Dynamic Error Propagation Networks

Anthony John Robinson
Trinity Hall
and
Cambridge University Engineering Department
ajr@dsl.eng.cam.ac.uk

Submitted February 1989
Examined June 1989

This dissertation was submitted for the degree of Doctor of Philosophy at
Cambridge University.

Summary

This thesis extends the error propagation network to deal with
time varying or dynamic patterns. Examples are given of super-
vised, reinforcement driven and unsupervised learning.

Chapter 1 presents an overview of connectionist models.

Chapter 2 introduces the error propagation algorithm for general
node types.

Chapter 3 discusses the issue of data representation in connec-
tionist models.

Chapter 4 describes the use of several types of networks applied
to the problem of the recognition of steady state vowels from
multiple speakers.

Chapter 5 extends the error propagation algorithm to deal with
time varying input. Three possible architectures are explored
which deal with learning sequences of known length and se-
quences of unknown and possibly indefinite length. Several sim-
ple examples are given.

Chapter 6 describes the use of two dynamic nets to form a
speech coder. The popular method of Differential Pulse Code
Modulation for speech coding employs two linear filters to en-
code and decode speech. By generalising these to non-linear
filters, implemented as dynamic nets, a reduction in the noise
imposed by a limited bandwidth channel is achieved.

Chapter 7 describes the application of a dynamic net to the
recognition of a large subset of the phonemes of English from
continuous speech. The dynamic net is found to give a higher
recognition rate both in comparison with a fixed window net
and with the established k nearest neighbour technique.

Chapter 8 describes a further development of dynamic nets
which allows them to be trained by a reinforcement signal which
expresses the correctness of the output of the net. Two possible
architectures are given and an example of learning to play the
game of noughts and crosses is presented.

Declaration

This dissertation is the result of my own work and includes
nothing which is the outcome of work done in collaboration.

Acknowledgements

The author would like to acknowledge financial support from
the UK Science and Engineering Research Council, Cambridge
University Engineering Department and Trinity Hall, Cambridge.
Technical support was received from the UK Alvey Project MMI
069 which established the Hotel speech database and the Par-
SiFal project IKBS/146 which developed the transputer array.

The author would also like to thank:

e My supervisor, Professor Frank Fallside, for his unique
blend of supervised, reinforcement driven and unsupervised
teaching.

e Past and current members of the Cambridge University
Engineering Department Speech and A.l. group, especially
the connectionists: lan Braithwaite, Lai-Wan Chan, Mark
Plumbley, Mike Chong, Mahesan Niranjan, Patrick Gosling,
Peter Todd, Phil Steen, Sean Kelly, Simon Duncan, Richard
Prager, Tim Harrison, Tim Marsland, Tony Fotherby, Vic-
tor Abrash and Visakan Kadirkamanathen.

o The staff of the Photocopy Department for amazing service
when deadlines have been tight and also the staff of the
tea room for something like 10 toasted cheese buns.

e The following who all know why they are being thanked:
Andrew E., Andrew M., Beryl, Chris, Don, Frances, George,
Gordon, Matthew, Mary, Phil, Sue, Tamsin, Tim H., Tim
N., Tim S., Tom, Wendy.

Contents

Title
SUMMAIY . . o e e e e
Declaration L L e e
Acknowledgements L e

Contents

0 Introduction

0.1 Features of Connectionist Models
0.1.1 Complexity of Processing Elements
0.1.2 Distributed Representations L
0.1.3 Self Organisation e
0.1.4 Inherent Parallelism L
0.1.5 Biological Inspirationo

0.2 Uses of Connectionist Models e

1 Types of Connectionist Models

1.1 Learning Algorithms L e
1.2 Autoassociative Networks L e
1.3 Associative Networks L

1.3.1 Unsupervised Learning

1.3.2 Reinforcement Driven Learning

1.3.3 Supervised Learning

2 Error Propagation Networks
2.1 Formalism L e
2.2 Training by Gradient Descent L
2.3 Example of Weighted Sum Nodes
2.4 Example of Gaussian Nodes L
2.5 Adapting the Step Size Parameter L
3 Data Representation in Connectionist Models

3.1 Input Representation e
3.2 Internal Representation L
3.3 Output Representation e e e

3.3.1 Single Scalar L e

3.3.2 Packed Binary Vectors e

3.3.3 One-of-Many Vectors e
3.4 Towards Symbolic Representations L
3.5 Discussiono

4 Application to Vowel Recognition

4.1 The Speech Data e
42 Front End Analysis L L e
4.3 Details of the Models e
4.4 Recognition Results e
4.5 Discussion

5 Dynamic Error Propagation Networks
5.1 Temporal Pattern Processing Networks
5.1.1 Windowed Input Networks e e
5.1.2 Internal State Networks L
5.2 Development from Linear Control Theory
5.3 Architectures L L e
5.3.1 The Finite Input Duration (FID) Dynamic Net
5.3.2 The Infinite Input Duration (IID) Dynamic Net
5.3.3 The State Compression Dynamic Net
5.4 Some Examples of Dynamic Nets L
541 Unit Time Delay L e
5.42 Bistable L e
5.4.3 Movement Detection L L
5.4.4 Letter to Word Conversion
5.5 Limitations of Dynamic Nets L

6 Application to Speech Coding
6.1 The Architecture of a General Coder
6.2 Training of the Speech Coder

6.3 Comparison of Performance

Application to Continuous Speech Recognition

7.1 Weight Update Strategy e
7.2 Speech Database
7.3 Front End Processing L
7.4 Phoneme Labels . . . © . e
7.5 Back End Processing
7.6 Static Net Results
7.7 Dynamic Net Results e
7.8 K Nearest Neighbour (KNN) Results0 o
7.9

Discussion L

inforcement Driven Dynamic Nets

rchitectures L L e e
eneral Game Playing Program
Noughts and Crosses L
Input and Output Representations
Implementation L L L e e e
Problems with Reinforcement Driven Learning o
Results o

Re
8.1 A
82 AG
8.2.
8.2.
8.2.
8.2.
8.2.

ST WN =

Conclusion
Implementation on a Transputer Array

Bibliography

Chapter 0

Introduction

In the early 1960's the desire to model human intelligence was
based on two opposite philosophies. The first was a ‘holistic’
approach which arose from a desire to model the computation
strategy of the brain by using many simple processing elements.
Each processing element uses information which is distributed
over the whole of the store, and gives a result which is inter-
preted in the context of the results from all the other processing
elements. The other was a ‘reductionist’ approach, using a sin-
gle complex processing element which, acting on locally stored
information, can be used to break down complex calculations
into more tractable sub-problems. These simpler problems can
in turn be reduced to problems which are simple enough to solve.
Feldman (1986) provides a detailed discussion of these two ap-
proaches. As in modern science, medicine and economics, the
reductionist approach has built on its own successes and now
dominates the field.

Recently there has been a revival in the holistic approach in
the form of ‘connectionist models’, ‘neural nets’ or ‘parallel dis-
tributed processing’, arising from the development of new learn-
ing algorithms and an increased speed of simulations on digital
computers. This renewed interest has brought together neu-
roscientists, cognitive scientists, engineers, computer scientists,
mathematicians and philosophers with considerable enthusiasm
for a rapidly expanding subject.

0.1

Features of Connectionist Models

The connectionist approach to information processing is an al-
ternative to the ‘program and data’ von Neumann model of com-
putation which has found application from washing machines to
launch-on-warning systems for nuclear weapons. This section
makes a comparison of the two approaches. There are many
good introductory texts in which which further information may
be found, for example the two volumes of 'Parallel Distributed
Processing’, (Rumelhart and McClelland, 1986; McClelland and
Rumelhart, 1986) and ‘Self-Organization and Associative Mem-
ory' (Kohonen, 1988).

0.1.1

Complexity of Processing Elements

Perhaps the strongest difference between the conventional and
the connectionist approach is in the representation of the pro-
cessing and storage. Conventional computers store each piece
of information, (for example an instruction, integer or ‘symbol’)
in a store which is discrete and separate from the store of other
information. A single processor with a rich instruction set ac-
cesses this data, and depending on its contents, it may access
another location or store data in a location. In contrast a con-
nectionist system has many simple processing elements which
read the output of a large number of other processing elements,
and performs some simple operation such as a weighted sum
on these values, making the answer available to many other
processing elements.

0.1.2 Distributed Representations

In contrast to the localised data storage of the von Neumann
machines, connectionist models operate on a non-localised or
distributed representation (Hinton, McClelland and Rumelhart,
1986). This applies both to the data from the input as it is trans-
formed by the internal processing elements or ‘hidden units’,
and also to the knowledge used to do this transformation. In
practice, this has the advantage that the machines are robust
to small variations in the parameters used to describe the ma-
chine, and also that faults in the processing elements result in
a graceful degradation of performance.

0.1.3 Self Organisation

A common feature of all connectionist models is that they are
defined using a set of examples, the training set, which makes
some specification of the transformation to be performed. In
many, but not all connectionist models, the parameters are de-
termined by an iterative training procedure, starting from ran-
dom values and converging onto a set which performs the map-
ping defined by the training set. This process of adaption is
often referred to as ‘learning’.

