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Abstract

We present a new, intelligent interface for freehand strain imaging, which has been de-

signed to support clinical trials investigating the potential of ultrasonic strain imaging for

diagnostic purposes across a broad range of target pathologies. The aim with this interface is

to make scanning easier, and to help clinicians learn the necessary scanning technique quickly,

by providing real time feedback indicating the quality of the strain data as they are produced.

The images are also easier to interpret, because data at unacceptably low signal-to-noise ra-

tios do not reach the display. Overall, the interface also considerably reduces the difficulty

in producing volumes of strain data from freehand 3D scans. Its main components are novel

normalisation, persistence and display methods. These not only present data in a more mean-

ingful format, but the level of noise in the displayed images is actually reduced compared to

other methods that use the same strain estimates with the same level of persistence.

1 Introduction

Ultrasonic strain imaging is an emerging technique, which is likely to have numerous applications
in the clinical examination of soft tissues. In this paper we are primarily interested in the subset
of elasticity imaging techniques that are categorised as “static” or “quasistatic” strain imaging
[19]. In this paradigm, small tissue deformations are caused by varying pressure between the
ultrasound probe and the tissue surface; two or more ultrasound frames are recorded during this
deformation, and some form of tracking is applied to the recorded ultrasound data to estimate
tissue deformations, amounting to displacement fields that vary with position. Spatial derivatives
of such a displacement field are tissue strain, which indicates stiffness; there are sometimes further
stages of analysis to estimate quantitative tissue properties directly, such as elastic moduli [10].
Quasistatic strain imaging was first tested clinically for breast scanning [4] and breast screening
has ever since been a key driver for research [7, 23, 24]. Numerous studies have been motivated by
prostate screening [18, 21]. Detection and staging of deep vein thrombosis also seems particularly
promising [3], and there are many other possible applications.

One of the engineering challenges in strain imaging is the development of a suitable clinical
interface. Ultrasound clinicians have extensive experience with existing scanning modes including
B-mode greyscale, colour Doppler and power Doppler. Given the highly interactive nature of
ultrasound examinations, the established modes have advantages in that clinicians are already well
practised in the required scanning techniques, understand the significance of typical images, and
are generally familiar with the uses, benefits and disadvantages of each mode. The likelihood of an
addition to the ultrasound tool-set gaining clinical favour may be boosted if it possesses an interface
that is practically helpful: actively fostering the development of a successful scanning technique,
by providing either visual or audio feedback; displaying data in an intuitively meaningful format;
and automatically guarding against the presentation of misleading data.

The aforementioned issues concern how we present information. We may also consider what

information to present. This raises at least two further issues. Qualitatively, what type of in-
formation can be provided (stiffness, strain, or an alternative compromise)? Quantitatively, how
much data should be amalgamated to form each display image? This latter question is relevant to
many types of imaging system, particularly those pertaining to time series data (where persistence
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Figure 1: Flowchart illustrating aspects of the interface that will be discussed.

may help, whether to improve a real time display during acquisition or for post-processing) and to
volumetric data (where spatial averaging can be applied to reduce the level of noise).

Regarding the type of information, we note that ultrasonic strain imaging falls within a broader
set of emerging elasticity imaging techniques. These are all essentially concerned with mechanical
properties such as tissue stiffness, of which strain is only an indicator. Strain measurements can be
converted into stiffness estimates if the stress field is known, but it is highly unlikely that this can
be inferred from either static or quasistatic deformation data without reducing the resolution and
imposing certain limiting assumptions [1]. Furthermore, such assumptions are unlikely to hold even
approximately under in vivo scanning conditions, especially not with freehand scanning. On the
other hand, strain images can be misleading, because an interpretation of low strain as indicating
relatively high stiffness may be erroneous if the stress field varies substantially throughout the
tissue [13, 19]. Some types of stress field variation occur repeatedly, and can hence be adjusted for.
We will discuss the use of strain normalisation that varies both between images and within every
individual image, so as to reduce the ambiguity of strain. The modified data after non-uniform
normalisation are referred to as “pseudo-strain”.

In practice, an often more severe obstacle in freehand strain imaging is the basic challenge of
achieving an acceptable strain estimation signal-to-noise ratio. Although many frames individually
produce good images, typically a substantial fraction (sometimes a majority) of frames may be
difficult to interpret because of high estimation noise. One of the common approaches to noise
reduction amounts to averaging a sequence of strain images [27]. Rather than crude frame averag-
ing, we present a more sophisticated weighting approach, which we use for persistence in the real
time display, and for spatial averaging in the display of volumetric data [26].

The goal of this report is to describe aspects of a novel interface that we have developed to
support a wide-ranging clinical trial of ultrasonic strain imaging.† The new interface tackles all
of the issues mentioned above, to improve the quality of data that clinicians can acquire, and
to improve the interpretability of the display. We present results based on example images that
demonstrate the effects of all aspects of the interface, using recorded RF ultrasound data from
freehand scans of in vitro and in vivo targets.

