8)

and (4.9), it is easy to see that

�" �
�����
�

� �	� � � � � �
�	� � � � � � � � � �

� � �
��� � �

������
�

� � � � � �
�����
�
�

�
�

������
� �
� � �	� � � � �

�

�����
�
�����
�
�

�
�

������
� � � � � � �

�����
�
�
�

�

������
� � � � � �

������
� �

(4.10)

Let � � � � � and �	� be the points at infinity in the � ,
�

and � directions, respectively,

in world coordinates. Projecting these points using the camera
�$ � , we obtain the

vanishing points � � � � � and � � given by

��� �
�����
�
�

�
�

� ����
� � � � �

�����
�
�
�

�

� ����
� and � �!�

�����
�
�
�
�

� ����
� � (4.11)

The image of the horizon is the line � � , and the image of the rotation axis is the line

� 2 , where

� 2 �
�����
�
�

�
�

������
� and � � �

�����
�
�
�

�

������
� � (4.12)
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Substituting (4.11) and (4.12) into (4.10), the desired parameterisation is obtained:

�" � � �
��� � � � ��� " � � � � �
� � � � 2 �

�� � � � �
�2 � � � (4.13)

The factor “
� �
��� � ” can be eliminated since the fundamental matrix is defined only

up to an arbitrary scale. Assume now that the cameras
�$ � and

�$ � are transformed

by a rotation
%

about their optical centers and the introduction of a set of intrinsic

parameters represented by the calibration matrix
#

. The new pair of cameras,
$ �

and
$ � , is related to

�$ � and
�$ � by

$ � � � �$ � and

$ � � � �$ � � (4.14)

where � � #�%
. The fundamental matrix

"
of the new pair of cameras

$ � and
$ �

is given by

" � � 
 � �" � 
��

� ����� � � � � � � " � � � � �
� � � � 2 � �� � � � � �2 � � (4.15)

where � � � � ��� ,
� � � � 
 �

� � and
� 2 � � 
 �

� 2 . Since the fundamental matrix is

defined only up to a scale factor, (4.15) can be rewritten as

" � � � � � � � " � ��� � � �
� � � � 2 � �� � � � � �2 � � (4.16)

where
� � �

� ����� � � �
. The notation

" �����
was used in (4.16) to emphasise that, for

a given circular motion sequence, the parameters ��� , � 2 , � � and
�

are fixed, and the

fundamental matrices associated with any pair of cameras in the sequence differs
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only in the value of
�
.

4.4.2 Parameterisation via Planar Harmonic Homology

The images of a rotating object are the same as the images of a fixed object taken by

a camera rotating around the same axis, or by multiple cameras along that circular

trajectory. Consider any two such cameras, denoted by
$ � and

$ � . If
$ � and

$ � point towards the axis of rotation and have zero skew and aspect ratio 1, their

epipoles � � and � � will be symmetric with respect to the image of the rotation axis,

or � � � , � � , according to figure 4.2. In a general situation, the epipoles will simply

be related by the transformation � � � � � � . It is then straightforward to show that

the corresponding epipolar lines
� � and

� � are related by
� � � � 
 � � � . This means

that the pair of epipoles can be represented with only two parameters once
�

is

known. From (4.1) it can be seen that
�

has only four dof.

l s

θ/2θ/2

axis of rotation

camera center camera center

l s

P
e e

P1

1 2

2

image planes

Figure 4.2. If the cameras are pointing towards the axis of rotation and their skew is zero

and aspect ratio is 1, the epipoles � � and � � are symmetric with respect to the image of the

rotation axis.
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It is possible to express
"

in (4.16) according to a planar plus parallax repre-

sentation (see section 3.1.2) such that
�" � � �� � " � �� , where

�� 
 �
is any matrix that

maps the epipolar lines from one image to the other, and
�� � is the epipole in the

second image. From this discussion and section 4.3, it follows that

" � � � � " � � � (4.17)

where, from (4.16), � � � � � � � � � � � � � � 2 " � � � . Therefore,
"

has only six dof: four

to determine
�

and two to fix � � , in agreement with [159]. Note that in the case

of skewed symmetry and bilateral symmetry, the dof of the fundamental matrix will

be reduced to five and four respectively, corresponding to the decrease in the dof of

the symmetry transformation. A full account of the dof of the fundamental matrix

under different configurations is given in table 4.1.

From (4.17) it can be seen that the transformation
�

corresponds to a plane

induced homography. This means that the registration of the images can be done by

using
�

instead of a planar contour as proposed in [6, 33]. It has been discussed

in section 3.1.2 that different choices of the plane that induces the homography in

a plane plus parallax parameterisation of the fundamental matrix, such as the one

in (4.17), will result in different homographies, although they will all generate the

same fundamental matrix, since

" � � � � " � � � � � � " � � � � � � $ � " 
 $ � � � � (4.18)

The three parameter family of homographies � � � � � $ � " parameterised in
$

has a

one-to-one correspondence with the set of planes in
� �

. The particular plane that

induces the planar homology
�

is given in the next theorem:
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Theorem 2 The planar homology W relating the cameras
$ � and

$ � is induced

by the plane
�

that contains the axis of rotation and bisects the segment joining the

optical centres of the cameras.

Proof: The existence and uniqueness of
�

satisfying the hypothesis of the theorem

are trivial. Let � � � � � � � " � , � � � � � � � " � , and � � � � � � � " � . Without loss of

generality, let

$ � � # % � � � � " and

$ � � # % � % �� � � " � (4.19)

where K is the matrix of intrinsic parameters of
$ � and

$ � , R is the rotation ma-

trix relating the orientation of the coordinate system of
$ � to the world coordinate

system, and
% ��

is a rotation by
�

about the
�
-axis of the world coordinate system,

i.e.,

% �� �
�����
�
�	� � � � �
��� �

� � �� �
��� � � � � � �

������
� � (4.20)

Therefore,

 � � � � � , the point

� � � � � �
��� � � � � � � � �	� � � � � � � " � lies on
�

. Pro-

jecting
�

using
$ � and

$ � , one obtains � � � #�% � � � � � � and � � � # % � % �� � �
� � � . Since

% �� � �
�����
�
� � � � � �	� � ��� � � � � � �	� � � � � � ��� � � �

�

� � � � � � ��� ��� � � � � � � � � � �	� � ��� � � �

������
�
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�
�����
�
� � ��� ��� � � �

�

� �	� � ��� � � �

������
� �

�����
�
�
� � �
� � �
� � �

������
� � � (4.21)

or
% �� � � � � � � � � � � � � � , we have � � � # % � � � � � � � � � � � ��� � � " , or � � � � � �

� # % � � � � � % 
�� # 
�� �
� � . It can be shown [113] that

# % � � � � � and �
� � % 
�� # 
�� �

� �2 , and thus � � � �
� � . �

A graphical representation of the result in theorem 2 is shown in figure 4.3.

P1

θ/2 θ/2
P2

Figure 4.3. The harmonic homology is a homography induced by the plane that contains

the axis of rotation and bisects the segment joining the camera centers.

4.5 Motion Estimation

Consider an object that undergoes a full rotation around a fixed axis. The envelope

� of its profiles is found by overlapping the images of the sequence and applying

a Canny edge detector [17] to the resultant image. This envelope corresponds to

the image of a surface of revolution, and thus it is harmonically symmetric. The
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Configuration Parameterisation dof

General motion � � " � � � �
�

Circular motion � � " � � � � �
Circular motion with camera pointing at axis of rota-
tion � � " � � � � �
Circular motion with camera pointing at axis of rota-
tion and having zero skew and aspect ratio 1 � � " � � � �	�
Circular motion with camera pointing at axis of rota-
tion and having zero skew and no rotation about the
optical axis

� � " � � � � �
�

Pure translation � � " � �
Pure translation orthogonal to optical axis � ��� " � �

Table 4.1. Analysis of the dof of the fundamental matrix for different types of motion with

fixed intrinsic parameters.

homography
�

related to � is then found by sampling � points � + along � and

optimising the cost function

��� � � � � � 2 � �
��
+ � � � � � �	� � � � � � � � � 2 � � + � � � (4.22)

where
� � � � � � � � � � � � � 2 � � + � is the orthogonal distance between the curve � and the

transformed sample point � �+ � � � � � � � 2 � � + . The estimation of
�

is summarised

in procedure 4.2.

The initialisation of the line
� 2 and the point � � can be made very close to the

global minimum by automatically locating one or more pairs of corresponding bi-

tangents on the envelope. Given two bitangents
� � � ��� � � � and

� �
� ��� � � � on the two

sides of the profile � with bitangent points � ��� � � and � ��� � � , respectively (see fig-

ure 4.4), the intersection of the two bitangents (
��� � ��� � � � � � �

� ��� � � � ) and the inter-

section of the diagonals (
� � � ��� � � � � � �

� � � � � � ) give two points defining a line that

can be used as an estimate of
� 2 . An estimate for the vanishing point ��� is given by
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the point of intersection of the lines
� � � ��� � �

�
and

� � � � � � � � . The initialisation of
� 2

and � � from bitangents often provides an excellent initial guess for the optimisation

problem. This is generally good enough to avoid any local minimum and allows

convergence to the global minimum in a small number of iterations.