0.1.4

Inherent Parallelism

Many connectionist models have an inherently fine grained par-
allel structure such that the computations performed by the
processing elements are independent and so may be computed
in parallel. This is important when considering hardware im-
plementations of connectionist models which can exploit this
parallelism. However, all the connectionist models reported in
this thesis ran as software simulations, and when parallel ma-
chines were used it was found to be more efficient to run a
coarse grained parallelism which simulated each model sequen-
tially (see appendix A).

0.1.5 Biological Inspiration

Analogies may be drawn between connectionist information pro-
cessing and human information processing. Each processing el-
ement may be likened to a neuron and the strength of the links
between elements to synaptic strength. Lindsay and Norman
(1977) provide a good introduction to human information pro-
cessing, Kuffler, Nicholls and Martin (1984) to neurobiology and
many authors have linked these subjects to connectionist mod-
els (for example: Ferry, 1987). Whilst this aspect is of interest
to the author (Robinson and Fallside, 1987a) this thesis adopts
an ‘engineering’ approach which uses connectionist models for
convenience and does not consider biological plausibility.

0.2 Uses of Connectionist Models

Existing computational techniques have had a considerable in-
fluence on the models of the mind used by psychologists and
connectionist models are becoming popular in their turn. In
contrast, the analogy between processing elements and neurons
is almost certainly too simple to be taken seriously by neurobi-
ologists.

Many comparisons between connectionist models and conven-
tional techniques for pattern classification tasks have been made

(for example: Huang and Lippmann, 1987). However, to date,
there is no area where they are universally regarded as the best
way to solve a given problem. The most promising areas of
application are those in which the explicit means of solving the
problem is not known and does not need to be known, those
problems which require large computational resources which can
use dedicated connectionist hardware, and those areas whose
data structures can be expressed as distributed representations.

The fields of speech and vision processing fit these requirements.
As vision problems tend to involve larger amounts of data than
speech problems and connectionist models are computationally
expensive to train, the major examples in this thesis are taken
from the field of speech processing.

Chapter 1

Types of Connectionist Models

Connectionist models consist of many simple processing ele-
ments which are highly interconnected so as to collectively per-
form a complex computational task. The model is defined by
a large number of parameters, or weights, whose values are se-
lected so that the model performs a particular task out of all the
possible tasks that could be performed. The aim of this chapter
is to provide a brief review of the most popular connectionist
models within a coherent framework, and so provide some con-
text for the work that is presented in the remaining chapters. For
more detailed reviews see Hinton (1987) and Lippmann (1987).

1.1 Learning Algorithms

Connectionist models learn by minimising a ‘cost function’ or
‘energy’ which measures how well the model fits a set of exam-
ples given in a training set. This cost function can be minimised
in many ways, but as current models may use 10 to 100,000
weights, an exhaustive search through the weight space is usu-
ally not feasible. One popular approach is to start at a possible
solution and iteratively make small changes to the values of the
weights so as to improve the solution. The simplest algorithm
for making these changes simply generates a random change and
updates the weights if the cost function is reduced. A variation
on this search maintains several likely points and generates new
points by combining members of the current population with the
addition of some noise. This is termed a the ‘genetic algorithm’
(Holland, 1975; Goldberg, 1989), named by analogy with the
Darwinian process of natural selection. The search for a min-
imum can be quickened if the direction of steepest descent in
weight space is known, and many algorithms are based on this
procedure of ‘gradient descent’ (for example: Scales, 1985).
However, if a strict gradient descent procedure is adopted there
is no guarantee of finding the global minimum of the cost func-
tion. This deficiency may be overcome by using a stochastic
algorithm which may make changes which increase the cost
function and so escape from a local minima. If the influence
of the random input is initially high and is sufficiently slowly re-
duced, then the global minimum is guaranteed. This processes
is called simulated annealing (Kirkpatrick, Gelatt, Jr. and Vec-
chi, 1983).

For some problems an analytical solution may be found. For
example an unsupervised network for performing dimensional-
ity reduction may be solved using principle component analysis
(Bourlard and Kamp, 1987). These methods have advantages

over iterative methods as the final solution is a global minimum
of the cost function and is often computed faster.

Connectionist models may be divided into those which make
no distinction between the inputs and outputs of the networks,
autoassociative networks, and those which do make this dis-
tinction, associative networks. Most of these networks can be
described as a set of units and weights between these units. To
provide a uniform framework for describing these models the no-
tation op; will be used to represent the value of the activation of

the ¢* unit for the p* example in a N unit network, 6; the bias
weight in the i unit and wj; the value of the weight between
the #*P and ;" units.

1.2 Autoassociative Networks

Perhaps the most popular form of autoassociative network is
the Hopfield net (Hopfield, 1982). The units have a value of 0
or +1 and the weight matrix is formed in a non-iterative way
by summing the outer product of all pairs of zero-mean training
examples, as in equation 1.1. To run the network the elements
in a corrupted version of a stored pattern are asynchronously
updated according to equation 1.2.

N-1
wij = Z(Qopz’ — 1)(20p; — 1) (11)
Op; — 1 .
o;- 0 if waop] (1.2)

J#L

This process is repeated until the pattern converges onto a sta-
ble state which, in many cases, will be one of the training pat-
terns. In a later paper Hopfleld (1984) extends this network to
the case of continuously valued units.

Another powerful form of autoassociative network is the Boltz-
mann machine (Hinton, Sejnowski and Ackley, 1984; Ackley,
Hinton and Sejnowski, 1985). These machines have both
‘visible’ units whose value is defined by the example pattern,
and ‘hidden’ units whose value is a stochastic function of the
weighed sum of its inputs. Equations 1.3 and 1.4 give the prob-
ability F; that o,; = 1, otherwise 0,; = 0. The “temperature’
term, T, is reduced during run time so that the value of F;
assumes the value 0 or 1.

N-1
AE,' = Z Wi 0pj — 92 (13)
j=0
P, 71 1
i = 1+ eAEJT (1.4)

The network is trained by observing the probability that the ‘"
and ;'™ units are on at the same time when the visible units
are clamped, p;;, and the corresponding probability when they
are not clamped, p;j. The relevant cost function, (, is known
as the ‘asymmetric divergence’ or ‘Kullback information’ and its
derivative is given in equation 1.5 which may be used to update
the weights in the direction of steepest descent.

oG 1
= 7 (Pij - P;'j)

(15)

8102']'

All autoassociative networks are a form of content addressable
memory as part of the pattern can be used to recall the whole.

1.3 Associative Networks

The class of associative networks can be subdivided according
to how the information in the output vector is used to train the
network. In unsupervised networks the desired output vector
is not explicitly specified but it is implicitly specified by some
principle or heuristic. In reinforcement learning the network is
trained using only a scalar which measures the closeness of the
desired output vector to the actual output vector. Finally, in
supervised learning every element of the output vector is directly
compared with the desired output vector.

1.3.1

Unsupervised Learning

In unsupervised learning the true form of the desired output
is unknown, instead a general principle is known which defines
the form of the output. Hebb (1949) used a heuristic which
strengthens a link when both the input and the output units are
simultaneously active, as in equation 1.6.

Awij 0.8 E Opi Opj
P

(1.6)

This can be formalised into a learning algorithm which min-
imises the information lost by the processing at each layer of
units (Plumbley and Fallside, 1988). A network consisting of
several layers of such units can extract interesting features from
the input, for example Linsker (1986; 1988) demonstrates the
emergence of orientation selective cells from visual input.

Supervised learning algorithms, such as the error propagation al-
gorlthm described below, can operate in an unsupervised mode
by using the input vector as the desired output vector. If the
network has a hidden layer with fewer units than the input then a
dimensionality reduction must occur at this ‘bottleneck’. Such
an identity mappings using error propagation nets is used in
chapter 6 (Robinson and Fallside, 1987a) and has also been
used by Elman and Zipser (1987) for a speech coding problem
and Harrison (1988) as a preprocessor for a speech recogniser.
Hinton and McClelland (1987) have used a ‘recirculation al-
gorithm’ to do this task without computing the cost function
gradient explicitly, and Bourlard and Kamp (1987) have shown
that the Karhunen-Loéve transform using singular value decom-
position can be used in the case of linear units.

1.3.2 Reinforcement Driven Learning

The weights in networks implementing reinforcement driven
learning are adapted on a single scalar value which measures the
closeness of the actual output from the desired output. This
is an interesting problem from the biological and psychologi-
cal view point as it is often assumed that learning in animals
and man is driven by a reinforcement signal from the environ-
ment. As yet, reinforcement driven learning has been restricted
to simple tasks when compared with those done by supervised
or unsupervised learning.

Barto, Sutton and Anderson (1983) have used an ‘associative
search element’ and an ‘adaptive critic element’ to solve a pole
balancing task using reinforcement driven learning. The as-
sociative search element chooses an action with the highest
predicted reinforcement for the given input vector, whilst the
adaptive critic element learns the expected reinforcement. Sut-
ton (1984) has also analysed a range of reinforcement learning
algorithms and developed the ‘adaptive heuristic critic’ algo-
rithm. Williams (1986) provides a mathematical analysis of
these reinforcement driven learning procedures and describes a

gradient descent technique for ‘generalised stochastic learning
automata’.