2 Method

The interface that we outline here is applicable to any static or quasistatic strain imaging system,
almost regardless of the approach taken in the earlier stages of signal processing. It is likely to
be particularly valuable in conjunction with freehand scanning. We provide illustrations based on
an example, in which displacement tracking is by Weighted Phase Separation [14] with Ampli-
tude Modulation Correction [16], and axial strain estimation is performed by piecewise-linear least
squares regression [11]. This offers a good demonstration, not primarily because of its competi-
tive estimation accuracy, but more importantly because it has already been analysed and tested
rigorously, resulting in a promising method for predicting the strain estimation variance [15, 17].
Nonetheless, the aim of this paper is to describe our interface concept in general; the reader may
envisage numerous specific applications. We now provide an overview of the interface as a whole.
This is followed by a brief discussion of predicting estimation precision, and descriptions of each of
the three subsequent stages of processing in the interface — normalisation, persistence or spatial
averaging, and display (see Figure 1).

†Several aspects of this interface are covered by a recent UK patent application.
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(a) (b) (c) (d)

Figure 2: Typical images during freehand scanning without the new interface. (a) The strain
display is filled with noise before the probe comes into contact with tissue, although (b) the B-
mode image shows that there is obviously nothing to be seen. However, the images are actually
more difficult to interpret when the probe is in contact with the tissue. For example, while scanning
a thyroid (c) the strain display contains a mixture of good estimates alongside regions of noise,
without an obvious boundary. This is unsurprising given that (d) the B-scan has regions with a
high signal-to-noise ratio alongside other regions where there is simply no signal, and a region of
severe decorrelation around the artery caused by blood flow and pulsatile motion.

2.1 Interface concept

Strain image quality varies substantially depending on the sonographer’s scanning technique, phys-
iological motion in the tissue, and changes in the analytical parameters for converting RF ultra-
sound data into strain data. In order to produce consistently meaningful images, these parameters
need to be controlled locally so as to adjust for different conditions during the scan. [15] and [17]
describe such a system. However, adjustment of parameters cannot alone overcome all of the diffi-
culties associated with practical strain imaging. For a start, at some stage it becomes impossible
to produce meaningful deformation data from frames that are extremely weakly correlated. An
adequate minimum level of correlation may not always arise, depending on the scanning technique,
and with a very poor technique it may not even occur often. Even in the majority of frames where
a uniform estimation signal-to-noise ratio can be achieved by adjusting the resolution settings, it
is desirable to improve the quality of the recorded ultrasound data, so as to achieve the maximum
resolving power. The best data may arise from relatively substantial deformations (i.e., typically a
large fraction of 1%, sometimes lower or higher depending on the target) accompanied by relatively
low decorrelation. The acquisition of good data therefore depends on the combined properties of
the scanning technique and the tissue.

Strain imaging with a typical interface requires a high level of expertise, in terms both of
scanning technique and of image interpretation. The examples in Figure 2 illustrate some common
difficulties. The use of a side-by-side display has been suggested [6], with the B-scan next to the
strain image, because it is then easier to match strain data with features of interest that have
already been identified in the B-scan. It also means that in cases where there may be little or
no data, owing to an absence of coupling to the tissue, as for example in Figure 2a–b, then the
sonographer knows to ignore the strain display. Image interpretation may nonetheless be rather
difficult when the coupling is good, as for example in Figure 2c–d, because some scan targets do
not offer signals suitable for strain imaging throughout the entire image.

One approach that to some extent handles this problem is a display in which each strain
image is overlaid on the B-scan as a “colour wash”, where colour indicates strain and brightness
is partly determined by the ultrasound signal amplitude [7, 18]. In so far as ultrasound signal
amplitude correlates with the accuracy of strain estimates, this goes some way to indicating the
quality of the strain data. It only helps to a limited extent, however, since signal amplitude is a
very weak indicator of overall decorrelation. While a complete absence of signal would certainly
mean that strain estimates were dominated by noise, it is often the case that strain estimates
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from regions with medium signal amplitude are less noisy than other estimates where the signal
is stronger. Furthermore, the blend of strain with B-mode data could actually make insightful
image interpretation more difficult, by mixing strain data with fine features of B-scans such as the
speckle pattern, that are in fact not generally related to tissue stiffness.