1
p
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p
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1
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2
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ε
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2

1
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Figure 4.4. Initialisation of the optimisation parameters
� 2 and � � from the bitangents and

lines formed by bitangent points.

Procedure 4.2 Get Homology: Estimation of the harmonic homology
�

.
overlap the images in the sequence;
extract the envelope � of the profiles using a Canny edge detector;
sample � points � + along � ;
initialise the axis of symmetry

� 2 and the vanishing point ��� using bitangents;
while not converged do

compute the points � �+ � � � + ;
compute the distances between � and � �+ using (4.22);
update

� 2 and � � to minimise (4.22);
end while

After obtaining a good estimate of
�

, one can then search for epipolar tan-

gencies between pairs of images in the sequence using the parameterisation given

by (4.17). To obtain a pair of corresponding epipolar tangents in two images, it is

necessary to find a line tangent to one profile that is transformed by
� 
 �

to a line

tangent to the profile in the other image (see figure 4.5). The search for correspond-
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W
-T

W
-T1l

l2
=

l2

Figure 4.5. The line
� � tangent to the bottom of the profile in the first image is transferred

to the line
� � in the second image by the harmonic homology. A line

���� parallel to
� � and

tangent to the bottom of the profile is located and the distance between
� � and

���� drives

the search for the orientation of
� � , which upon convergence will correspond to an epipolar

tangent. An epipolar tangent at the top of the profile is obtained in the same way.

ing tangents may be carried out as a one-dimensional optimisation problem. The

single parameter is the angle � that defines the orientation of the epipolar line
� � in

the first image, and the cost function is given by

��� 	 � � � � � � � �	� � 
 � � � � � � � � �� � � � � � (4.23)

where the function
� � � �	� � 
 � � � � � � � ���� � � � � gives the distance between the transferred

line
� � � � 
 � � � and a line

���� parallel to
� � and tangent to the profile in the second

image. Typical values of � lie between -0.5 rad and 0.5 rad, or
� � � � and � � � .

The shape of the cost function (4.23) for the profiles in figure 4.5 can be seen in

figure 4.6.

The epipoles can then be computed as the intersection of epipolar lines in the

same image. After obtaining this first estimate for the epipoles, the image of the

horizon can then be found by robustly fitting a line
� � to the initial set of epipoles,

such that
� �� � � � � . Figure 4.10 shows a typical output of procedure 4.3, together
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Figure 4.6. Plot of the cost function (4.23) for corresponding epipolar tangents near the top

(a) and bottom (b) of the profiles in figure 4.5.

Procedure 4.3 Get Horizon: Estimation of the horizon.
extract the profiles of the images using a Canny edge detector;
fit B-splines to the top and the bottom of the profiles;
for each selected pair of images do

for top and bottom of profiles do
initialise the angle � defining the orientation of the epipolar line at the first
image;
while not converged do

find
� � (see figure 4.5);

compute the line
� � � � 
 � � � ;

find the line
� �� (see figure 4.5);

compute the distance between
� � and

���� using (4.23);
update � to minimise (4.23);

end while
end for
compute epipoles by intesecting epipolar lines tangent to the top and bottom
of the profiles in each image;

end for
fit the horizon

� � to the cloud of epipoles.

with the horizon
� � fitted to the epipoles.

An alternative method to compute the epipoles is to register the profiles using

the homology
�

, eliminating the effects of rotation on the images, and then apply
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any of the methods in [6, 130, 33], in a plane plus parallax approach. However, no

advantage has been obtained by doing so, since to use this method it is necessary

to find a common tangent between two profiles, which involves a search at least as

complex as the one in procedure 4.3.

4.5.1 Estimation of the Epipoles Constrained to the Horizon

After estimating the horizon, the only missing term in the parameterisation of the

fundamental matrix shown in (4.16) is the scale factor

	�� � � � � � � � � (4.24)

This parameter can be found, again, by a one-dimensional search that minimizes

the geometric error of transferred epipolar lines as shown in figure 4.7. Therefore,

two distinct parameterizations of the fundamental matrix are used: (4.17) to obtain

the cloud of epipoles and the horizon, and (4.16) to recompute the position of the

epipoles constrained to lie on the horizon.

Procedure 4.4 Get Epipoles: Estimation of the Epipoles.
for each selected pair of images do

initialise the scale factor 	 in (4.24);
while not converged do

compute a putative fundamental matrix using (4.16);
locate epipolar tangents at the top and the bottom of profiles in both images;
transfer epipolar tangents from the first image to the second the image using�

;
compute the geometric error as the distance between the lines transferred
from the first image to the epipolar tangencies in the second image, as shown
in figure 4.7;
update 	 to minimise the geometric error;

end while
end for
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(a) (b)

Figure 4.7. Once the horizon is computed, the location of the epipoles along this line can be

refined by using (4.16). This figure shows the geometric error for transferred epipolar lines.

The terms � � , � 2 and
� � were obtained from procedure 4.2 and procedure 4.3. The solid

lines in each correspond to tangents to the profile passing through the putative epipoles,

and the dashed lines correspond to lines transferred from one image to the other by applying

the harmonic homology
�

. The sum of the distances between transferred lines and the

corresponding tangent points is the geometric error that drives the search for the scale

factor 	 � � � � � � � � in (4.16). This scale factor was set to 100 in the figure, for better

visualisation.

The overal procedure for estimating the epipolar geometry of a turntable se-

quence is shown in algorithm 4.1.

Algorithm 4.1 Estimation of the Epipolar Geometry.
estimate the harmonic homology

�
using Get Homology (see procedure 4.2);

estimate the horizon
� � using Get Horizon (see procedure 4.3);

estimate the epipoles using Get Epipoles (see procedure 4.4);
compute the fundamental matrices using (4.17);

4.5.2 Limitations of the Algorithm

There are some limitations on the applicability of the algorithms presented here:
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Density of the sequence of images. If the number of images in the sequence

is too small, or the angle of rotation between successive snapshots is too large, the

envelope of the profiles no longer approximates the profile of a surface of revolution,

and, therefore, procedure 4.2 will fail to correctly estimate the image of the rotation

axis and the pole. In practice, this problem does not arise if the angles of rotation

in a closed sequence are below � � � . This problem can be overcome by performing

a simultaneous search for the harmonic homology and the rotation angles, at the

expense of increasing the number of search parameters and therefore the complexity

of the optimisation.

Symmetry of the object. If the object placed on the turntable is rotationally sym-

metric and its axis of symmetry coincides with the axis of rotation of the turntable,

procedure 4.3 will fail. To understand this problem, consider the alternative for-

mulation of procedure 4.3 in which the epipoles are computed by first registering

the images by using the harmonic homology and then computing the epipoles as

the intersection of common tangents to the profiles. Under the conditions described

above, the registration of the profiles will not produce any effect, since the image

of a surface of revolution with the same rotation axis as the turntable is invariant to

the harmonic homology. Moreover, the profiles will coincide, and any tangent to

one of the profiles will be a common tangent to the pair of profiles. Therefore, the

position of the epipole will be undetermined. To avoid this problem it is enough to

reposition the symmetric object over the turntable so that its symmetry axis does not

coincide anymore with the turntable axis. The further the two axes are, the better.

Of course, the placement of the object must not be so distant from the centre of the

turntable as to remove it from the field of view. In the experiments shown in this

paper using a vase and a head model, which are nearly rotationally symmetric in the
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regions of interest (the top and the bottom of the objects), it was verified that the

problem disappears if the axes are separated by a distance of about 50 pixels.

4.6 Implementation and Experimental Results

Figure 4.8. Top row shows four images of the vase. Bottom row shows four images of the

head model.

The algorithms described in the previous Section were tested using two sets of

images from a vase and a head model, respectively (see figure 4.8). Both sets con-

sisted of 36 images, with the turntable rotated by an angle of ��� � between successive

snapshots. The fact that the angle was fixed was not used either in the estimation of

the epipolar geometry, nor in the reconstruction to be shown in Section 4.7. For the

vase sequence, the symmetry transformation associated with the envelope of its pro-

files was assumed to be a harmonic homology
�

, whereas for the head sequence the

transformation was modelled as a skewed symmetry � . The choice of the simpler

model for the head sequence was motivated by the fact that the camera was nearly

pointing towards the axis of the turntable, and therefore the skewed symmetry trans-

formation could be used. Of course, there would have been no problem in adopting

the more complex model. To obtain
�

and � , procedure 4.2 was implemented with
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100 evenly spaced sample points along each envelope ( � � ��� � ). Initialisations

were done by using bitangents. Less than 10 iterations of the Levenberg-Marquardt

algorithm were necessary, with derivatives computed by finite differences. The final

positions of the rotation axes can be seen in figure 4.9.