It is also possible to use supervised learning algorithms for re-
inforcement driven learning. One supervised net is used to
compute the overall output from the input, and a second net
takes both these outputs and inputs and is used to compute the
expected reinforcement. Training proceeds by maximising the
expected reinforcement. A description of this procedure with
simple examples is given in chapter 8 (Robinson and Fallside,

1987a) and also by Munro (1987).

1.3.3 Supervised Learning

In supervised learning all the elements of the output vector are
available to the training algorithm. The first supervised learning
network was the perceptron formulated by Rosenblatt (1958).
In this model the output units o,; are a thresholded weighted
sum of the binary input units 0,; as equation 1.7 and 1.8.

opi = f szjOpj-l-ai (1.7)

Lo

The weight matrix and biases are changed if the calculated out-
put is different from the target output, ¢,;, as in equations 1.9
and 1.10.

if Tpi > 0
if 2, <0

f(zpi) (1.8)

(1.9)
(1.10)

Wi = Wi 1y — 0pg

0; — Oi+tpi—opi

This method can be generalised to the case of continuous valued
input and output units to give an adaptive filter (Widrow and
Hoff, 1960). Here the quantity to be minimised is the mean
squared error between the actual and target outputs. As the
cost function is quadratic in each of the parameters w;;, a single
minimum exists. At this minimum the derivative of the cost
function with respect to each weight is zero, and this yields a
set of simultaneous equations which can be solved using matrix
inversion to yield the optimum weights in a non-iterative way

(Rohwer, 1988).

Minsky and Papert (1969) showed that this single layer model
was limited to learning linearly separable problems, which ex-
cluded some simple functions such as parity. This limitation
may be overcome if two or more layers of weights are used.
There are two approaches to determining the weights values in
the two layers. One way is to implement an fixed non-linear
mapping in the first layer, and then use the single layer ap-
proach outlined above. This method of dimensionality expan-
sion has been used as the basis of many connectionist models
(for example: Kanerva, 1984; Prager and Fallside, 1988; Powell,
1985; Broomhead and Lowe, 1988; Kohonen, 1988; Rayner and
Lynch, 1988) and is discussed in section 3.1. The alternative
is to extend the perceptron learning rule to cope with multi-
layer networks. This was accomplished by Rumelhart, Hinton
and Williams (1985) and also by Parker (1982) The method
known as the ‘error propagation algorithm’, allows the training
of arbitrary non-linear functions by gradient descent. This pow-
erful and popular learning algorithm is the subject of the next
chapter.

Chapter 2

Error Propagation Networks

This chapter defines the error propagation network used
throughout the rest of this thesis. The formalism and notation
used in this chapter is based on that of Rumelhart, Hinton and
Williams (1986), but the network presented here is of a more
general type in that the operation performed by each unit is not
limited to that of a weighted sum. This is useful as it allows
the error propagation algorithm to be used with those networks
which define a volume in the input space, for example the Mod-
ified Kanerva Model (Prager and Fallside, 1988), networks of
Spherical Graded Units (Hanson and Burr, 1987b), networks
of Localised Receptive Fields (Moody and Darken, 1988) and
the method of Radial Basis Functions (Powell, 1985; Broom-
head and Lowe, 1988). Niranjan and Fallside (1988) give a de-
scription of these networks and make a comparison for pattern
classification tasks. This also section gives examples of two dif-
ferent node types, the commonly used weighted sum node and
a volume defining Gaussian node, and discusses two methods
for changing the step size during training.

2.1

Formalism

An error propagation network is defined by a set of units and
links between the units. Denoting o,; as the value of the i unit

for the p'' example in the training set, and w;; as the weight of
the link between o0,; and oy,;, we may divide up an array of units
into input units, hidden units and output units. If we assign 0,0
to a constant to form a bias, the values of the input units are
defined by the problem and the values of the remaining units
are defined by the node type. The most common node type is
that which performs a weighted sum (otherwise known as a dot
product or inner product) of its inputs and the weight vector:

i—1

,’L‘pi o Z ’LUij Opj (21)
=0

opi = f(zpi) (2.2)

In a more general node, the links, w;;, are characterised by
more than one scalar value and they can used in a different
manner. The additional suffix, k, is used to denote an index into
the weight vector, w;;, and the arbitrary differentiable function,
g(+,-). replaces the product term in equation 2.1:

Z_:Q(Wiy’aop]‘) (23)

The activation function, f(-), is any continuous non-linear func-
tion. These equations define a feed-forward net which has the
maximum number of interconnections. This arrangement is
commonly restricted to a layered structure in which units are
only connected to the immediately preceding layer. The for-
malism, and most of the examples in this thesis, do not use
this popular form. This decision was based on a minimal con-
straint design philosophy. The error propagation algorithm is
not restricted to layered networks and if a layered structure is
applicable to a particular problem then the gradient descent al-
gorithm should set the interlayer links to zero (Robinson, 1986).

Throughout this thesis the input and output vectors will be
drawn as broad arrows and error propagation nets as rectangular
boxes. Thus figure 2.1 shows a static net which transforms the
an input vector uy;, to the output vector yp;.

Error

P _
u(p)) opee y(P)>

Net

Fig. 2.1: Static net

2.2 Training by Gradient Descent

A network of N nodes may be trained by minimising an energy,
E, defined as half the summed squared difference between the
target output, ,;, and the actual output of the net, 0,;, over
all the training examples:

= Yo)

This quantity can be minimised using gradient descent in which
small changes in the weights are made in the direction of steep-
est descent, —aE/awijk. The constant of proportionality, 7,
determines the step size and is sometimes called the ‘learning
rate’.

(2.4)

Wijp — Wijk + Awi]'k (25)
oF
Awiip, = 2.6
Wijk awijk ()
E E i
Ow;jx - Jopi Owgjp
For output nodes:
oF
Boyi = Opi —lpi (2.8)

For all other nodes we may apply the chain rule to yield:

N-1

OF OF oy,
(2.9)
30[92' st 80})]. 801){
N-1
O0E 0
B Z 80,;, 00732 (Zg(wjlaopl)) (210)
Jj=i+l
N-1
— Z OF 6f($p]) 6g(wji;0pi) (2 11)
aopj 8xp] 801)2' ’

j=i+1

Lastly 0o,; /Ow;jr is given by:

- 3wz]k (Z g (W”’ Opl))

8113]”' 8wijk '

80pi
awljk

(2.12)

These equations differ from those of Rumelhart Hinton and
Williams only in the introduction of the terms in the differential

of g('a)

The above equations define the error signal, 9E/0o,;, for the
input units as well as for the hidden units. Thus any number of
static nets can be connected together, the values of aE/aopi
being passed from input units of one net to output units of the
preceding net. It is this ability of error propagation nets to be
‘glued’ together in this way that enables the construction of the
recurrent nets described in chapter 5.

2.3 Example of Weighted Sum Nodes

The common form of the error propagation algorithm has one
scalar associated with each link, w;jo.

9(Wij, 0p5) = wijoop, (2.14)
1
flzp) = T4 e—om (2.15)

This node defines a hyperplane in the input space, the output of
the node is determined by the distance from this plane. Using
these equations and equations 2.11 and 2.13:

N-1

oF oF

0,5 (1= 0y;) wjg 2.16

Doyi e Boy; opj (Opj) Wio ()
80 ;

81,()2'0 = Opz' (1 — Opi) Opj (217)

The activation function used in all the examples, unless other-
wise specified, is the symmetric sigmoidal function:

2

o) = 1030, 1

1+ e~ 20 (2.18)

2.4 Example of Gaussian Nodes

A Gaussian node can be defined as:

2
Wiin — O
g(Wij,0p) = (M>

Wij1
flzpi) = e="ril?

This node delimits a hyperellipsoidal region in the input space.
The weights w;;o represent the coordinates of the centres of
the Gaussians and w;;; represents the range of influence in each
dimension. Using these equations and equations 2.11 and 2.13:

(2.19)

(2.20)

N-1

OF OE 10 — Op;
80, o _Opj e 2)2 % (221)
P j=it+1 P jil
80pi wi]'() — Op]'
= —0p | ——— 2.22
81112']'0 Op (w?ﬂ ()
Oopi _ [(wijo — 0p;)" (2.23)
(911)2']'1 P w?jl

which may be used with equations 2.7 and 2.8 to compute the
direction of steepest descent. This type of node has been used
by Chong, Fallside, Marsland and Prager (1989) as part of a
real time, transputer based, speech recognition machine.

2.5 Adapting the Step Size Parameter

The error propagation algorithm only performs a true gradient
descent providing the step size scaling factor, 7, is sufficiently
small. However, a practical implementation must choose a rea-
sonably large value of 7 so that the learning takes place as fast
as possible. One solution to this problem is to change 1 through-
out the training. Two methods for this are used in this thesis,
the first is the simplest and the most robust, whilst the second
can give a better performance.