Therefore, the basis for our approach is the availability of more accurate indicators of the preci-
sion of each strain estimate, which influences our use of these estimates at every stage downstream
including the display. An appropriate strain normalisation may be calculated by fitting a suitably
constrained surface to the entire set of displacement data in each frame, possibly by the method of
precision-weighted least squares. Normalisation can be applied both to the strain data and also to
the associated precision data, producing a new array of pseudo-strain data with updated precision
values. Having produced a single frame of pseudo-strain, the signal-to-noise ratio may be boosted
by applying some form of persistence or spatial averaging, which may again be weighted according
to precision, from which the output is a set of persisted pseudo-strain values and appropriately up-
dated precisions. Finally, the display scheme may be tailored to indicate both strain and precision
data on a two-dimensional (2D) scale represented by a 2D colour map.

2.2 Predicting estimation precision

Our system exploits the availability of useful predictions of strain (and/or displacement) estimation
precision. The method for achieving these predictions is not critical, although the advantages of
our concept are likely to be greatest if the precision predictions are highly accurate. The prediction
method employed to produce results in this report is based on the work reported in [15].

To summarise, precision is the reciprocal of variance or mean squared error. Displacement
precision can be predicted by evaluating Tc/(1 − c), where c is the correlation coefficient between
pre- and post-deformation data in the displacement estimation window, and T is the window length.
In each least squares kernel, the overall strain estimation variance can be predicted by evaluating
an average of the displacement variances weighted by the square of the distance from the kernel
centre, dividing by the sum of squared distances. A more accurate estimate can be produced
by applying a more complicated formula that accounts for the correlations between nearby errors
[15]. This was not applied in the results that we present here — although it might bring a slight
improvement in some cases — because it is less important when we only consider fixed analytical
parameters, and we only require predictions of relative (rather than absolute) precision. The results
that we present use the following approximation for strain estimation precision, WA:

WA(x, y) =

(
∑

i y̌2

i

)2

∑

j y̌2

j (1 − cj)/(Tjcj)
(1)

where the sums are over displacement estimation windows in the least squares regression kernel
centred on pixel (x, y), and y̌ denotes distance from the centre of the kernel along the axial direction
in which strain is being estimated.

2.3 Normalisation

Careful design of the normalisation strategy may contribute to valuable improvements in the quality
of the strain images, particularly if real time images are required or the scanning procedure is
freehand. Various approaches have been reported in the past [6, 12, 13]. The basic problem of
finding an appropriate strain scale for each image can be solved robustly by fitting a plane to the
entire set of displacement estimates, {d(x, y)}. This is performed in our examples by the method
of precision-weighted least squares, thereby determining an “average” strain. The equation of the
fitted plane is then as follows:

d̂(x, y) = α + ŝy (2)

The strain estimates can be scaled so that the dynamic range in the display is from zero up to a
fixed multiple of the average strain, ŝ.
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In the new interface, we also introduce extensions of this approach, by fitting other parametric
surfaces to the set of displacement estimates. For instance, we can adjust for the reduced stress at
greater depths away from the probe, as the stress spreads out into the surrounding tissue:

d̂(x, y) = α0 + α1x + β1y + β2y
2 (3a)

ŝ(x, y) = β1 + 2β2y (3b)

It is therefore more appropriate to refer to ŝ(x, y) as a “normalisation” strain, rather than an
average, since it is a function of image position. Having found the parameters β1 and β2 — which
we again evaluate in our examples by precision-weighted least squares regression — we can divide
through by the local value of ŝ(x, y) in order to normalise each strain estimate.

A further extension can be made to adjust for the possibility that the probe may rotate about
the elevational axis during the scan, resulting in stress variation over the lateral direction.

d̂(x, y) = α0 + α1x + β1y(1 + β2y)(1 + β3x) (4a)

ŝ(x, y) = β1(1 + 2β2y)(1 + β3x) (4b)

Again, the parameters β1, β2 and β3 can be found by precision-weighted least squares regression,
or any suitable alternative, thereby defining the normalisation strain at every position throughout
the image.

Scans using 3D probes (2D arrays or mechanically-swept 1D arrays) lead to volumes of displace-
ment estimates, {d(x, y, z)}. In these cases we can extend our normalisation further, adjusting for
linear variation in pressure over the elevational direction:

d̂(x, y, z) = α0 + α1x + α2z + β1y(1 + β2y)(1 + β3x)(1 + β4z) (5a)

ŝ(x, y, z) = β1(1 + 2β2y)(1 + β3x)(1 + β4z) (5b)

Strain estimates in volumetric frames are normalised simply by dividing through by the local value
of ŝ(x, y, z).

Many further extensions are possible. However, as the number of parameters defining the
displacement surface increases, it may be more convenient to determine the normalisation strain
by fitting a surface to the pre-normalisation strain estimates, rather than to the displacements.
This reduces the computational complexity, although it is sometimes less accurate. Whether it
is better to fit a displacement surface or a strain surface depends on the number of available
estimates, their accuracy, and the complexity of the parametric hyper-surface that is being used.
Normalisation in our later examples is by fitting displacement surfaces, except where otherwise
specified.