Figure 4.9. Overlap of the images of the vase (left) and of the head (right). The solid lines

are the envelopes of the profiles and dashed lines are estimates of the images of the rotation

axis in both sequences.

In the implementation of procedure 4.3, seventy pairs of images were selected

by uniformly sampling the indexes of the images in each sequence, and the resultant

estimate of the epipoles for the vase sequence is shown in figure 4.10, which also

shows the horizon
� � found by a robust fit to the epipoles. To get

� � a minimisation of

the median of the squares of the residuals was used, followed by removal of outliers

and orthogonal least-squares regression using the remaining points (inliers). The

epipolar geometry was then re-estimated with the epipoles constrained to lie on
� � . Once the epipolar geometry was obtained, precomputed intrinsic parameters

were used to convert the fundamental matrices into essential matrices, and these

were then decomposed to provide the camera motion and orientation. The resulting

camera configurations are presented in figure 4.11.

The object was rotated on a manual turntable with resolution of � � � � � , but the
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Figure 4.10. Epipoles estimated by procedure 4.3. The horizon was found by doing a robust

fit to the cloud of epipoles. Inliers are shown as circles ( � ) and outliers as crosses (
�

).

real precision achieved is highly dependent on the skill of the operator. The RMS

errors in the estimated angles were � � � � � and � � � � � for the vase and head sequence

respectively (see figure 4.12), demonstrating the accuracy of the estimation.

Rotation axis

Reconstructed vase Rotation axis

Reconstructed object

Figure 4.11. Camera configurations for the vase (left) and head (right) sequences.
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It is interesting to compare this result with the ones shown in [50, pg. 166] for

the “Head”, “Freiburg” and “Dinosaur” sequences, where the average number of

point matches per image pair varies from 137 to 399, depending on the sequence. It

should be stressed that only two epipolar tangents were used for each pair of images

in the experiments presented in this paper, with comparable results.
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Figure 4.12. Estimated angles of rotation between successive views for the vase (left) and

head (right) sequences, with RMS errors � � � � � and � � � � � , respectively.

4.7 Reconstruction from Image Profiles

The algorithm for motion estimation introduced here can be used even when point

correspondences can be established. On the other hand, methods such as the ones in
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Algorithm 4.2 Reconstruction from image profiles.
for � � � to � � � do

sample � points � ( along the profile in image � ;
for

 � � to � do

compute the epipolar line
�

at image � � � corresponding to the point � ( ;
find the intersection �

�
( of the line

�
with the profile in image � � � ;

triangulate the points � ( and �
�
( ;

end for
end for

[147], [50] and [84] cannot deal with situations where profiles are the only available

features in the scene, and it is therefore natural to use the motion recovered by the

technique shown in this paper to perform reconstruction from profiles. To solve this

problem under known motion, the main algorithms can be found in [146, 158, 27,

14, 161]. Results reported in [161] compare the last three, and although it slightly

favours the one in [14], the simplicity of the method proposed in [161] justifies its

choice for evaluating the accuracy of the motion estimated here. It should be clear,

however, that once the camera motion is estimated, a number of techniques for

reconstruction could be used, such as voxel-carving [145, 89] or level-set methods

[43].

4.7.1 Description of the Method

The algorithm for reconstruction from profiles introduced in [161] is based on the

assumption that, if the motion is small, the error in triangulating correspondences

in images of successive contour generators, established via the epipolar parameter-

isation, will be negligible (see figure 4.13). This corresponds to a finite-difference

approximation of the technique shown in [27]. A summary of the procedure is

shown in algorithm 4.2.
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u2

u1

1C

C2

Epipolar plane

Figure 4.13. The correspondence between the points � � and � � is established via the

epipolar parameterisation. The result of the triangulation of � � and � � is not a point on the

surface, but if the motion is small, the error will be negligible.

4.7.2 Implementation and Experimental Results

B-splines were fitted to the left sides of the profiles in the sequences. From top

to bottom, 18 points were sampled along the splines in the first image (see fig-

ure 4.14(a)), from which the corresponding epipolar lines in the second image were

computed, and the corresponding points were then triangulated. The intersection of

the epipolar lines with the profile at the second image is shown in figure 4.14(b).

Since the corresponding points satisfy the epipolar constraint by construction, the

triangulation will be exact, i.e., the rays associated with the points at the first image

will exactly intersect the corresponding rays from the second image. As pointed out

in [69], in this case the choice of triangulation method becomes irrelevant, and a

simple least-squares solution was adopted. Details of the 3D reconstruction of the
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object are shown in figure 4.15 and figure 4.16.

(a) (b)

Figure 4.14. (a) Points sampled at the first image. (b) Corresponding epipolar lines at the

second image. The triangulation is carried out between a point in the first image and the

intersection of its corresponding epipolar line and the profile in the second image.

4.8 Summary and Conclusions

This chapter introduced a novel technique for motion estimation from image pro-

files. It does not make use of expensive search procedures, such as bundle adjust-

ment, although it naturally integrates data from multiple images. The method is

mathematically sound, practical and highly accurate. From the motion estimation

to the model reconstruction, no point tracking is required and it does not depend on

having point correspondences beforehand.

The convergence to local minima, a critical issue in most non-linear optimisa-

tion problems, is avoided by a divide-and-conquer approach that keeps the size of

the problem manageable. Moreover, a search space with lower dimension results in

fewer iterations before convergence. The quality of model reconstructed is remark-

able, in particular if one considers that only the least possible amount of information

has been used.



86 CHAPTER 4. EPIPOLAR GEOMETRY FROM PROFILES UNDER...

Figure 4.15. Details of the reconstruction of the vase. The left column shows the mesh and

the right column shows the reconstruction after shading.
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Figure 4.16. Details of the reconstruction of the head. The left column shows the mesh and

the right column shows the reconstruction after shading.
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Chapter 5

Camera Self-Calibration

5.1 Introduction

This chapter introduces a novel technique for self-calibration of cameras with pos-

sibly varying intrinsic parameters based on the Huang and Faugeras constraints,

which state that the two nonzero singular values of an essential matrix must be

equal. For known skew, aspect ratio and principal point, this condition is used to de-

rive an approximate linear solution for the estimation of the focal lengths, which can

be used to bootstrap a more accurate search for the parameters of the cameras. Un-

der minimal assumptions, such as zero skew, the technique presented here can cope

with variable intrinsic parameters, and it has a built-in detection of critical motions

for self-calibration, which greatly improves the accuracy of the self-calibration.

The main contributions of the chapter are the development of a novel linear

algorithm for estimating focal lengths of multiple cameras, the embedded detec-

tion of pairs of images for which the camera motion is critical for self-calibration

[163, 141, 142, 80], and the introduction of a nonlinear refinement to the linear so-

lution with simultaneous estimation of the remaining camera parameters that also

89



90 CHAPTER 5. CAMERA SELF-CALIBRATION

incorporates the critical motion detection. The input of the algorithm is a set of

fundamental matrices, and it is not necessary to perform any kind of projective fac-

torisation [143, 150, 72] or projective bundle adjustment [9, 143, 10] prior to the

calibration. Experiments with synthetic and real data have shown that the technique

is robust to noise and that it operates well under quasi-critical motions.

5.2 Previous Works

The problem of self-calibration has attracted the attention of researchers in the

computer vision community for providing a powerful method for the recovery of

3D models from image sequences. Compared to the classical calibration problem

[155, 49, 41], the algorithms for self-calibration make no or few assumptions about

the particular structure of the scene being viewed. Instead, they attempt to calibrate

the cameras by finding intrinsic parameters that are consistent with the underlying

projective geometry of a sequence of images. This constraints of consistency can be

expressed as the Kruppa equations [109, 101, 98], the Trivedi constraints [154], the

Huang and Faugeras constraints [76, 61, 112], or formulated in terms of the abso-

lute quadric [151, 122]. Interestingly, it has been shown that the Kruppa equations,

the Trivedi constraints and the Huang and Faugeras constraints are equivalent [101].

However, as pointed out in [97], that does not mean that they will produce the same

results when used in self-calibration algorithms. The Kruppa equations have the

advantage of requiring the solution of systems of polynomial equations of lower

order when compared with the Trivedi and the Huang and Faugeras constraints (but

see section 5.4.1), which, however, do not make explicit use of epipoles, whose

estimation is notoriously inaccurate.