The simplest form of adaptive step size algorithm is taken from
work done by Vogl, Mangis, Rigler, Zink and Alkon (1988). In
this method the energy at current position in weight space, E*
is compared with the energy at the last position, E”. If the
new energy is smaller than the last energy then the algorithm
is moving towards a solution, and it is possible that a larger
step size might be taken. Accordingly the step size is multiplied
by a factor ¢ > 1, so that larger step will be taken in future.
Alternatively, if the new energy is larger than the previous energy
then the previous step size was too large and 7 is multiplied by
a positive factor, § < 1, so that a smaller step will be taken
in future. The effectiveness of this method can be analysed if
the energy surface is assumed to be locally symmetric about the
minimum in the direction of steepest descent. In this case, a
step which overshoots the minimum and slightly increases the
energy is twice the optimal value, and halving the step size
scaling factor would give the minimum at the next iteration.
Thus although this method is simple it can easily over-estimate
the optimal value.

-

Chan and Fallside (1987b; 1987a) propose a somewhat more
complicated method of adapting the step size scaling factor.
Their algorithm has three parts, and only one of these parts has
been adopted. This calculates the angle between the average
movement in weight space and the current direction of steepest
descent, #. If § < 90° then the previous step did not reach the
minimum in the direction of travel, so the step size should be
increased by a small amount. Similarly, if @ > 90° the previous
step overshot the minimum and the step size should be reduced.
Equation 2.25 achieves the necessary updating of §. The term
cosf can be calculated by dividing the dot product of the aver-
age change vector and the direction of steepest descent by the
magnitudes of these vectors.

1
n <1+2c059>77

Both sets of authors describe some form of back-tracking for the
case when the previous energy was lower than the current energy.
This technique is not applicable if the weights are updated more
than once on a pass through the training set as only a noisy
estimate of the energy is available. In the case where the weights
are updated only once, it has been found that the direction of
steepest descent is close to the direction of back-tracking, so
satisfactory performance is achieved without back-tracking. As
a result, this aspect their work has not been implemented in any
of the networks presented in this thesis.

if E'< E°
if B> E°

¢ n

. (2.24)

(2.25)

Chapter 3

Data Representation in
Connectionist Models

Many connectionist models, such as a sufficiently large error
propagation network, can perform any arbitrary mapping from
a continuous input space to a continuous output space. In
practice, the representation of the data is found to be important
in determining the size of network required to perform the task,
the time taken to train the network, and the performance of the
network when presented with noisy input. For these reasons,
this chapter explores the representation of data in connectionist
models.

3.1

Input Representation

Many connectionist models employ a node which performs a
non-linear function on the weighted sum of the inputs to the
node. Such a node defines a hyperplane in the input space,
other types of nodes define different types of regions, for in-
stance hyperspheres (for example: Niranjan and Fallside, 1988).
If every element of the output vector requires no more process-
ing power than available by a single node, then the problem can
be solved with a single layer model. To take the example of the
commonly used hyperplane nodes, a single processing layer can
solve any linearly separable problem. Computing the required
weights for single layer models is considerably faster than for
multilayer models both when using the iterative technique of
gradient descent and when using the non-iterative techniques for
linear systems involving matrix inversion (Rohwer, 1988; Kawa-

hara and Irino, 1988).

There are many problems which are not linearly separable, the
most common example is that of the ‘exclusive or’ function. In
such cases it may be possible to use an intital layer of weights
which map the input space into a higher dimensional space in
which the problem is linearly separable and many techniques for
doing this ‘dimensionality expansion’ exist. Rosenblatts percep-
tron (Rosenblatt, 1962) can be configured with an initial layer
of linear threshold units with fixed weights. The Kanerva model
(Kanerva, 1984) thresholds the Hamming distance of the bi-
nary input vector from a large number of random binary vectors
and the modified Kanerva model (Prager and Fallside, 1988)
generalises this to the case of continuous inputs. The method
of radial basis functions calculates the distance of the input
vector from each of the training vectors (Broomhead and Lowe,
1988). Finally, dimensionality expansion may be performed with
the low order terms of the Kolmogorov-Gabor polynomial (Ko-
honen, 1988; Rayner and Lynch, 1988) or by using several units
to coarse code each input dimension (Prager, Harrison and Fall-

side, 1986a; Hinton, McClelland and Rumelhart, 1986).

3.2

Internal Representation

Several investigators have attempted to assign meaning to the
activations of individual units in an internal representation.
Whilst this may prove fruitful in individual cases, the nature of
distributed representations is such that a meaningful interpreta-
tion is unlikely to be apparent in large network without the use of
statistical techniques such as cluster analysis (Servan-Schreiber,
Cleeremans and McClelland, 1988). In the case of unsupervised
learning the nature of the representation is governed by the
principle of maximum information preservation (Plumbley and
Fallside, 1988; Linsker, 1988) which in the linear case, can be
reduced to principle component analysis (Bourlard and Kamp,

1987).

There are differing views on the best dimensionality for the in-
ternal representation. Some researchers (for example: Niranjan
and Fallside, 1988) argue that the dimensionality of the internal
representation should be chosen to be as small as possible whilst
still being able to represent the training set. This is justified on
the grounds that reducing the dimensionality of the internal rep-
resentation reduces the number of free parameters in the model,
so making the model more likely to generalise to data not in the
training set. Other researchers (for example: Kanerva, 1984;
Prager and Fallside, 1988) advocate an internal representation
of as large dimensionality as is practically obtainable. This is
justified because extra dimensions can represent additional fea-
tures of the training set, and these extra features are expected
to make a positive contribution to the performance of the net-
work. In this thesis, chapter 4 presents a vowel recognition task
in which extra dimensions consistantly give better recognition

performance, whilst chapter 7 presents a more general phoneme
recognition task which shows no consistant trend.

3.3 Output Representation

The output of a connectionist model is, by its nature, a dis-
tributed representation. For some problems this may be what is
desired, for instance when trying to model some unknown con-
tinuous function, such as the prediction of a chaotic series (La-
pedes and Farber, 1987). Often the Least Mean Squares metric
is used as a measurement of the error, although other metrics
may be used (Hanson and Burr, 1987a; Baum and Wilczek,
1987). However, many problems, such as pattern classification,
require a symbolic output. This section deals with the represen-
tation of the set of symbols in the output vector.

It is reasonable to take the recognised class as that one whose
target vector most closely matches the actual output vector.
So, for the mean squared error metric, the recognised class, n,
for the set of targets ¢;; and outputs yp; is:

(3.1)
(3.2)

n = argmin
i

1
3 > (i — i)’
j

By =

3.3.1 Single Scalar

Whilst it is possible to code N pattern classes onto a single
scalar value, this is not usually advantageous. Equation 3.3

demonstrates that the *® class can be linearly mapped to a
target output is in the range 0 to 1.

: 1
Z+§

tio = 0<i<N-1 (3.3)

One example when this is useful is is given in chapter 6 which
is a speech coding task where a real valued input is to be coded
by one network to a symbolic form for transmission and then
decoded to recover the original speech signal. However, with-
out a-priori knowledge of the pattern classes there is unlikely to
be any correlation between the difference of two pattern class
indexes and the distance between the pattern classes. This cod-
ing scheme is as economical as possible in the number of output
dimensions, but requires a considerable amount of processing to
achieve this.

3.3.2 Packed Binary Vectors

If each element in the output vector is restricted to one of two
values then N pattern classes can be represented in an output
vector with log, N elements. This representation may be use-
ful when there are a large number of pattern classes, but again
it has the disadvantage that it requires considerable processing
if nothing is known about the similarity of the pattern classes.
Conversion from a vector where one element has a ‘high’ ac-
tivation and the remainder have a ‘low’ activation to the bi-
nary representation requires a layer of weighted sum nodes with
threshold activation functions. The representation is suitable if
each element in the vector is known to represent a feature of
the pattern class. However, this information reduces the prob-
lem to designing log, N networks which accept or reject a single
pattern class, and the choice of features is likely to influence the
performance.

3.3.3 One-of-Many Vectors

The most common form of output representation for a pattern
class, i, is to set the :*™ to a value designated as ‘high’, and the
remainder to zero. So, for the target values 0 and 1:

1
ti; = 0

This form of representation is functionally equivalent to training
N machines to accept or reject a pattern class, but with the
advantage that computations performed by hidden units can be
shared. If 7 is the target value of the ‘high' unit and 7y the
target value of the remainder of the units, then equation 3.2
can be written as:

if =

if i (34)

Epi = S| (m—wi)®+) (0 —9)%) (3.5)
j#i

= 5 == (o= i + 3 (o - 08)

= —(m1 — 7)Yy + % 7'0 + Z (70 —y;) 3 7)

Equation 3.7 shows that there is a linear relationship between
the actual output, y,;, and the distance between the output
vector and the corresponding target vector. Thus the largest
element in the target vector corresponds to the least value of
Ep; and therefore the best estimate of the pattern class.