It is worth noting that all of our normalisations can be applied both to the strain estimates
and also to the associated precision values. Since normalisation applies a scaling of 1/ŝ(x, y)
both to good measurements and to errors, we correspondingly scale the precision (reciprocal
of mean squared error) by ŝ(x, y)2. If we denote pre-normalisation strain estimates and post-
normalisation pseudo-strain by sA and sB , with WA and WB respectively denoting the pre- and
post-normalisation precisions, then

sB(x, y) = sA(x, y)/ŝ(x, y) (6a)

WB(x, y) = WA(x, y) × ŝ(x, y)2 (6b)

The practical effect of the combined normalisation is to place each individual strain estimate on
a broad scale of possible interpretations, depending on its relative properties in the context of
the entire frame of scan data. Depending on the value of ŝ(x, y), the normalisation of any single
strain estimate and its precision value is to place it within a range spanning (1) relatively low
pseudo-strain at relatively high precision, through to (2) relatively high pseudo-strain at relatively
low precision. The form of the normalisation therefore potentially influences not only the type of
image, but also its accuracy.
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probe surface
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Equation 3
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Equation 4

Figure 3: Illustration of the types of strain fields that may produce uniform pseudo-strain fields
— indicating homogeneous stiffness — with each of our normalisation options. Here low strain is
shown by white and high strain is black. The first option only adjusts for stress variation on the
level of the whole image, while the second adjusts for lower stress away from the probe surface,
and the third also adjusts for uneven probe pressure.

It bears noting that the main computational expense of normalisation comes from fitting a
parametric displacement or strain surface, but this in itself is typically a negligible cost on widely
available GHz processors in the context of 2D frame rates below 100 Hz. Computational efficiency is
one of the main factors behind the selection of the particular parametric forms that we provide here
as examples. However, Equations 3, 4 and 5 imply linear variation with depth in the normalisation
strain. This may usually be a good approximation, but it leaves open the possibility that the sign
of the normalisation strain could invert at some depth within the image. If this were a reasonable
form of normalisation, it would imply that at some depth the direction of the stress field inverts,
i.e., that a compression at the surface causes extension at greater depth within the tissue. This is
unrealistic, but it can be prevented, for example by constraining the fitted surface to avoid the strain
crossing zero within the image depth (as in the images presented in this report) or alternatively
data below the zero crossing of the normalisation strain can be treated as uninformative, by setting
the precision to zero.

The normalisation surface might ideally reflect exponential variation with depth, but a least
squares fit would then incur much greater computational cost. Our demonstration employs the
normalisation surfaces outlined above for efficiency, not precluding the possibility that other para-
metric or constrained non-parametric forms may be found in the future, offering better performance
at reasonable cost.

Figure 3 illustrates the strain fields that are implied by each of the normalisation scheme
examples, or equivalently the stress fields that might produce such a field in homogeneous material.
The key with the normalisation is to fit a suitably constrained surface, that with high probability
corrects for artefacts associated with the uneven distribution of stress within the tissue, without
removing information that has arisen owing to genuine differences in stiffness.

It is possible — but unlikely — that there may be tissue in which stiffness in fact varies with the
reciprocal of depth, and the application of a uniform stress field may also be possible, in which case
normalisation using Equation 3 or Equation 4 would remove real stiffness data from the display.
The frequency with which this sort of ambiguity arises will depend on the scanning target, so it
may be that different normalisation surfaces are required for different clinical applications.

2.4 Persistence or spatial averaging

Persistence refers to time-averaging of image data, while in some applications spatial averaging is
more appropriate. The concept of weighted averaging of multiple frames is not new in ultrasonic
strain imaging [8]. In general, our preferred approach is to perform averaging after normalisation
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in the form of a precision-weighted average on a per-pixel basis. We also sum the precision values,
since it can be shown that the overall precision of a correctly precision-weighted average of data
with uncorrelated errors is equal to the sum of precisions.

In the context of producing a real time interface for freehand imaging with two spatial image
dimensions, we perform this averaging as a form of persistence on the arrival of each new frame,
f . The values that persist in pre-display buffers at pixel (x, y) are a precision-weighted sum,
S(x, y, f), and the sum of precisions, Ω(x, y, f). These buffers are updated as each new frame
arrives, providing new pseudo-strain data, sB(x, y, f), and new precision data, WB(x, y, f).

S(x, y, f) = γS(x, y, f − 1) + WB(x, y, f)sB(x, y, f) (7a)

Ω(x, y, f) = γΩ(x, y, f − 1) + WB(x, y, f) (7b)

Here γ is a number between 0 and 1 that determines the level of persistence. Each persisted
pseudo-strain is given by S(x, y, f)/Ω(x, y, f), accompanied by a precision (quality) value for the
display, Ω(x, y, f). Therefore, we can present sonographers with a meaningful display, representing
data quality as well as strain — the appearance of each image is determined jointly by these two
quantities.