The concept of self-calibration was introduced by Maybank, Faugeras and Lu-
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ong [109, 44], who proposed an approach based on the Kruppa equations when

up to three views of a scene are available, and established the relation between

camera intrinsic parameters and the absolute conic. An algorithm for computing

the focal lengths of two cameras given the corresponding fundamental matrix and

knowledge of the remaining intrinsic parameters was provided by Hartley in [61]

(an elegant closed-form solution for the same problem can be found in [13]). That

paper also made the first use of the Huang and Faugeras constraints as a tool for

self-calibration. In [62] the ideas in [109] were used in the development of a prac-

tical algorithm for self-calibration for more than three cameras. Together with [45],

it also put forward the idea of finding an appropriate 3D homography that updates a

projective reconstruction to a Euclidean one. This approach was further developed

by Triggs in [151], where the absolute quadric was introduced, and by Pollefeys,

Koch and Van Gool in [121, 122], where a practical method for self-calibration of

multiple cameras with varying intrinsic parameters was developed.

The technique presented in this paper generalises the ones introduced in [61, 13].

It has a linear step, where only the focal lengths are computed, followed by a nonlin-

ear optimisation that refines the estimate obtained in the linear stage and allows for

the estimation of more intrinsic parameters, such as the principal point. Moreover,

it naturally takes into account how close to a critical motion for self-calibration

[163, 141, 142, 80] the relative motion between any two pair of cameras in the

sequence is, and “weights” the information provided by that particular pair accord-

ingly. Finally, the input of the algorithm is only a set of fundamental matrices, and

therefore there is no need for projective bundle adjustment. This is an interesting

advantage, for although it is easy to compute fundamental matrices consistent with a

given set of projective camera matrices (and still use the technique proposed here),
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the estimation of projective camera matrices given a set of fundamental matrices

is a nontrivial problem, due to nonlinear relations the fundamental matrices must

simultaneously satisfy [48].

5.3 Theoretical Background

The general form for the matrix
#

of intrinsic parameters of a pinhole camera is

# �
�����
�
� � �

� � � �

� � �

������
� � (5.1)

It has been shown in chapter 3 that given the fundamental matrix
"

related to a

pair of images with intrinsic parameters given by
# � and

# � , the corresponding

essential matrix will be given by
! � # � � " # � [102]. The relative translation

&
and

rotation
%

between the images can be found decomposing the essential matrix
!

as

! � � & " � % � (5.2)

5.3.1 The Huang and Faugeras Constraints

Several works have pointed out the possibility of exploiting the Huang and Faugeras

constraints for self-calibration [61, 112, 97]. This constraint states that the two

nonzero singular values of an essential matrix
!

must be equal [156, 76], i.e.,
! �
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��� � � , where

� �
�����
�

� � �
� � �
� � �

������
� � (5.3)

and � and � are orthonormal matrices. This constraint is a necessary and sufficient

condition for the decomposition of
!

as shown in (5.2) to be possible.

5.4 Self-Calibration from the Essential Matrix

Consider a sequence of
�

images taken from
�

pinhole cameras (or from the same

pinhole camera in
�

different positions), and let
# + be the matrix of intrinsic pa-

rameters of camera � , where it is assumed zero skew and aspect ratio one (see sec-

tion 2.3.1), i.e,

# + �
�����
�
� + � � +

� � + � +

� � �

������
� � (5.4)

Therefore, the essential matrix related to images � and



is given by

! + ( � # �
(
" + ( # + � (5.5)

where
" + ( is the fundamental matrix corresponding to images � and



. Neverthe-

less, the Huang and Faugeras constraints will not be satisfied in (5.5) for arbitrary

matrices
# ( and

# + . Since any fundamental matrix has rank two, the rank of
! + (

will also be two for any
# ( and

# + with full rank. However, as pointed out by
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Longuet-Higgins and first mentioned in [76], the condition that two singular val-

ues of a matrix are equal yields two constraints on its elements, which have to be

additionally imposed over
# ( and

# + for (5.2) to be possible.

5.4.1 Linear Solution

This section presents the derivation of a novel linear algorithm for self-calibration

under the assumptions of known principal point, aspect ratio and skew. It gener-

alises for multiple cameras the results found in [61, 13], and further extends them to

take into account critical and quasi-critical camera configurations, as will be shown

in subsection 5.4.2. Under the assumption that so many intrinsic parameters are

known, it is reasonable to argue that one could simply trust the (presumably) highly

accurate specifications for the value of the focal lengtht provided by the camera

manufacturer. However, for a sequence of images aquired from a zooming camera,

the focal length will be varying, despite any default value indicated by the manu-

facturer. In this situation the algorithm presented here can clearly play an important

role.

A necessary condition for the validity of the Huang and Faugeras constraints

derived by Longuet-Higgins [76] is that if

! + ( �
�����
�
� $ + (� � �
� $ + (� � �
� $ + (� � �

������
�
�

� (5.6)

then

$ + (�$ + ( �� $ + (� �
$ + (�$ + ( �� $ + (� �

$ + (�$ + ( �� $ + (� � � � (5.7)
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This result can be directly verified by expanding (5.2) with
& � � � � � � � � " � and

% � � � � � � � � " � , from which one obtains

! + ( �
�����
�
� � � �

� � � � � �
� �� � � �

� � � � � �
� �� � � �

� � � � � �
� �

������
�
�

� (5.8)

and (5.7) follows by comparing (5.6) and (5.8). Moreover, (5.7) can be rewritten as

� � ��� $ + ( �� $ + (� � �
��� $ + ( �� $ + (� � �

� � $ + ( �� $ + (� ���
�����
�
� $ + (� � �
� $ + (� � �
� $ + (� � �

������
� � � � (5.9)

and, therefore,

�����
�
�
��� $ + ( �� $ + (� �
�
��� $ + ( �� $ + (� �
�
��� $ + ( �� $ + (� �

������
� � ��� � ! + ( � � (5.10)

where
��� � ! + ( � is the left null space of

! + ( . However, from (5.5),

� � � ! + ( � � # 
��
( � ( + 	 ( + � (5.11)

where � ( + is the left epipole of
" + ( and 	 ( + � � . Let

� + � � and � + � � in (5.4) and

" + ( �
�����
�
� + (� � � + (� � � + (� �� + (� � � + (� � � + (� �� + (� � � + (� � � + (� �

������
� � (5.12)
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Therefore, from (5.5),

! + ( �
�����
�
� + � ( � + (� � � + � ( � + (� � � ( � + (� �
� + � ( � + (� � � + � ( � + (� � � ( � + (� �
� + � + (� � � + � + (� � � + (� �

� ����
� � (5.13)

and

$ + ( �� $ + (� � � �+ � ( � + (� � � + (� � � � �+ � ( � + (� � � + (� � � � ( � + (� � � + (� � �$ + ( �� $ + (� � � �+ � ( � + (� � � + (� � � � �+ � ( � + (� � � + (� � � � ( � + (� � � + (� � � (5.14)$ + ( �� $ + (� � � �+ � �( � + (� � � + (� � � � �+ � �( � + (� � � + (� � � � �( � + (� � � + (� � �
Thus, substituting (5.10), (5.11) and (5.13) in (5.14), with � ( + � � 
 ( +� 
 ( +� 
 ( +� " � , one

obtains

� ( ��� 
 ( +� 	 ( + � � � �+ � ( � + (� � � + (� � � � �+ � ( � + (� � � + (� � � � ( � + (� � � + (� � � (5.15)

� ( ��� 
 ( +� 	 ( + � � � �+ � ( � + (� � � + (� � � � �+ � ( � + (� � � + (� � � � ( � + (� � � + (� � � (5.16)

�
��� 
 ( +� 	 ( + � � � �+ � �( � + (� � � + (� � � � �+ � �( � + (� � � + (� � � � �( � + (� � � + (� � � (5.17)

The focal length � + can be obtained from (5.15) and (5.16) by solving the system of

linear equations

��
� � �

+ (� � � + (� � �	� + (� � � + (� � � �
�
� 
 ( +�

� � + (� � � + (� � �	� + (� � � + (� � � �
�
� 
 ( +�

���
�
��
� � �+
�
� 	 ( +

���
� �

��
� � � + (� � � + (� �� � + (� � � + (� �

���
��� � + ( � + ( � $ + ( � (5.18)

The equations in (5.18) provide a linear solution for the estimation of the focal

length. Interestingly, the computation of � + according to (5.18) gives the same
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expression found in [13] when � and � � (corresponding to the principal points in

that author’s notation) are made equal to � � � � " � .

5.4.2 Detection of Critical Motions

It has been pointed out in several works [163, 141, 142] that, for some particular

camera motions, self-calibration of all parameters may not be possible. The addition

of further constraints — such as zero skew, square pixels or knowledge of the princi-

pal point — may resolve the ambiguities that arise under such conditions. However,

some particular configurations remain ambiguous even when these constraints are

imposed. In particular, it has been shown in [166] that, when the camera motion is

restricted to an arbitrary translation followed by a rotation about a line perpendicu-

lar to the image plane, no combination of the constraints mentioned above provides

enough information for the resolution of the ambiguity. In fact, it has been shown

in [80] that, for a pair of cameras with varying focal length this ambiguity remains

for the larger class of motions where all pairs of optical axes intersect each other.