3.4 Towards Symbolic Representations

The conversion from a distributed to symbolic representation
has so far assumed that the index of the largest value can be
selected from an array of values. Whilst this is a trivial task for
a conventional program, it is difficult for a connectionist model.
This section describes a network which moves the largest ele-
ment close to 1 and the remainder close to 0, so reducing the
task of choosing the largest element to one of thresholding. This
is useful if a connectionist model is interacting with a symbol
processing machine. For example, chapter 8 presents a connec-
tionist model which learns the game of noughts and crosses by
maximising a reinforcement signal. Such a net must give an
output which is interpreted as a symbol specifying the position
to be played, and must be able to interpret this output in or-
der to be able to predict the outcome of the move. A possible
solution has been presented by Lippmann (1987). This net sub-
tracts the mean from every element in the vector then passes
it through an activation function which sets any negative value
to zero. This process is repeated until there is only one positive
value. If the i* element of the output vector at iteration ¢ is
Ypgi then:

Ypg+1i = Ypgi — Zyqu (3.8)
x if >0

This has two disadvantages if it is to be implemented as part
of an error propagation network. Firstly the activation function

has a region of zero slope which inhibits the process of calcu-
lating the partial derivatives of the energy function in previous
networks. Secondly the value of the remaining positive unit is
undefined, so further processing may be required. An alterna-
tive suggested by Boothroyd (1989: personal communication)
is:

Ypgi

2
E]’ Ypqj
Convergence to the limit values of 0 and 1 is found to be rapid.
Figure 3.1 shows the development of two probability distribu-
tions of elements in a four dimensional vector. In each case
the initial probability distribution was uniform in the specified

range. The distributions were calculated by averaging the values
obtained in 100,000 runs.

Ypg+1 i (3.10)

To analyse the convergence properties take ypqq as the value of

the largest output at the ¢'" iteration ¢ and Ypqe as the value
of the second largest, after one more iteration we have:

2
-
yqu
A rough calculation of convergence time may be obtained by
observing that the maximum value of y,,, is 1.0 and threshold

discrimination can be achieved if y,,0 > 0.5 and y,q < 0.5.
The number of iterations required to achieve ypga = 2ypgs is

— logy logs Ypoa/Ypor-

Yratl a

3.11
Ypg+1 b ()

For completeness, the equations needed to calculate the gradi-
ent of the energy through one layer of this net, as in chapter 2

are:
M {Qypqi (1 - yzqi/z:k y;qk) /Zk y;qk (ZBZ \
OYpqj —2Ypg; yf;qi/ 2ok y;%qk !

2Ypgt+1 i (L = Ypgt1 i) [Ypai
—2YpqjYpg+1 i i F

3.5 Discussion

This chapter has discussed several aspects of data representa-
tion in connectionist models. Input representation may be im-
proved by dimensionality expansion and the next chapter makes
a comparison of some of the methods for a vowel recognition
problem. The use of the least squared error has been proposed
for choosing a symbolic target from a distributed output, and is
used in chapter 7. This has been shown to be the same as pick-
ing the largest in a one-of-many representation. Finally, a new
type of node has been presented to convert between distributed
and symbolic representations.

Chapter 4

Application to Vowel
Recognition

This chapter describes the application of a variety of feed-
forward networks to the task of recognition of vowel sounds
from multiple speakers. Single speaker vowel recognition stud-
ies by Renals and Rohwer (1989) show that feed-forward net-
works compare favourably with vector-quantised hidden Markov

Fig. 3.1: Development of Probability Distributions....

10

models. The vowel data used in this chapter was collected by
Deterding (1988), who recorded examples of the eleven steady
state vowels of English spoken by fifteen speakers for a speaker
normalisation study. A range of node types are used, as de-
scribed in the previous section, and some of the problems of the
error propagation algorithm are discussed.

4.1 The Speech Data

The International Phonetic Association (I.P.A.) symbol and the
word in which the eleven vowel sounds were recorded is given
in table 4.1. The word was uttered once by each of the fifteen
speakers. Four male and four female speakers were used to train
the networks, and the other four male and three female speakers
were used for testing the performance.

vowel | word | vowel | word
I: heed D hod
I hid J: hoard
e head U hood
* had u: who'd
a: hard 3: heard
A hud

Table 4.1: Words used in Recording the Vowels

4.2 Front End Analysis

The speech signals were low pass filtered at 4.7kHz and then
digitised to 12 bits with a 10kHz sampling rate. Twelfth or-
der linear predictive analysis was carried out on six 512 sam-
ple Hamming windowed segments from the steady part of the
vowel. The reflection coefficients were used to calculate 10 log
area parameters, giving a 10 dimensional input space. For a
general introduction to speech processing and an explanation of
this technique see Rabiner and Schafer (1978).

Each speaker thus yielded six frames of speech from eleven vow-
els. This gave 528 frames from the eight speakers used to train
the networks and 462 frames from the seven speakers used to
test the networks.

4.3 Details of the Models

All the models had common structure of one layer of hidden
units and two layers of weights. Some of the models used fixed
weights in the first layer to perform a dimensionality expansion
(see section 3.1), and the remainder modified the first layer of
weights using the error propagation algorithm for general nodes
described in chapter 2. In the second layer the hidden units were
mapped onto the outputs using the conventional weighted-sum
type nodes with a linear activation function. When Gaussian
nodes were used the range of influence of the nodes, w;;; was
set to the standard deviation of the training data for the appro-
priate input dimension. If the locations of these nodes, w;;o,
are placed randomly, then the model behaves like a continu-
ous version of the modified Kanerva model (Prager and Fall-
side, 1988). If the locations are placed at the points defined
by the input examples then the model implements a radial ba-
sis function (Broomhead and Lowe, 1988). The first layer of

11

weights remains constant in both of these models, but can be
also trained using the equations of section 2.4. Replacing the
Gaussian nodes with the conventional type gives a multilayer
perceptron and replacing them with conventional nodes with
the activation function f(z) = z? gives a network of square
nodes. Finally, dispensing with the first layer altogether yields
a single layer perceptron.

The scaling factor between gradient of the energy and the
change made to the weights (the ‘learning rate’, 7)) was dynam-
ically varied during training, as described in section 2.5. If the
energy decreased this factor was increased by 5%, if it increased
the factor was halved. The networks changed the weights in the
direction of steepest descent which is susceptible to finding a
local minimum. A ‘momentum’ term (Rumelhart, Hinton and
Williams, 1986) is often used with error propagation networks to
smooth the weight changes and ‘ride over’ small local minima.
However, the optimal value of this term is likely to be problem
dependent, and in order to provide a uniform framework, this
additional term was not used.

4.4 Recognition Results

This experiment was originally carried out with only two frames
of data from each word (Robinson, Niranjan and Fallside, 1988).
In the earlier experiment some problems were encountered with
a phenomena termed ‘overtraining’ whereby the recognition rate
on the test data peaks part way through training then decays
significantly. The recognition rates for the six frames per word
case are given in table 4.2 and are generally higher and show less

no. of no. percent
Classifier hidden | correct | correct

units
Single-layer perceptron - 154 33
Multi-layer perceptron 88 234 51
Multi-layer perceptron 22 206 45
Multi-layer perceptron 11 203 44
Modified Kanerva Model 528 231 50
Modified Kanerva Model 88 197 43
Radial Basis Function 528 247 53
Radial Basis Function 88 220 48
Gaussian node network 528 252 b5
Gaussian node network 88 247 53
Gaussian node network 22 250 b4
Gaussian node network 11 211 47
Square node network 88 253 55
Square node network 22 236 51
Square node network 11 217 50
Nearest neighbour - 260 56

Table 4.2: Vowel classification with different non-linear classi-
fiers.

variability than the previously presented results. However, the
recognition rate on the test set still displays large fluctuations
during training, as shown by the plots in figure 4.1. Some fluctu-
ations will arise from the fact that the minimum in weight space
for the training set will not be coincident with the minima for
the test set. Thus, half the possible trajectories during learning
will approach the test set minimum and then move away from
it again on the way to the training set minima (Plumbley, 1988:
personal communiation). In addition, continued training sharp-
ens the class boundaries which makes the energy insensitive to
the class boundary position (Niranjan, 1988: personal commu-

Fig. 4.1: Performance on test set during training

12

niation). For example, there are a large number planes defined
with threshold units which will separate two points in the input
space, but only one least squares solution for the case of linear
units.

4.5 Discussion

From these vowel classification results it can be seen that min-
imising the least mean square error over a training set does not
guarantee good generalisation to the test set. The best results
were achieved with nearest neighbour analysis which classifies
an item as the class of the closest example in the training set
measured using the Euclidean distance. It is expected that the
problem of overtraining could be overcome by using a larger
training set taking data from more speakers. The performance
of the Gaussian and square node network was generally better
than that of the multilayer perceptron. In other speech recogni-
tion problems which attempt to classify single frames of speech,
such as those described by McCulloch and Ainsworth (1988)
and that of chapter 7 (Robinson and Fallside, 1988), the near-
est neighbour algorithm does not perform as well as a multilayer
perceptron. It would be interesting to investigate this difference
and apply a network of Gaussian or square nodes to these prob-
lems.