Our method for spatial averaging is very similar. We apply it to reduce the noise in 3D
data spanning a volume. In general, our spatial averaging involves convolving the data with a
filter kernel, spanning time and the three spatial dimensions. Persistence as described above is
usually suitable for implementing the filter over time — it amounts to a smoothing kernel, with
an infinite impulse response. We treat the spatial dimensions differently, on the other hand, by
explicitly expressing the kernel in the form K(|∆x|, |∆y|, |∆z|). Spatially averaged data S(x, y, z)
and Ω(x, y, z) are similar to the persisted data: spatially averaged pseudo-strain values are again
given by S(x, y, z)/Ω(x, y, z). These data are calculated as follows.

S(x, y, z) =
∑

i

K(|xi − x|, |yi − y|, |zi − z|)WB(i)sB(i) (8a)

Ω(x, y, z) =
∑

i

K(|xi − x|, |yi − y|, |zi − z|)WB(i) (8b)

This is symmetric smoothing, for which kernel values in the range 0 to 1 express the weighting of
normalised pseudo-strain data at (xi, yi, zi) when spatially averaged data are being calculated at
(x, y, z). Generally, sets of normalised pseudo-strain sB(i) and precision WB(i) data may be either
regularly or irregularly distributed over 3D space. Examples of both situations are presented in
Section 3. If the location data (xi, yi, zi) are continuous, then K(|xi − x|, |yi − y|, |zi − z|) must
be defined in a functional form, rather than as a discrete kernel. Ideally, spatial averaging might
be implemented with a smooth kernel, such as a Gaussian, but this is inconvenient to calculate,
especially when the data are irregularly distributed. Instead, in our examples we revert to a
rectangular moving average filter,

K(|∆x|, |∆y|, |∆z|) =

{

1 if |∆x| < L ∩ |∆y| < L ∩ |∆z| < L

0 otherwise
(9)

where L sets the kernel size. This filter can be applied very efficiently to irregularly as well as to
regularly distributed data. The central lobe of its spatial frequency response is essentially a low
pass filter. Some high frequency noise remains owing to side lobes, but this can mostly be removed
simply by explicitly low-pass filtering the pixel data before the final display.

2.5 Display

Returning to Figure 2, an advantage of traditional ultrasound imaging is that signal intensity
displays automatically tend to show the most data where the signal is strong, and they show less
data where the signal is weak (the image turns black). Similarly, one of our options when imaging
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Figure 4: Two examples of 2D colour maps. (a) Green through to magenta provides the strain
scale, while pixel intensity indicates the data quality within a range from a lower threshold —
below which everything appears black — up to a maximum threshold — above which colours are
displayed with the maximum intensity. (b) The strain scale is based on intensity variation between
black and white, which blends with dull red when the precision is low.

pseudo-strain is to control image luminance or intensity based on the precision data, and to use
changes in colour (preferably independently of luminance/intensity) to indicate strain. Regarding
the colour scheme, our options include the use of a wide range of saturated colours, producing
the effect of a contour display (as for example in the blue-cyan-green-yellow-red scale of [7] and
[18]), but for the present demonstration we favour a dichromatic scale, which is qualitatively
closer to traditional intensity-based displays, and which may avoid distorting the features that
are perceived to appear in each image. Aiming for maximum colour variation across our example
scale, we use green and magenta at the extremes, varying from strong green (high strain/soft)
through grey (medium strain/medium stiffness) to magenta (low strain/stiff). Since we perceive
different colours with different sensitivity, colour variation at a fixed intensity is achieved following
the convention of holding constant the value of 59× (green pixel value)+30× (red pixel value)+
11 × (blue pixel value) [9]. The overall colour map, considering both strain and precision, is
illustrated in Figure 4.†

There are likely to be both advantages and disadvantages associated with representing strain
with colour instead of intensity, since image features encoded in these two alternative ways are
processed with different accuracy and at different speed by the human visual system [2]. We
therefore also test a 2D colour map in which strain is indicated by intensity, and a colour (red in
our example) is introduced to indicate precision. We include this in Figure 4 and in our results to
provide a comparison. In any event, our aim in relation to displays is simply to demonstrate that
a 2D colour map can be used effectively to depict strain and precision data simultaneously.

Note that in the results section we demonstrate 2D colour maps that are encoded with eight bits
per pixel. This is usually sufficient to produce good images, because distinctions within the dark or
red regions of the colour maps are less perceptible, so these regions can be encoded at low precision.
However, 16-bit encoding might be preferable if this type of interface came into widespread clinical
use, since the appearance of the display images would then be marginally smoother.

†High quality colour printing is required in order to appreciate the full meaning of the remaining figures.
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strain 1 strain 2 B-scan

Figure 5: Thyroid images using the full interface.