Observe that the motion described in [166] is a particular case of this one, where

the optical axes intersect at the same point at infinity.

Let
$ � and

$ � , where

$ � � # � � �
� " and
$ � � # � � % & " � (5.19)

be the camera matrices of two projective cameras, and assume the aspect ratio, skew

and principal points, denoted as � � and � � , are known. Without loss of generality,
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we can make

# + �
�����
�
� + � �
� � + �
� � �

� ����
� � (5.20)

Moreover, assume that the optical axes of
$ � and

$ � intersect. Therefore, the opti-

cal axes define an epipolar plane whose corresponding epipolar lines pass through

� � and � � (see figure 5.1). This means that, if
"

is the fundamental matrix relat-

ing the cameras, with element � 
 denoted by
� ( + , the principal points must satisfy

the epipolar constraint, i.e., �
� � " � � � � . However, it is assumed that � � � � � �

� � � � " � , and, hence,
� � � � � . However, from [102, Section 2.3] and assuming

& � � � � � � � � " � , the fundamental matrix relating the cameras in (5.19) is given

by

" � � # � & " � # � % # 
��
� � (5.21)

If the element � 
 of
%

is denoted by � + ( , the expansion of
� � � in (5.21) gives

� � � � � �
� � � � � � � , or

� � � 
�� � � and
� � � 
�� � � � (5.22)



5.4. SELF-CALIBRATION FROM THE ESSENTIAL MATRIX 99

for a given 
 � � . Substituting (5.22) in (5.21), we have

" �
�����
�

�� � � � � � � � � � � � 
�� � � � � � � � � � � � � � � � � � 
�� � � � � � �

� � � � � � 
�� � � � � � � � � � � � 
�� � � � � � � � � � � � � � � 
�� � � �

 � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � � � �

� ����
� � (5.23)

� � �
�����
�

 � � � � �

 � � � � �

� �

� ����
� � (5.24)

Substituting (5.23) and (5.24) in (5.18) we finally obtain

� � �
��
� 
 � � � � � � � �

��� 
 � � � � � �

 � � � � � � � �

��� 
 � � � � � �
���
� and

$ � � � (5.25)

Since
�����	�
��� � � , there will be a family of solutions for � � � � � � 	 " � in (5.18), given

by � ��� , where �
� �

and ��� � � � � � � " � is a unitary vector in the right null space

of
�

. By using (5.17) and (5.23), it is possible to show that the corresponding

solution for �
�� will be �

�� � � � � � � � � � � � � � � � � � � �	� � � � � � � �	� � � � � � � .

If more cameras are added, but their relative displacement is such that any two

optical axes intersect, all
� + ( in (5.18) will be rank deficient. Thus the condition

number of
� + ( can be used as a heuristic measure of how close to critical the motion

is. Let
� + ( be the inverse of the condition number of

� + ( . Therefore, when multiple

images are available, the linear estimation of the focal length � + of image � can be
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Figure 5.1. If the optical axes of the cameras intersect, they define an epipolar plane � .

Since the optical axes pass through the principal points � � and � � , the plane � must

also contain � � and � � . Therefore � � and � � are related by the epipolar constraint, i.e.,

�
� � " � � � � .

given by the least-squares solution of � ��� � 
���� � ��� � � � ��� ��� � 
���� � � , where

� � * 
�� � + � � + ( � � + (� � � + (� � �	� + (� � � + (� � � �
� � * � + � � + ( � � + (� � � + (� � �	� + (� � � + (� � � �

� � * 
�� � ( � � � + ( � 
 ( +� �
� � * � ( � � � + ( � 
 ( +� �
� � * 
�� � � � + ( � + (� � � + (� � �
� � * � � � + ( � + (� � � + (� � �
� + � � �+ �
� ( � �

� 	 + ( �
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(5.26)

for � � � ��������� � ,

 � � ��������� � ,


 �� � , and
� � 
 if


�� � and
� � 
 � � if


 � � .
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As an example, assume that three images indexed by � � � � � � � are available.

The three corresponding fundamental matrices are
" � � , " � � and

" � � . The system of

equations for the computation of the focal length of the first camera, � � , will then

be given by

��������
�

� � � � � � �� � � � �� � ��� � �� � � � �� � � ��� 	 
� 
1	
 �
� � � � � � �� � � � �� � ��� � �� � � � �� � � � � 	 
� 
1		 �
� � � � � � �� � � � �� � ��� � �� � � � �� � � � � � 	 �� � 	

� � � � � � �� � � � �� � ��� � �� � � � �� � � � � � 	 �� � 		

���������
�

�����
�
� � �

�
� 	 � �
�
� 	 � �

������
� �

��������
�

� � � � � � �� � � � �� �� � � � � � �� � � � �� �� � � � � � �� � � � �� �� � � � � � �� � � � �� �

���������
�
� (5.27)

A simple experiment was designed to validate the usefulness of
�

in (5.26) as a

measure of how close the motion of a given pair of cameras is to a critical config-

uration. The vergence angle � (i.e., the angle between the optical axes) of a stereo

pair with intersecting optical axis was set to � � , � � , ��� � and � � � . For each value

of � the elevation angle � of the second camera (i.e., the angle between its optical

axis and the plane containing the two camera centers and the optical axis of the first

camera) is varied in the range � � � � � � � " . The fundamental matrix relating the cam-

eras for every combination of � and � was then computed, followed by the matrix
�

in (5.18). The inverse of the condition number of
�

is shown in figure 5.2(a). For

comparison, another measure of the criticality of the motion was computed, given

by the geometric error of the respective principal points when matched through the

epipolar constraint (see figure 3.2). The values of this alternative measure, denoted


 , are shown in figure 5.2(b).

It can be seen from figure 5.2 that
�

is approximately linear with the value of

� , the elevation angle, which is the main parameter controlling how close to critical

the camera motion is. It also grows with � , the vergence angle, giving more weight
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Figure 5.2. Measures of criticality of the camera motion. (a) Inverse of condition number

of matrix
�

in 5.18 (
�

) and (b) geometric error in pixels of the reprojection of the principal

point. Both (a) and (b) are plotted versus the elevation angle � of the second camera, for

several values of the vergence angle � .

to larger baselines than to small ones. The alternative measure 
 , however, is not

so well-behaved. Although it consistently increases with � , it quickly saturates as
�

grows. The use of 
 instead of
�

in (5.26) would result in giving nearly the same

weight to equations derived from cameras with the same � , which is obviously

undesired.

5.4.3 Nonlinear Solution

Once an initial approximation for the focal lengths of the cameras has been found

by the linear algorithm, a full nonlinear optimisation can be run. If

��� ��� ! + ( � � � + (
�����
�

�
+ (� � �
� �

+ (� �
� � �

������
� � �+ ( � (5.28)
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then, for
! + ( to be a valid essential matrix,

�
�

�
+ (� � �

+ (� � � (5.29)

must hold. Therefore, it is possible to search for the intrinsic parameters by min-

imising the cost function
� � #�� � � � � ��������� � � given by

� � # + � � � � ��������� � � � ��
+ � �

��
( ��+ � � � + (

�
�
� �

+ (�
�
+ (��� � (5.30)

The parameters of this cost function do not need to be only the focal lengths, but

may also include the principal points or aspect ratios, as long as enough images

are available. The expression in (5.30) is similar to the one in [112], but now the

equations for each pair of camera are weighted according to the suitability of their

relative motion regarding its closeness to a critical configuration for self-calibration.

Since the Huang and Faugeras constraints provide two equations on the intrin-

sic parameters per fundamental matrix, a naive computation would suggest that,

because between
�

images there are
� � � �

�
��� �

fundamental matrices, six images

would allow for the calibration of all intrinsic parameters even if these were vary-

ing, which is clearly impossible. The contradiction arises from the fact that the
� � � �

�
�#� �

fundamental matrices are not independent, as discussed in section 5.2.

The minimum number of images for the self-calibration of a camera where � * pa-

rameters are known and ��� parameters are fixed, with the remaining �
� � * � ���

unknown and varying, was pointed out in [122] as
�

such that

� � � * � � � �
�
� � �	� 	 � � (5.31)
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Typically, the skew is zero and the aspect ratio is one, and therefore � * � � . If the

principal point and the focal length are unknown and varying, � � � � . Substituting

the values of � * and �	� in (5.31), one obtains
� 	 � , and thus self-calibration is

possible with a minimum of four cameras. Under many practical situations [13] the

principal point cannot be accurately estimated, and it can be safely assumed to be

at the centre of the image. In this case, � * � � , and therefore the minimum number

of cameras for self-calibration of the varying focal length is two.

It is important to observe that although the
� � � �

�
��� �

fundamental matrices

associated with
�

cameras are not independent, it is beneficial to use the information

provided by as many fundamental matrices as possible even when this information

is redundant, since this procedure spreads the error more evenly across the cameras

and the redundancy improves the robustness of the algorithm.