The initial weights to the hidden units in the Gaussian network
can be given a physical interpretation in terms of matching to a
template for a set of features. This gives an advantage both in
shortening the training time and also because the network starts
at a point in weight space near a likely solution, which avoids
some possible local minima which represent poor solutions.

The results of the experiments with Gaussian and square nodes
are promising. However, it has not been the aim of this chapter
to show that a particular type of node is necessarily ‘better’ for
error propagation networks than the weighted sum node, but
that the error propagation algorithm can be applied successfully
to many different types of node.

Chapter 5

Dynamic Error Propagation
Networks

Many problems involve time varying or dynamic patterns and
it is natural to reflect this by sequential information processing.
This chapter begins by reviewing the current approaches to tem-
poral pattern processing with error propagation networks, then
develops three forms of network to deal with dynamic patterns,
and gives some simple examples.

5.1 Temporal Pattern Processing Net-
works

There are two approaches to processing inputs in the time do-
main: either window the inputs and then treat the time domain
like another spatial domain; or use some internal storage to
maintain a current state. Most of the work done in this area
has concentrated on modifying the error propagation algorithm
to deal with time domain inputs. To some extent it is possible

13

to sidestep the temporal processing problem by using a stan-
dard networks and applying a filter to the inputs (for example:
Stornetta, Hogg and Huberman, 1987), or to the outputs (for
example: Harrison, 1988)

The essential quality of a ‘dynamic net’ is is that its behaviour
is determined both by the external input to the net, and also by
its own internal state, which is represented by the activation of
a group of units. These units form part of the output of a net
and also part of the input to another copy of the same net in
the next time period. Thus the state units link multiple copies
of a net over time to form a dynamic net.

There are two uses for these time domain networks. Firstly they
can be used as a ‘relaxation network’ in which a static pattern
is presented at the input and the network is allowed to settle
into a stable state, for example the Hopfield net. Rohwer and
Forest (1987), Almeida (1987) and Rohwer and Renals (1988)
have demonstrated that the error propagation algorithm may be
used in such networks. Relaxation networks may have advan-
tages over the strictly feed-forward networks in that complex
calculations may be carried out with fewer weights.

The second use of time domain networks is to map a time vary-
ing input to a time varying output, which reduces to the previous
case when the input is stationary. The remainder of this sec-
tion makes a comparison of networks which window the input
stream, and those which store an internal state.

5.1.1 Windowed Input Networks

Perhaps the most well known example of a large connectionist
network is that of NetTalk by Sejnowski and Rosenberg (1986)
In this network a fixed length window is placed over a character
stream from English text, and the network is trained to output
the phoneme corresponding to the letter under the centre of the
window. This is perhaps the most straightforward way to incor-
porate some context, and it has also been popular in the field
of speech recognition (for example: Robinson, 1986; Bourlard

and Wellekens, 1987a).

An interesting member of this family of networks, the "Time
Delay Neural Network' has recently been developed by Waibel,
Hanazawa, Hinton, Shikano and Lang (1987). The new feature
of this net is that it uses duplicated weights within its structure
to take advantage of the fact that much of the initial processing
on each frame is likely to be common to all the frames under
the window. This duplication of weights reduces the overall
computation needed to process continuous input, and may lead
to better generalisation as there are fewer free parameters.

All fixed context networks of this type suffer from two major dis-
advantages. Firstly, the model has a hard limit as to the amount
of temporal context that can be processed, so that anything out-
side the window can not influence the output. Secondly these
models have no inbuilt mechanism for dealing with variations
in the rate of input. This is especially important in the field of
speech recognition where there are often large variations in the
rate at which words are spoken. To overcome these limitations
networks with an internal state were developed.

5.1.2 Internal State Networks

Two types of ‘recurrent’ or ‘dynamic’ error propagation networks
may be defined, fully recurrent networks and partially recurrent
networks. In each of these networks the context information is
held in an internal state and thus have certain similarities with

Hidden Markov Models (Bourlard and Wellekens, 1987b).

Fully Recurrent Networks

The first recurrent error propagation network was described by
Rumelhart, Hinton and Williams in their original paper (Rumel-
hart, Hinton and Williams, 1986), but until recently this aspect
of their work received little attention. The structure is simple,
as well as having weights to units at the current time, units
also have weights to units in the previous time period. In the
past there has been a misconception that these recurrent net-
works are computationally much harder to train than the time-
independent, or static networks. This is false as a buffer may
be used to store the activations of units which means that these
networks can be trained with the same order of computation as
a static network, (see section 5.3.1). These networks are used
in chapter 6 (Robinson and Fallside, 1987b) for speech cod-
ing and by Watrous and Shastri (1987), Watrous, Shastri and
Waibel (1987), and in chapter 7 (Robinson and Fallside, 1988)

for phoneme recognition.

It is possible to train a fully recurrent network without storing
the activations of the units for all the training set. A descrip-
tion of this procedure can be found in section 5.3.2 (Robinson
and Fallside, 1987a) with an expanded account and examples in

Williams and Zipser (1988).

Partially Recurrent Networks

A cut down version of the fully recurrent network is popular.
Instead of feeding back the error signal as far as required, the
error signal is terminated after a single pass. Some links may be
fixed, such as the ‘state and plan’ networks of Jordan (1986).
To compensate for the fact that these nets can no longer be
trained using true gradient descent the architecture is chosen
to force some information to be fed forward in time. Com-
monly a three layer network is used where the activations of
the middle layer of hidden units are used as inputs to the next
network. Section 5.3.3 presents a network which is a superset
of the Jordan network. Section 5.4 gives some simple examples
of the use of these networks, another example of learning sim-
ple grammars using a similar net is given by Servan-Schreiber,
Cleeremans and McClelland (Servan-Schreiber, Cleeremans and
McClelland, 1988).

5.2 Development from Linear Control
Theory

The analogy of a dynamic net in linear systems (for example:
Jacobs, 1974) may be stated as:

Az, + Bu,
Czp

(5.1)
(5.2)

where u, is the input vector, x, the state vector, and y, the
output vector at the integer time p. A, B and (' are matrices.

Tp+1
Yp

The structure of the linear systems solution may be implemented
as a non-linear dynamic net by substituting the matrices A, B
and C' by static nets, represented by the non-linear functions
A[-], B[] and C[-]. The summation operation of Az, and Bu,
could be achieved using a net with one node for each element
in z, and u, and with unity weights from the two inputs to the
identity activation function f(xp;) = ;. Alternatively this net
can be incorporated into the A[.] net giving the architecture of
figure 5.1. The input is coded by net B[-] and then the output
is fed into A[-] along with the previous output of A[-] and the

14

Error
P _
u(p-1 art?f:g u(p-1)) Error Error
Net Propag- Propag-
B[] ation x(p) }| ation |¥(P
' x(p-1 Net Net
A[] Cll
Unit
time
delay \

Fig. 5.1: Dynamic Net

resulting output is passed through C[-] to yield the overall out-
put of the system. The three networks of the previous dynamic
net architecture may be combined into one, as in figure 5.2.
Simplicity of architecture is not just an aesthetic consideration.
If three nets are used then each one must have enough com-
putational power for its part of the task, combining the nets
means that only the combined power must be sufficient and it
allows common computations to be shared.

Y(P)>

x(p)

Unit
time
delay

\

Fig. 5.2: Simplified Dynamic Net

The error signal for the output y,41, can be calculated by com-
parison with the desired output. However, the error signal for
the state units, z,, is only given by the net at time p4 1, which
is not known at time p. Thus it is impossible to use a sim-
ple backward pass to train this net. It is this difficulty which
introduces the variation in the architectures of dynamic nets.

5.3 Architectures

This section presents three alternative architectures for dynamic
nets, starting with the finite input duration dynamic net which
is based on the recurrent net (Rumelhart, Hinton and Williams,
1986). This network relies on a buffer to store past activities
of units, no other information on past context is available so
the buffer length must be at least as long as the length of the
context to be learned. The other two architectures have been
formulated so that no such buffer is necessary.

5.3.1 The Finite Input Duration (FID) Dy-
namic Net

If the output of a dynamic net, y,, is dependent on a finite
number of previous inputs, u,_p to u,, or if this assumption
is a good approximation, then it is possible to formulate the
learning algorithm by expansion of the dynamic net for a finite
time, as in figure 5.3.

u(p) Error [x(p+})
Propag-
‘ ation
u(p-1) Error [x(p) Net y(p+})
Propag- |
ation |
Error [x(p-1 Net y(p)
Propag- ‘
ation
Net
= vt

Fig. 5.3: Expanded Dynamic Net

Consider only the component of the error signal in past instan-
tiations of the nets which is the result of the error signal at time
p. The error signal for y, is calculated from the target output
and the error signal for z, is zero. This combined error signal
is propagated back though the dynamic net at p to yield the
error signals for u, and z,. Similarly these error signals can
then be propagated back through the net at p — 1, and so on
for all relevant inputs. The summed error signal is then used to
change the weights as for a static net.