3 Results

By applying our full interface scheme — with intelligent normalisation, persistence and display
— to the scan shown earlier in Figure 2, we produce a substantially better image in Figure 5.
Precision-weighted persistence gives rise to good strain estimates throughout most of the image,
and the poor precision of estimates in the shadowed regions is clearly indicated by both of the 2D
colour maps. This scan was undertaken freehand using the 5–8 MHz 7L3-V probe of the Terason†

T3000 laptop-based ultrasound machine, running Stradwin‡ freehand 3D ultrasound software. The
remainder of this section provides further illustrations from scans of phantoms, highlighting the
properties of each interface component, and the interactions between different components.

Figure 6 illustrates the effect of persistence, using images from an inhomogeneous gelatin phan-
tom with stiff inclusions at a depth of 7 cm, scanned using the convex 2–5 MHz 4C2-A Terason
probe. These images are normalised using Equation 4. Individual strain images usually produce
some regions of good strain estimates, alongside other regions with lower precision. Unweighted
frame averaging as in Figure 6b might eventually converge on a good image, but for short integra-
tion times it is usually less accurate than some of the best individual images. The advantage of
persistence, as in Figure 6c–d, is that it makes efficient use of the data, so better strain images are
produced easily, with larger regions of good data and generally less noise. In some scans, as in this
example, the use of an image-wide weighting is sufficient to cut out most of the noise, although
pixel-level weightings often give better results. The other advantage of pixel-level weightings is
that a precision value is retained by each pixel in the persisted image, so it is still possible to
indicate the data quality using a 2D colour map. However, we include an image produced using a
less robust displacement tracking algorithm in Figure 6e, in which the best form of persistence has
been employed. The image is poor, demonstrating that persistence is far more effective if the rate
of severe outliers can be kept to a minimum, because estimates of the precision of gross outlier
errors tend to be too high. Persistence is highly effective in conjunction with our phase-based
algorithms, because of the implicit continuity constraint that was introduced by the advanced iter-
ation seeding strategy described in [14] and [25]. This issue also affects exhaustive searching based
on correlation coefficient or SAD, where in both cases the imposition of continuity constraints –
whether explicitly [20] or implicitly [14] — substantially reduces the rate of outlier errors.

The next example is from freehand scanning of a breast biopsy phantom (Computerised Imaging
Reference Systems, Inc.§ Model 052) using the linear array 5–8 MHz Terason probe. The data
quality in this case is less dependent on maintaining even probe pressure, because displacement
tracking near to the surface is subject to less motion decorrelation, even if the probe does rotate
substantially. However, this means that a wider range of motion types register high precision values,
which actually makes correct normalisation more important than in the example of Figure 6. A

†http://www.terason.com
‡http://mi.eng.cam.ac.uk/~rwp/stradwin
§http://www.cirsinc.com
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(b1)
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(d1)

(e1)

(a2)

(b2)

(c2)

(d2)
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Figure 6: Example of alternative persistence methods in the strain images. (a) Best individual

image without persistence: Individual frames produce a mixture of good and bad image regions,
which register different levels of precision. (b) Unweighted frame averaging: The unweighted av-
erage of an image sequence is noisier than many of the individual frames. (c) Precision-weighted

frame averaging: A sequential average weighted by each frame’s mean precision significantly re-
duces the level of noise. (d) Pixel-level precision-weighted persistence: Performing the average
with a different weight for every pixel further reduces the level of noise, but only slightly in this
example. Its main advantage in this case is the retention of pixel-level persistence data, hence the
remaining poor data can be hidden. (e) Less robust displacement tracking: This image has the
same persistence, but displacement tracking is by the fragile method of [22]. Persistence is more
effective in conjunction with robust displacement tracking algorithms.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 7: Comparison of normalisation applied to a single frame (no persistence). The normalisa-
tion surface is based on (a) Equation 2, (b) Equation 3 and (c) Equation 4.

single frame of strain data with relatively even compression is illustrated in Figure 7, exhibiting two
noteworthy features. The uniform normalisation in Figure 7a gives the impression of there being
stiffer material towards the bottom of the image, where the stress disperses into the surrounding
material. The images in Figure 7b–c are better because the region with lower stress registers
instead as having similar pseudo-strain at a lower signal-to-noise ratio, resulting in larger hidden
regions. It is also clear from the image that the motion of the probe was slightly rotational, so that
greater pressure was applied on the right hand side. This gives an appearance of soft material on
the right of the image in Figure 7a–b, including a particularly soft region with low precision data.
The background material correctly appears more uniform when we apply the more sophisticated
normalisation in Figure 7c, particularly in the top right of the image, where the data now register
an acceptable level of precision.