Alternative Expressions for the Huang and Faugeras Constraints There are

several algebraic representations of the Huang and Faugeras constraints that do not

make explicit use of the singular value decomposition of the essential matrix, in

contrast to (5.29). A few examples are

�
� � ��� � � ! ! � � � � � � � ��� ��� ! ! � � � � � � � (5.32)

shown in [41], and, using the notation of (5.6),

� $ + (� � $ + (� � � � � $ + (� � $ + (� � � � � $ + (� � $ + (� � � � 	� � � $ + (� � � � � $ + (� � � � � $ + (� � � � �
(5.33)

presented in [76]. In both cases the rank condition has yet to be imposed. There is

a computational advantage in using the expressions given in (5.32) or (5.33) over
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the one in (5.29), since the former ones use about 1/3 and 1/4, respectively, of the

number of floating point operations necessary for the computation of (5.29) [58].

However, the computation of the derivatives of the cost function is much simpler if

(5.29) is used. As will be discussed in the next session, this advantage justifies the

choice of (5.29) as the algebraic expression of the Huang and Faugeras constraint

to be in used in the self-calibration algorithm.

5.5 Description of the Algorithm

Algorithm 5.1 Linear least-squares estimation of the focal lengths.
Assume that the principal points are at the centre of the images and transform the
coordinate systems so that the principal points become

� � � � � ;
for � � � to # images do

for

 � � to # images do

if
" + ( is defined then
fill � � * 
�� � + , � � * � + , � � * 
�� � � , � � * � � , � � * 
�� and � � * according to (5.26);

end if
end for
solve � � � � ; � + ��� � +

end for

The ideas developed in the previous sections can be encapsulated into a prac-

tical and flexible algorithm for self-calibration. Consider a sequence of
�

images

acquired from a camera with, possibly, varying intrinsic parameters. Initially, the

fundamental matrices relating as many pairs of images as possible are computed.

These fundamental matrices are then used to compute an initial guess for the fo-

cal lengths according to the linear algorithm described in (5.26) and summarised

in algorithm 5.1. A more accurate solution can then be found by minimising the

cost function shown in (5.30), as described in algorithm 5.2. Several configurations

are possible, combining known, fixed and variable principal points with fixed and
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variable focal lengths. To minimise the cost function in (5.30) any gradient based

algorithm can be used, such as BFGS [15, 51, 57, 134] or Levenberg-Marquardt

[93, 106] (for details of the implementation of the methods see [99, 126]). Experi-

mental analysis has shown that the accuracy and convergence speed of the algorithm

are greatly increased if the derivatives of the cost function are computed analyti-

cally instead of being estimated by finite differences. Closed-form solutions for the

derivatives of (5.29) are provided in appendix B.

Algorithm 5.2 Nonlinear estimation of the intrinsic parameters.
Compute fundamental matrices between image pairs;
initialise focal lengths using algorithm 5.1;
initialise principal points at the centre of the images;
while not converged do

compute cost function
�

in (5.30);
compute � �� ��� ����� and � �� ��� ��� � analytically using (B.5) and (B.6);
update

# + and
# ( to minimise

�
;

end while

5.6 Experimental Results

To evaluate the robustness and accuracy of the algorithms proposed, experiments

with both synthetic and real data were carried out. In all the experiments the skew

was assumed to be zero and the aspect ratio was assumed to be one. In different

experiments, the principal point was considered to be known, unknown but fixed,

and varying.

5.6.1 Synthetic Data

To investigate the algorithm’s robustness to noise, 50 points were randomly scat-

tered in the interior of a cube centred at
� � � � � � � with edge of length one. Ten
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Figure 5.3. Cameras and points used in the self-calibration experiment with synthetic data.

cameras with principal points
� � � � � � � � � and focal lengths from 600 to 2000 were

placed around the cube, configured as shown in figure 5.3. Gaussian noise with

different standard deviations was added to the image points, and all fundamental

matrices between pairs of images on each group of 4 adjacent images were com-

puted by minimising the reprojection error [102, 164]. The cameras were then

calibrated using the linear algorithm, followed by the nonlinear algorithm assuming

known, fixed and variable focal lengths. Results are shown in figures 5.4–5.7. The

algorithm is highly accurate, estimating the focal length with about 1% of the true

value when the image noise is one pixel. It can also be seen from figures 5.4–5.7
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Figure 5.4. Percentage RMS errors for the focal length � � � � � � for 10 experiments with

synthetic data and different standard deviations � of the image noise.
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Figure 5.5. Percentage RMS errors for the focal length � � � ���
� � for 10 experiments with

synthetic data and different standard deviations � of the image noise.

that the error in the estimation degrades gracefully as the standard deviation of the

image noise increases. Moreover, the relative accuracy of the nonlinear estimation



5.6. EXPERIMENTAL RESULTS 109

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Noise σ (pixels)

%
 R

M
S 

er
ro

r 
in

 f
oc

al
 le

ng
th

α
0
 =1533

linear,  u=(320,240)   
nonlinear,  u=(320,240)
nonlinear, fixed  u    
nonlinear, variable  u 

Figure 5.6. Percentage RMS errors for the focal length � � � � � � � for 10 experiments with

synthetic data and different standard deviations � of the image noise.

is not significantly affected by the magnitude of the true focal length, since from

figure 5.4 to figure 5.7 there was more than a threefold increase in this value with

no corresponding change in the percentage RMS error. This effect is clearer in fig-

ure 5.8, which presents the tracking of the focal lengths throughout the images. The

results shown are the average of 10 experiments.

5.6.2 Real Data

Six images of a calibration grid, shown in figure 5.9, were acquired with a digital

camera with a resolution of � ��� � �
� � pixels. Three of the images were taken with

a zoom factor of two, if the indications of the manufacturer can be trusted. The

camera was then calibrated using the metric information of the calibration grid and

a bundle adjustment algorithm [41, 153, 70]. Self-calibration was carried out using

the linear algorithm, and the nonlinear algorithm assuming known principal point,
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Figure 5.8. Tracking of the focal length. The results shown are the percentage average error

of 10 experiments, with � equal to 1 pixel.

unknown but fixed principal point, and variable principal point. Observe that the

motion is quasi-critical, since all the cameras are roughly pointing at the same point
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Figure 5.9. Images of the calibration grid used for experiments with real data

in space at the centre of the calibration grid.

Figure 5.10 shows the values of the focal lengths in different images. The linear

algorithm is inaccurate, but its estimation of the focal length is good enough to

be used as an initial guess for the nonlinear algorithm, which converges to a good

solution whatever assumptions are made about the principal point. Figure 5.11
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Figure 5.10. Estimated values of focal length from different algorithms.

shows the percentage error on the estimate of the focal lengths for the nonlinear

algorithm. The error for each image is normalised by the focal length provided by

the bundle adjustment algorithm. The three alternative assumptions for the principal

point produce approximately the same results for the larger focal lengths in images

one, two and three. Nevertheless, allowing for the principal point to vary clearly

produces a worse result for the estimate of the smaller focal lengths in images four,

five and six. It has been pointed out in [122] that for noise levels of the order of one

pixel and above the simpler models should be preferred. To explain why the choice

of the model is less critical when the focal length is larger, we turn our attention to

figure 5.12.

Clearly, the principal point is not accurately estimated when it is allowed to

vary, if we are to trust the result of the bundle adjustment algorithm. However,

for larger values of the focal length, a precise estimation of the principal point is

less significant, as shown in [13]. Therefore, the smaller values of the focal length

are the ones that are most strongly affected by inaccuracies in the position of the
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Figure 5.11. Percentage error in the focal lengths for different algorithms. If the principal

point is allowed to vary the estimation of the focal length becomes less accurate.
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Figure 5.12. Principal points computed from different algorithms. It is clear that the principal

point is not accurately estimated when it is allowed to vary. However, the effect of errors in

the position of the principal point may be neglected when the focal length is larger.

principal point, producing the effect shown in figure 5.11.

A second experiment with real data was carried out, this time with a sequence of

five outdoor images, of which four are shown in figure 5.13. Corners were detected

by using a Harris corner detector [60, 59], and matched through correlation tech-

niques [94, 82]. The algorithm described in section 3.1.4 was applied to estimate
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the fundamental matrices relating the images, and the self-calibration algorithm in-

troduced here was used to calibrate the cameras. The principal point was assumed

to be fixed at the centre of the images, while the focal length was allowed to vary.

Since no zooming was used, any differences in the values of the focal lengths are

due either to focusing, which should produce only a marginal effect, or to inaccura-

cies of the self-calibration algorithm. The focal lengths found for the five cameras,

expressed in pixels, were 1372.1, 1354.1, 1390.4, 1361.5, and 1363.8. The standard

deviation of these values is 13.8, or about 1% of their mean, showing the stability

of the result.