Formalising the FID dynamic net for a general time ¢, ¢ < p:

04i s the output value of unit 7 at time ¢
ty; is the target value of unit ¢ at time ¢
84 is the error value of unit 7 at time ¢
w;; Is the weight between o; and o;
Awg;; is the weight change for this iteration at time ¢
w;; is the total weight change for this iteration

The values of 043, 6,5 and Aw;; are calculated in the same way
as in a static net. Here and in the remainder of this section it
is assumed that weighted sum type nodes are being used.

i—1
Ty =) wijog (53)
j=0
0 = [(wgi) (5.4)
s _ F(mgi)(tqi — 04i) for output units
“o- F(zqgi) Zjv:i“ 8qi Wi for hidden unl(ts'
Dwgij = 164i04 (5.6)

The total weight change is given by the summation of the partial
weight changes for all previous times.

P
Z Awqij
q=p-F
P
= Z 1N94i0q;

g=p—P

Awij = (57)

(5.8)

Thus, it is possible to train a dynamic net to incorporate the
information from any time period of finite length, and so learn
any function which has a finite impulse response.

In some situations the approximation to a finite length may not
be valid, or the storage and computational requirements of such
a net may not be feasible. For example, if the information in a
signal decayed exponentially then only a finite storage is required
to represent the state of the signal but all this information can
not be obtained by observing the signal for a finite time. In
such situations another approach is possible, the infinite input
duration dynamic net.

5.3.2 The Infinite Input Duration (IID) Dy-
namic Net

Although the forward pass of the FID net of the previous chapter
is a non-linear process, the backward pass computes the effect
of small variations on the forward pass, and so it is a linear
process. Thus the recursive learning procedure described in the
previous chapter may be compressed into a single operation.
The proof outlined below was first presented by Robinson and

Fallside (1987a) and later by Williams and Zipser (1988).

Given the target values for the output of the net at time p,
equation 5.5 defines values of 6,; at the outputs. If we denote
this set of 6,; by D, then equation 5.5 also states that any 6p;
in the net at time p is simply a linear transformation of D,.
Writing the transformation matrix as S:
Spi Dp (5.9)
In particular the set of &,; which is to be fed back into the
network at time p — 1 is also a linear transformation of D,

bpi =

Dy_1 = T,D, (5.10)
or for an arbitrary time g¢:
P
(11 TT) D (5.11)
r=g¢+1
so substituting this into equation 5.8:
P
Awy; = Z SqiDqog; (5.12)
g=—00
P P
= > Sqi(II Tr> Do, (5.13)
g=—00 r=g¢+1
which can be rewritten as:
Awi]' = UMpiij (514)
where:
p p
Mpij = Z qu(H Tr) (] (515)
g=—00 r=g¢+1

and note that M,;; can be written in terms of M,_; 4; :

P p—1 P
Mpi]' = Spi (H TT-) Op; + Z Sqi (H Tr>59136)
r=p+1

g=—o00 r=q+1

p—1
= Spiopj + (Z 0gj S (H T)) T, (5.17)
g=—00 r=q+1

= Spiopj + Mp—1 4T (5.18)

Hence we can calculate the weight changes for an infinite recur-
sion using only the finite matrix M.

If this approach is to be of practical use, we must consider the
overall storage and computation requirements as compared with
the FID net. The net has N units of which n; are output units,
the 11D net requires Nn; locations for storage of the M matrix.
If a context of P time slots is required to solve the problem then
the FID net requires PN locations. Thus the FID net requires
less storage for P < ny.

The computational requirements for the FID net are given in
equations 5.7 and 5.8. Designating I as the number of instruc-
tions needed to compute a single backward pass of the net, as
in equation 5.7, then PI instructions must be executed to com-
pute the weight changes per iteration using a minimal length

buffer.

The weight changes for the IID net are given by equations 5.14
and 5.18. M,;; and D, are matrices of order n; and so equa-
tion 5.14 requires order n; multiplications per weight, a total
of nyI computations. Equation 5.18 first requires order of n;[
computations to calculate S,, and then order of n? compu-
tations to compute M,_; ;;1, and order n; computations for
0pj Spi, each of which must be computed I times. Taking the

highest order, the 11D net requires order n?1 computations.

In comparison, the IID net is computationally more efficient if
P > nZ. As the examples in this chapter use values of P in the
range 1 to 4, and n; in the range 1 to 17, the |ID net is not
computationally efficient and so has not been used in any of the
examples. Examples may be found in the work of Williams and
Zipser (1988).

5.3.3 The State Compression Dynamic Net

The previous two architectures for dynamic nets rely on the
propagation of the error signal back in time to define the format
of the information in the state units. An alternative approach
is to use another error propagation net to define the format of
the state units. The overall architecture is given in figure 5.4.

u(p)) Error Error
Propag- Propag-
ation x(p+1)} ation |Y(P+D)
x(p) Net Net
P Encoder Translatoy
u(p)| Error \
Propag-
ation \ x(p+1))
X() Net \ /
PJ|' Decodet

Fig. 5.4: State Compression Net

The encoder net is trained to code the current input vector,
Up, and current state vector, Zp, onto the next state vector,
Zp+1, while the decoder net is trained to do the reverse oper-
ation. The translator net codes the next state, x,4;, onto the
desired output, y,41. This encoding and decoding attempts to

16

represent the current input and the current state in the next
state, and by the recursion, it will try to represent all previous
inputs. As there is necessarily more information in the input
vector and the state vector than in the state vector alone, not
all the information can be stored in the state vector. Feeding
errors back from the translator net biases this coding of past
inputs in the state to those which are useful in computing the
output. A feature of this architecture is that recent information
tends to be stored in the state units whether it is required to
compute the output or not.

5.4 Some Examples of Dynamic Nets

This section presents some simple examples of dynamic nets.
Two forms of dynamic nets are used, the finite impulse response
dynamic net and the state compression dynamic net. Conven-
tional weighted sum nodes are used with the signed sigmoidal
activation function:

2

f(-@pz) W _

This function has a maximum value of +1.0 and a minimum
value of —1.0. However, these values can not be achieved with
finite input, so the target values of 4+0.8 for high and —0.8
for low were used instead. Except when stated otherwise, the
learning rate 7 was set to 0.1, and the nets were considered
to have learned when the short term residual energy fell below

0.01.

(5.19)

5.4.1 Unit Time Delay

One of the simplest problems for a dynamic net is to reproduce
a random one bit input after a unit time delay.

input(p) _E,O_‘t@__, state(p+1)

state(p)_:,o_‘tb_,_ output(p+1)

Fig. 5.5: Unit Time Delay

The FID net requires one state unit and no hidden units to learn
this task. Figure 5.5 shows the nodes of this net as circles and
the significant weights as solid lines. The net learns in about
200 iterations by forming connections of approximately unity
strength between the input and the state unit at p + 1 and
between the state unit at p and the output, the connections
between the input and output and between the state unit at ¢
and the state unit at p + 1 being of negligible strength. Thus,
in each time slot the the input is copied to the new state unit
and the old state unit is copied to the output.

The state compression dynamic net requires two state units, one
to store the current input and one to store the previous input.
Again about 200 iterations are required for solution.

5.4.2 Bistable

Another basic problem for dynamic nets is to oscillate between
states with no external input. An FID net may learn to do this

using no input units, one state unit and one output unit, as in
figure 5.6.

state(p+1)

output(p+1)

Fig. 5.6: Bistable

With the signed sigmoidal activation function, a negative weight
between the state input and output reverses the sign of the state
and the sign of the weight to the output unit ensures the desired
phase. This net learns in about 250 iterations.

The state compression dynamic net is not able to learn this
problem as it stands. With no information in the input units, the
energy of the encoder and decoder part of the net is minimised
by setting the state units to zero. Zeroed state units also contain
no information and so the desired output can not be derived
from these units. This may be overcome by presenting an input
which is uncorrelated with the output. If a one bit binary input
is fed to a net with eight state units, the bistable problem may
be learned in about 500 iterations.

5.4.3 Movement Detection

The movement detection problem was inspired by neurobiolog-
ical research which shows that the human brain contains single
cells which can detect movement (Poggio and Koch, 1987).
This section presents two problems which are analogous to
movement detection on a retina with and without ‘wraparound’.
The term wraparound means that if the object goes off one side
of the retina it appears on the other side. Although the prob-
lems may appear to be of similar computational complexity, the
differences illustrate a limitation of dynamic nets.

The input to the nets is a one dimensional array of eight units.
One of these units is activated whilst the remainder are off,
and the activated unit is restricted to be a neighbour of the
previously activated unit. There is a single output which is on
if the movement is to the left and off if the movement is to the
right and the direction of movement is random.

Movement Detection without Wraparound

The FID net architecture involved eight input units and one
state unit. This net learns in about 5,300 iterations by de-
veloping weights from the input units to the state unit which
monotonically increase with distance along the retina. Thus the
activation of the state unit represents the current position, and
thresholding the difference between this value and the last value
of the state unit gives the direction of movement.