Rotational movement of the probe often results in stark differences depending on the form of
the normalisation. The image in Figure 8 is a relatively extreme example. This demonstrates
the importance of appropriate normalisation for making best use of the recorded data. The in-
homogeneity of pseudo-strain precision in these images means that they also highlight the value
of correctly applying weighted persistence at the pixel-level. Figure 9 shows that in this instance
precision-weighted frame averaging is no better than unweighted frame averaging, whereas an ex-
cellent pseudo-strain image is produced by applying precision-weighted persistence at the level of
individual pixels. Our sophisticated normalisation with lateral stress correction is advantageous
because it both reduces the level of noise and produces a pseudo-strain image that corresponds
much more closely to the stiffness of the phantom material.

Final 2D results are presented in Figure 10, showing a typical image sequence indicative of the
sonographer’s experience when beginning a freehand scan using the new interface. The scan target
in this example is an inhomogeneous agar phantom containing half of an olive, which is slightly
stiffer than the agar. The screen is initially black (or red) before acceptable data become available.
It begins to colour almost immediately on contact with the scan target, although some parts of
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(a0) (a1) (a2)

(b0) (b1) (b2)

Figure 8: This image records a frame in which the main motion was rotational, so one side
extended while the other compressed. The label 0 denotes the use of a black-white colour map
without precision data. (a) If a uniform normalisation is used the resulting pseudo-strain image has
one half coloured white and the other black about a pivot. Fortunately the precision data correctly
register an absence of useful data, so (a1) and (a2) are blank. However, the more sophisticated
normalisation applied in (b) registers many useful measurements, with acceptable precision at the
edges of the image, away from a central pivot, the position of which is clearly visible.
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 9: Examples of persistence alternatives applied to a sequence of strain images from the scan
of the breast biopsy phantom, where the scan has been conducted inexpertly, frequently rolling
the probe about the elevational axis. (a) Unweighted frame averaging still produces poor results.
(b) In this instance, precision-weighted frame averaging is no better than unweighted averaging,
because the precision of each individual estimate correlates poorly with the mean precision in each
frame. (c) Precision-weighted persistence at the pixel level produces a far better image.
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Figure 10: Sequence of images at the start of a freehand scan.

the image colour less quickly than others, while regions without data — such as the shadow on
the right — may remain black/red. Stable images are achieved easily, and the development of
a successful scanning technique is supported by visual feedback: good technique illuminates the
display, whereas poor movements cause it to darken.

We have also undertaken two forms of freehand 3D strain imaging. Firstly, semi-freehand 3D
scanning employs a mechanically-swept array that sweeps elevationally within its casing, while
contact pressure is controlled manually. Secondly, we use a standard linear array tracked by a
6DOF position sensor for more traditional freehand 3D scanning [5, 13]. Each 3D example that we
present naturally requires many images to illustrate different planes slicing through each volume
of data, so to save space in these figures we only show the second of our 2D colour maps.

Our mechanically-swept system consists of a GE† RSP 6-12 probe interfaced to a Dynamic
Imaging Diasus‡ ultrasound machine, from which RF ultrasound data are sampled by a Gage§

CompuScope 14200 analogue-to-digital converter, and the data are processed and displayed in
real time on a PC running Stradwin software. The scanning protocol consists of pressing the
probe against the scan target, and holding fairly still during the first mechanical sweep, then
manually applying slightly more pressure, before again holding still for the second sweep. Full
3D displacement estimation is applied to the resulting volumes of pre- and post-deformation RF
ultrasound data, and axial strain is estimated using 3D least squares kernels, as described in [26].
The volumes of strain data are normalised to pseudo-strain data by following Equation 5 — in this
instance a strain hyper-surface is fitted directly to find the parameters in Equation 5b, which is a

†http://www.gehealthcare.com
‡http://www.dynamicimaging.co.uk
§http://www.gage-applied.com
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Figure 11: Using the mechanically-swept array, freehand 3D scan of half of an olive in agar. The
images show slices through 3D data volumes. Top row from left to right: axial-lateral planar inten-
sity image (i.e., a conventional B-scan), axial-elevational intensity, lateral-elevational intensity, and
these planes located in 3D space. Middle row: corresponding pseudo-strain images without spa-
tial averaging. Bottom row: pseudo-strain images with spatial averaging. Fine red lines through
the axial-elevational and lateral-elevational slices indicate their intersections with the displayed
axial-lateral slice.

reliable method given the large quantity of data available in the volume. Example images from a
scan of the olive-agar phantom are shown in Figure 11. The images show that spatial averaging
is not necessarily required in this case, but the 3D results are nonetheless improved substantially
in the bottom row of Figure 11, in which a weighted moving average has been applied following
Equations 8 and 9 with L=0.8mm.