Once the cameras were calibrated, a 3D model was built using the reconstruction

package PhotoBuilder [129]. The final model is shown in figure 5.14. It is important

to notice that, although the relative motion of each pair of cameras is nearly critical,

since all the cameras are approximately pointing at the same point in the corner

of the building, the parameters were accurately estimated as demonstrated by the

visual quality of the reconstruction.

5.7 Conclusions

This chapter presented a novel self-calibration technique based on the Huang and

Faugeras constraints on essential matrices. This constraint was fully exploited, pro-

viding (i) a linear algorithm for computing focal lengths that generalises for an

arbitrary number of cameras the results in [61, 13], (ii) a built-in method for the

detection of critical motions for each pair of images in the sequence, and (iii) a

nonlinear technique for refining the initial estimate of the focal lengths and com-

puting the principal point of each camera. The algorithm was tested with both syn-

thetic and real data, showing good robustness to noise. A Matlab implementation



5.7. CONCLUSIONS 115

Figure 5.13. First, second, fourth and fifth images in the outdoor sequence used for recon-

struction.

of the complete self-calibration algorithm is publicly available in <ftp://svr-

ftp.eng.cam.ac.uk/pub/>.
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Figure 5.14. 3D model reconstructed from the outdoor sequence shown at different view-

points.



Chapter 6

Conclusion

6.1 Summary

This thesis attempted to contribute to the understanding of two important problems

in computer vision: estimation of epipolar and camera self-calibration. By consider-

ing an important subclass of camera motions (circular motion), it provided the first

practical solution to the estimation of epipolar geometry based solely on profiles. A

different standpoint was taken for the problem of self-calibration, which was con-

sidered in its most general form (varying intrinsic parameters) and was tackled in

conjunction with the analysis of critical motions.

Estimation of Epipolar Geometry from Profiles. The central idea that allowed

the solution of the problem of estimating the epipolar geometry of a turntable se-

quence from profiles was the recognition that, as the object placed on the turntable

rotates, it sweeps out a surface of revolution. Symmetry properties of the profile of

this surface of revolution provided important components of the epipolar geometry

of such image sequences, i.e., the image of the axis of rotation, and a special van-
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ishing point, the pole, which corresponds to the image of the point at infinity in the

direction orthogonal to the plane containing the optical centre of the virtual camera

that sees the surface of revolution and the axis of the turntable.

The remaining components of the epipolar geometry are the horizon, which is

the image of the plane containing the camera centres, and the position of one epipole

along the horizon. These are obtained by exploiting the epipolar constraint for each

pair of profiles, which provided an initial estimate for the epipoles of many pairs

of images. The horizon was then computed by robustly fitting a line to the cloud

of epipoles, and these were then re-estimated from the epipolar constraint, but now

with the additional constraint that they should lie on the horizon.

The accuracy of the epipolar geometry so obtained was verified by using it to-

gether with the camera intrinsic parameters to estimate the camera motion and check

it against available ground truths, producing excellent results. Furthermore, some

experiments of reconstruction from profiles were carried out to demonstrate the

quality of the algorithms developed here.

Camera Self-Calibration. The rigid body constraint is the principle behind self-

calibration algorithms. It has many algebraic interpretations, such as the Kruppa

equations, the Trivedi constraints, and the Huang and Faugeras constraints, which

were the ones used in this work. The Huang and Faugeras constraints can be ex-

pressed in different forms, and one of them can be used to determine the null space

of the essential matrix, which can be easily related to null space of the fundamental

matrix, i.e., the epipole. This approach provided a linear solution for the estimation

of focal lengths obtained by assuming that the skew, aspect ratio and principal point

of a set of cameras are known.

The stability of the solution of the linear system (of type
� � � $

) used in the
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computation of the focal lengths of a pair of cameras related to a given fundamental

matrix was used as an indicator of how close to critical the relative motion between

the cameras was. The measure of stability chosen was the condition number of

the matrix
�

, and the system of equations was then extended by considering all the

fundamental matrices that are related to pairs of cameras that include a fixed camera
$

, providing two equations per fundamental matrix for the computation of the focal

length of
$

. Each new pair of equations of the extended system was weighted by

the condition number obtained from its corresponding fundamental matrix.

The next step was then a nonlinear refinement of the estimated focal lengths,

which also allowed for the computation of other intrinsic parameters, in particular

the principal point. Another formulation of the Huang and Faugeras constraints

was adopted, and the condition numbers used in the linear algorithm were again

employed to weight the contribution of each fundamental matrix in the nonlinear

refinement.

Several experiments with both synthetic and real data were performed, demon-

strating the accuracy and robustness of the method in different configurations of

fixed, fixed but unknown, and finally varying intrinsic parameters.

6.2 Future Work

It is hoped that this work has presented relevant contributions to the subjects it

investigated. However, it is clear that there are many important questions it has not

touched:

� the overlooking of the information provided by profiles as a clue for camera

motion has been severely criticised in this work; however, that does not mean
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that corners and edges should be completely ignored, but, instead, used in

conjunction with profiles; a framework to efficiently integrate the information

offered by these different visual cues is a topic of current research;

� so far, there is no optimal solution to the problem of structure and motion

from profiles — there is no equivalent, in this context, of a bundle adjustment

algorithm; an important step in filling this gap is the development of a model

for the effect that image noise has on the extraction of contours; only when

such an error model becomes available can a maximum likelihood estimator

for structure and motion from profiles be developed;

� the use of the condition numbers of the matrices computed in the linear esti-

mation of the focal lengths as presented here, although useful, is only an ad

hoc measure of how far to critical the camera motion is; any self-calibration

procedure would benefit from a more thorough investigation of this problem.



Appendix A

Derivatives of the Geometric Error of

the Fundamental Matrix

The minimisation of geometric error (3.24) in the computation of the fundamental

matrix is usually carried out through numerical techniques [99, 126]. However,

these techniques involve the computation of the gradient and sometimes the Hessian

of the cost function, which are normally estimated by using finite differences [28,

pp. 154]. The computation of the Hessian of (3.24) serves the additional purpose of

providing error bounds to the accuracy of the fundamental matrix being estimated

through covariance propagation [35, 164]. However, finite difference methods for

computing derivatives can be inaccurate unless high order approximations are made

[52], which can be computationally expensive. This appendix presents analytical

expressions for both the gradient and the Hessian of (3.24), which can be used to

overcome these difficulties.

As in section 3.1.4, we will follow the notation of [104] and define �
� ��� � �

as

the vector built from the 

� �

matrix
�

by stacking its columns in order, from

top to bottom, and define
� 	 � as the commutation matrix

�

 � � � , i.e., �

� � � � � � �
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� 	 � � ����� � � . The element
�����

of
� 	 � is given by

����� �
�
� 
� � �
	�� � 
 � � � � �

��
 � �


� ��� � � � �

���

�� � � �

� � �����
��� � � � � (A.1)

The gradient of a vector-valued function
� � � � � � is a row vector, represented as

� ���� . Finally, let

� �
�����
�
� � �
� � �
� � �

������
� � (A.2)

A.1 Gradient of the Geometric Error

Let

� + � � �+ " � � " � + (A.3)

� �+ � � �+ � " � " � � �+ � (A.4)

The derivative of the geometric error (3.24) with respect to
"

,
� � �+ � � " , is given by

� � �+� " � � � �+ � �+ � " ��� �+ � �� �+ � �� + � � � � � �+ � " � + � � � � �+ � �+ � " �� �+ � � � " � + � �+� �+ � � (A.5)

Consider a fundamental matrix
"

parameterised as

" �
�����
�
� � � � � � �� � � � � � � � �� � � � � � �

������
� � (A.6)
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where � is computed from
� + ( so that

����� � " � � � , i.e., � ��� ��� , where

� � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � (A.7)

� � � � � � � � � � � � (A.8)

It can be argued that this parameterisation is not general, since it precludes the

point � � � � � � " � and � � � � from being related by the epipolar constraint,

since � � � " � � � �� � . In practice, however, this situation is unlikely to occur,

and even if it does a simple translation in the coordinate system of the images will

suffice to correct the situation. Moreover, the parameterisation is minimal, since

it involves only seven parameters. Using this parameterisation and adopting the

notation � � � � � � � � � � � � � � � � � � � � � � � � � " � , the tensor � �� � can be easily computed:

� "� � � � �
�����
�
� 
1	 
 � 
 � � � 	� � �
� � �
� � �

� ����
� � (A.9)
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� "� � � � �
�����
�
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 � �
� � �
� � �

� ����
� � (A.12)
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� "� � � � �
�����
�
� � 
 � 
 � 	 
 � � 	 �� 
 � �
� � �

� � �

������
� � (A.13)
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� "� � � � �
�����
�
� 
 � � 
 � 	 � � 
1	 �� 
 � �
� � �
� � �

������
� � (A.15)

and, at last,

� � �+� � + ( � � � ��� � � � �+� " � � � � � � � � "� � + ( � (A.16)

A.2 Hessian of the Geometric Error

To compute the Hessian � 
�� �� ��� � � � ��� � � � , observe that

� � +� � ��� " � � � �+ � � � " � + � � (A.17)

and, therefore,

� � � +� � ��� " � � ��� � " � � � � + � � + � � � � � � � � (A.18)
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Analogous expressions can be found for � ��� �� ��� � � and � 
 ��� �� ��� � � � ��� � � � . Moreover,

� � � �+ � " � + � �� � � � " � � � �+ � " � + � �+ � � �+ � (A.19)� � � � �+ � " � + � �� � � � " � � ��� � " � � � + � � �+ � � �+ � � �+ � � (A.20)

The Hessian of the geometric error is then found by substituting (A.17), (A.18) and

the corresponding expressions for � � � �� ��� � � and � 
 � � �� ��� � � � ��� � � � , together with (A.19) and

(A.20), into

� � � +� � ��� " � � � � � " � � �� + � �� �+ � � � � � �+ � " � + � �� � � � " � � � � � " � � � �+ � " � + � � ���
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(A.21)
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Appendix B

Derivative of the Huang and

Faugeras Constraints

It can be shown that �
� � � � ���)� � ��� � � � � � ��� � and, if

�
is an �

� �
matrix,��� 	 � � � � � � � � � � � ��� � [104]. Let

� �
�
+ (� � �

+ (� � � �
�

�
+ (� � �

+ (� . Then

� �� � � � # +
�

�
�
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�
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�

�
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But

�
�
+ (
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�
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*� � � � ! + (

� � ��� ! + (� � � � # + � (B.2)� � ��� ! + (� � ��� # +
� � � � � # �

(
" + ( ��� � � � � (B.3)�

�
+ (
*� � ��� ! + ( � � � + (* � � � �

�
+ (
*
� � � � ��� � 104 " � � (B.4)

where �
+ (
* and � + (* are the k-th columns of the matrices � + ( and � + ( in (5.28). Sub-

stituting (B.4) and (B.3) in (B.2), and the result in (B.1), one obtains the desired
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derivative:

� �� � ��� # +
� �
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�
+ (� � � # �(
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A similar manipulation can be used to derive, with the aid of some properties of the

Kronecker product and the commutation matrix, the Jacobian of
� �

�
+ (� � �

+ (� � with

respect to
# ( :

� �� � � � # +
� �
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(B.6)

where
� � � is the commutation matrix

� � � � � (see (A.1)).
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reconstruction, see reconstruc-

tion, Euclidean
transformation, 16, 25, see also

projective, transformation,
stratification of

Faugeras, O. D., 91, see also
self-calibration, Huang and
Faugeras constraints

frontier point, 41, 42, 57
fundamental matrix, xiii, 28–45, 49

affine, 27, 38–41
degrees of freedom, 40
parameterisation, 40, 41

computation of, 34–38, 56
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analytical, 34–36, 38
numerical, 36

constraints, 35, 67, 93
degrees of freedom, 29, 69
epipolar constraint, see epipolar

geometry, epipolar constraint
multicamera tensors, and, 45
parameterisation, 37, 59, 72, 122

circular motion, 65, 76
plane

�
parallax, 30–33, 70, 76

geometric error, 36–38, 43, 76
derivative, see derivative, geomet-

ric error, of
Hessian, see derivative, Hessian

of geometric error
transfer of points and lines, in, 51

Grassman-Cayley algebra, 38

harmonic homology, 60–64
computation of, 72, 73

bitangents, 72
degrees of freedom, 68
parameterisation, 63
particular cases, see symmetry,

skewed and symmetry, affine
plane induced homography, 70,

71, see also fundamental ma-
trix, plane

�
parallax

Hartley, R., vii, 91
Hobbes, Thomas, xix
Homogeneous coordinates, xix
homogeneous coordinates, 10–15

conics in, see conic, matrix of a
equivalence class, as an, 11, 15
linear transformation of, see pro-

jective, transformation
lines in, 12
planes in, see planes, homoge-

neous coordinates, in
points in, see points, homoge-

neous coordinates, in

quadrics in, see quadric, matrix of
a

vectorial representation, 10, 11
homography, plane induced, see fun-

damental matrix, plane
�

parallax
Huang, T., see self-calibration, Huang

and Faugeras constraints

implicit curves, 23–24
degree, 23
projected from implicit surfaces,

23, see also surface, implicit
and elimination theory

tensorial representation, 23
implicit surfaces, see surface, implicit
intrinsic parameters, xiii, 18, 56, 64,

92
varying, xiii, 93

Koch, R., 91
Koenderink, J. J., 57
Kruppa, E., see self-calibration,

Kruppa equations

level-set methods, 83
lines

epipolar, see epipolar geometry,
epipolar line

homogeneous coordinates, in,
12–13

intersection of, 12
matching of, xiii, 45, 49
projection of planes, see planes,

projection of
transfer of, see trifocal tensor,

transfer of lines and points
Luong, Q., 91

matrix
essential, see essential matrix
fundamental, see fundamental

matrix
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homogeneous, 15
intrinsic parameters, see intrinsic

parameters
rotation, 17, see also Euclidean,

transformation
singular value decomposition

(svd) of, 93
Maybank, S., 91
motion

critical, see self-calibration, criti-
cal motions

estimation from profiles, see pro-
file, motion estimation from

structure and
direct methods, 2
feature based methods, 2

optimisation
BFGS, 106
geometric error, minimisation of,

see geometric error
Levenberg-Marquardt, 37, 106
Newton-Rhapson, 37

planes
epipolar, see epipolar geometry,

epipolar plane
homogeneous coordinates, in,

12–13
points, defined by, 13
projection of, 20–21

Plato, 9
points

Cartesian coordinates, in, 10
frontier, see frontier point
homogeneous coordinates, in, 10
invariant of six, 48
matching of, see corners, match-

ing of
projection of, 18, 28, see camera,

optical ray
transfer of, see trifocal tensor,

transfer of lines and points

Pollard, S. B., 57
Pollefeys, M., 91
Porrill, J., 57
profile, xiii, 55–85

definition, 41
epipolar tangency, 41, 42, 43
feature, 3, 35
motion estimation from, 3, 42, 56,

57
affine, 43, 45, see also epipolar

geometry, smooth surfaces,
affine

local minima, 44
surface of revolution, of, see sur-

face, revolution of, profile of
and harmonic homology

projective
camera, see camera
geometry, 4, 9–26

definition, 9
relation to Euclidean geometry,

9
transformation, 3, 15–17

2-dimensional, 62
3-dimensional, 91
invariance of fundamental ma-

trix to, 30, see also funda-
mental matrix

quasi-affine, 39
stratification of, 16, 17

quadfocal tensor, 27, 46
parameterisation, 53
quadrilinear constraint

relation to bilinear (epipolar)
and trilinear constraint, 46

textbf, 52
quadric

absolute, 90, 91
degenerate, 14
matrix of a, 14
projection of a, 22
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tangents to a, 15

reconstruction
Euclidean, xiii, 91, see also bun-

dle adjustment
profiles, from, 57, 82–85
projective, 91, see also bundle ad-

justment, projective
quasi-affine, 39, see also projec-

tive, transformation, quasi-
affine

registration, image, 69
Rieger, J. H., 57

self-calibration, 1, 3, 89–115
critical motions, 4, 97, 103, 110,

114
detection of, 97–100, 114

Huang and Faugeras constraints,
89, 92–94, 114

Kruppa equations, 90, 91
equivalence to Huang and

Faugeras and Trivedi con-
straints, 90

minimal requirements for, 103
software for, 115
Trivedi constraints, 90

similarity transformation, 16, see
also projective, transforma-
tion, stratification of

surface
implicit, 23

projection of, 23
tensorial representation, 23

revolution, of, 5, 6, 56, 58
profile of, 60, 64, 71, see also

harmonic homology
smooth, 5

Sylvester matrix, 23, see also deriva-
tive, resultant of a polynomial
and its

symmetry, 58, see also surface, revo-
lution, of

bilateral, 64
projective, see harmonic homol-

ogy
skewed, 63, 79

Tenenbaum, J. M., 57
triangulation

profiles, of, 58, 83, 85, see recon-
struction, profiles, from

trifocal tensor
affine, 27, 51–52, see also affine

degrees of freedom, 52
parameterisation, 52

computation of, 49–51
analytical, 49
numerical, 51

constraints, 49
degrees of freedom, 48
fundamental matrix, comparison

to, 47
parameterisation, 47–49

minimal, 48–49
transfer of lines and points, 47, 51
trilinear constraint, 47

Triggs, W., 91
Trivedi, H. P., see self-calibration,

Trivedi constraints

Van Gool, L., 91
vanishing points, 66, 72
voxel-carving, 83

Zhang, Z., 28