The spatial averaging incurs minimal loss of resolution, because much of the increase in signal-
to-noise ratio arises from the weighted averaging of pseudo-strain data that are spaced more closely
than the true resolution of the strain imaging system. This means that weighted spatial averag-
ing is in fact more important in traditional freehand 3D strain imaging, where movement of the
ultrasound array is determined entirely by manual scanning technique. In this case, strain esti-
mates from successive 2D frames often overlap almost precisely in 3D space. This arises because
of the relatively haphazard motion of the probe. The errors in overlapping strain estimates are
in fact only weakly correlated (if at all), because each overlapping strain estimate arises from a
different deformation of the tissue, making weighted averaging all the more effective. The form
of normalisation is also very important in this application, because every frame has a different
pressure distribution, so the effectiveness of spatial averaging depends critically on the use of data
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Figure 12: Freehand scan of an olive-gelatin phantom. Top row: intensity. Middle row: strain.
Bottom row: pseudo-strain with spatial averaging (L=1mm). In every row, fine red lines through
the middle two slices (axial-elevational and lateral-elevational) indicate their intersections with the
axial-lateral slice on the left. These images may be compared with previous results based on the
same data in Fig. 11 of [13].

that have been normalised suitably to adjust for pressure variations.
The examples in Figures 12 and 13 are based on data acquired again by sampling RF from the

Dynamic Imaging Diasus machine, this time using the standard 5–10 MHz probe, tracked during
freehand scanning by a Northern Digital† Polaris optical position sensor. Figure 12 shows an olive-
gelatin phantom, which was scanned as part of our original investigation of freehand 3D strain
imaging [13]. The middle row of Figure 12 shows strain images with a uniform normalisation of each
frame, without spatial averaging, so the axial-elevational and lateral-elevational planes have been
constructed by nearest-neighbour interpolation. This fails to produce a useful 3D image. Previously
we discussed the use of frame-level quality measures for automatic rejection of frames with poor
strain images [12, 13], but we now achieve far higher quality overall by applying weighted pixel-
level filtering, i.e., producing pseudo-strain images using our new interface with spatial averaging
and normalisation following Equation 4. One part of the 3D image in Figure 12 still produces poor
data, because the phantom contained a pocket of trapped air, causing the shadowing shown in the
axial-elevational slice. Our 2D colour map is useful in this region, because it correctly marks the
shadowed region red, where no accurate strain data are available.

We also show a similar freehand 3D scan in Figure 13 of the same olive-agar phantom that was

†http://www.ndigital.com

16



Figure 13: Freehand scan of the olive-agar phantom. Top row: intensity. Middle row: strain.
Bottom row: pseudo-strain with spatial averaging (L=1mm). In every row, fine red lines through
the middle two slices (axial-elevational and lateral-elevational) indicate their intersections with the
axial-lateral slice on the left.

scanned with the semi-freehand method to produce Figure 11. Again, spatially averaged pseudo-
strain in Figure 13 offers a great improvement over naive strain imaging. The reader may also note
the benefits of experience: the olive-agar phantom contains half of an olive, upturned to avoid the
formation of the air pockets that were problematic in our previous olive-gelatin phantoms [13].

4 Conclusions

We have presented an overview of a novel interface for real time freehand strain imaging, with
brief explanations of the underlying theoretical principles. The preferred inputs for the interface
are strain estimates from a robust strain estimator, together with accurate precision estimates.
This means that the interface can be incorporated as the front end on a wide range of strain
imaging systems, although the best results are likely to be achieved in systems that include robust
displacement estimation that neither relies on exhaustive searching nor on tracking methods that
exhibit excessive fragility.

Notable aspects of our interface include a normalisation stage, persistence or spatial averaging
and a novel display using a 2D colour map. Normalisation reduces the ambiguity of strain imaging,
and actually reduces the level of noise in persisted images. It follows that good, informative pseudo-
strain images can be produced by a wide range of probe motions, rather than relying heavily on
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careful, even compressions. In order to exploit these benefits fully, persistence should be weighted
at the level of individual pixels, rather than at the level of sequential images.

We have also demonstrated the application of our interface to freehand 3D scanning. With the
new interface, the general robustness of pseudo-strain imaging means that the acquisition of 3D
volumes of pseudo-strain data is essentially no more challenging than the basic problem of reliably
producing good 2D images. This is also made considerably easier by the presentation of persisted
real time pseudo-strain images in 2D, while the sonographer acquires data across the volume.

In general, this system not only improves the quality of the results from particular data sets, but
it also supports the acquisition of suitable data, by helping the sonographer to develop a successful
scanning technique. Wide-ranging clinical trials will begin mid-2007 in Addenbrooke’s Hospital
(Cambridge, UK) to investigate suitable applications for this system. Although the interface
has already been received enthusiastically by our clinical collaborators, it is possible that further
modifications could be made to tailor it further for specific applications as clinical experience is
accumulated. At the very least, it is probable that the best normalisation and 2D colour scheme
will be application-dependent, so a range of application-specific settings is likely to be required
within the framework of the existing interface.
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