Two architectures of state compression nets were considered,
one with two and one with nine state units. Two state units
represents the minimum required to solve the problem, one to
store the present position and one to store the previous position.
The first version failed to learn in 219 iterations, presumably be-
cause the input contains noise from the random directions and
there is no spare information capacity in the state units to record
this and still be able to solve the problem. The second architec-
ture was designed to have one state unit for every input, so that

17

there was no problem in replicating the input, and one more
unit to store the previous position. This architecture learned in
about 1,000 iterations.

Movement Detection with Wraparound

The problem of movement detection with wraparound is the
same as the previous case except that an attempt to move off
one end of the retina results in the active unit appearing at the
other end. This generates some problems as the comparison
of two scalars can no longer be used to judge the direction of
motion.

The FID net with eight inputs, sixteen hidden units, sixteen
state units and one output unit learned all but two transitions
in about 6,000 iterations. However the final transition requires
a considerable movement in weight space for a small decrease
in energy. The direction of movement is determined by the
training set, which is corrupted by noise because the direction
of movement is random. In attempting to learn the remainder
of the problem some activations became very large, reducing the
slope of these units to near zero and so blocking the error signal
from propagating back through them. The final transition was
not learned.

The state compression net had the same number of input, state
and hidden units as the FID net. This net uses a different form
for the representation of context information and did not suffer
from the same instabilities, learning in 1,500 iterations. Thus
this state compression net gives a means of solving a problem
which was not solved by the FID net.

5.4.4 Letter to Word Conversion

As an example of sequence recognition, the constituent letters
of words were presented sequentially to a dynamic net and an
output unit corresponding to the word was activated upon its
completion. A connectionist solution to this problem has already
been formulated with predefined weights (Tank and Hopfield,
1987) and this example shows that it is also possible to learn the
weights of a connectionist network which solves this problem.

The nets had 26 inputs (one for each letter of the alphabet), 34
hidden units, 34 state units and 8 output units, one for each of
the unique words in “the quick brown fox jumped over the lazy
dog”. One word was chosen at random and the letters presented
sequentially to the net by activating one input unit and switching
the rest off. The desired output was for all units to be off until
the input after the completion of the word, when one output
is activated. The letters of succeeding words were run together
without punctuation, so the net had to learn to segment the
letters into words and then label the segments. Example input
is given in table 5.1. This problem is analogous to the problem
in automatic speech recognition where a sequential input stream
has to be segmented into symbols and appropriately labeled, as
in chapter 7.

The time between repetitions of input-output pairs is consider-
ably longer in this example than any of the previous examples,
and the learning rate was correspondingly reduced to n = 0.05
to compensate.

Several versions of the FID architecture were used, differing in
the number of previous letters of context that were considered.
When the context was limited to the last letter, or to the last two
letters, then the ambiguities can not be resolved. For instance,
the letters ‘ed’ signify the end of the word ‘the’ followed by ‘dog’,
but also occur in the context of ‘jumped’. With three letter

time | input letter | output word
activated activated

t-3

t-2

t-1 .)

t z none
t+1 y none
t+2 q lazy
t+3 u none
t+4 i none
t+5 c none
t+6 k none
t+7 d quick
t+8 o none
t+9
t+10
t+11

Table 5.1: Letter to word conversion

context the FID net learned in 17,000 iterations and with four
letter context only 7,500 iterations were required to solution.

The state compression net required the presentation of 15,000
iterations before reducing its energy to below the threshold of
0.01. As there are roughly three times as many weights in a
state compression net than in an FID net, the two nets require
about the same amount of computation to solve this problem.

5.5 Limitations of Dynamic Nets

Not all of the examples given in the previous section succeeded
in learning their designated task. This section explores the prob-
lems encountered and gives some considerations for the design
of dynamic nets.

The most obvious consideration is that of the complexity of
processing which can be learned by the error propagation al-
gorithm. FID and IID dynamic nets necessarily include a layer
of units through which the error signals must pass in each time
slot. Learning to map an input signal though many such layers is
a difficult task, for if one layer is insufficiently trained, as it must
be initially, then some of the information is lost and can not be
used to train subsequent layers. The same problem manifests
itself as a degradation of the error signal, as it propagates back
through layers of units its magnitude decreases, thus the units
far from the output receive a small degraded signal and take
correspondingly longer to learn than those closer to the output.
The practical limitation that this imposes is problem dependent
and may be of the order of four or eight layers in a layered static
net, or a maximum lookback of the same number in a FID or
IID dynamic net. A major driving force in the development of
the state compression net was to avoid this limit, since the error
signals in this net only pass though a single layer of units.

Another consideration relates to the type of problem to be
solved. The dynamic net is a finite state machine and thus
can not fully emulate any more powerful machine such as a
stack machine or a universal Turing machine. However, the dy-
namic net is able to make an approximate simulation of any
machine within the restrictions of internal state space and pro-
cessing capabilities. The speed of learning is directly related to
the probability of the training inputs and outputs occurring in
the context of the relevant state vector. For example, a net re-
quired to emulate a stack might succeed in emulating the first
few elements which occur frequently, but have great difficulty

18

with greater depths which occur infrequently, and can not hope
to learn the stack to greater depths than the training examples.

In one example, that of learning movement detection with
wraparound, the FID net became unstable and effectively locked
in a partial solution. This is not a problem of the net settling in
to a local minimum, but one of the net moving to a position in
weight space at which the error signals for the training exam-
ples become so small as to make further movement impractically
slow. This may be a feature of updating the weights after every
example and may avoidable in the case of small training set size
when the weights can be updated after all examples.

State compression dynamic nets have their own limitations
which arise from their architecture. The bistable problem
demonstrated that a state compression net must have variation
in its input in order form the output, but this is not normally a
restriction. The net is also less efficient in the use of state units
for storage capacity, state units are used to record the informa-
tion in the input whether it is required for computation of the
output or not. This form of information storage has another ef-
fect, the requirements of efficient storage may lead to a change
in the format used to store the input information at any time
during the learning and such changes of format must then be
learned by the translator net in order to maintain the desired
output.

Chapter 6
Application to Speech Coding

The problem of speech coding is one of finding a suitable model
to remove redundancy and hence reduce the data rate of the
speech. The Boltzmann machine learning algorithm has al-
ready been extended to deal with the dynamic case and applied
to speech recognition (Prager, Harrison and Fallside, 1986b).
However, previous use of error propagation nets for speech pro-
cessing has mainly been restricted to explicit presentation of the
context (Robinson, 1986; Elman and Zipser, 1987) with some
work using units with feedback links to themselves (Watrous,
Shastri and Waibel, 1987). In a similar area, static error propa-
gation nets have been used to perform image coding as well as
conventional techniques (Cottrell, Munro and Zipser, 1986).

6.1 The Architecture of a General
Coder

The coding principle used in this chapter is not restricted to
coding speech data. The general problem is one of encoding the
present input using past input context to form the transmitted
signal, and decoding this signal using the context of the coded
signals to regenerate the original input. Previous chapters have
shown that dynamic nets are able to represent context, so two
dynamic nets in series form the architecture of the coder, as in

figure 6.1.

This architecture may be specified by the number of input, state,
hidden and transmission units. There are as many output units
as input units and, in this application, both the transmitter and
receiver have the same number of state and hidden units.

The input is combined with the internal state of the transmitter
to form the coded signal, and then decoded by the receiver using

\
input Error coded speech> Error |output
Propag- /| Propag-
ation \ | ation
Net Net
™ RX
Unit Unit
time time
delay \\ delay \—

Fig. 6.1: The Architecture of a General Coder

its internal state. Training of the net involves the comparison
of the input and output to form the error signal, which is then
propagated back through past instantiations of the receiver and
transmitter in the same way as a for a FID dynamic net.

It is useful to introduce noise into the coded signal during the
training to reduce the information capacity of the transmission
line. This forces the dynamic nets to incorporate time infor-
mation, without this constraint both nets can learn a simple
transformation without any time dependence. The noise can
be used to simulate the quantisation noise of the coded signal
so quantifying the transmission rate. Unfortunately, a straight
implementation of quantisation violates the requirement of the
activation function to be continuous, which is necessary to train
the net. Instead quantisation to n levels may be simulated by
adding a random value distributed uniformly in the range +1/n
to —1/n to each of the channels in the coded signal.

6.2 Training of the Speech Coder

The chosen problem was to present a single sample of digitised
speech to the input, code to a single value quantised to fifteen
levels, and then to reconstruct the original speech at the output.
Fifteen levels was chosen as the point where there is a marked
loss in the intelligibility of the speech, so implementation of
these coding schemes gives an audible improvement. Both nets
had eight hidden units, with no state units for the static time
independent case and four state units for the dynamic time de-
pendent case. A context of the last four samples was used to
train the dynamic net.

The data for this problem was 40 seconds of speech from a
single male speaker, digitised to 12 bits at 10kHz and recorded
in a laboratory environment. The speech was divided into two
halves, the first was used for training and the second for testing.

The static and the dynamic versions of the architecture were
trained on 21 passes through the training data. At this point
the weights were frozen and the inclusion of random noise was
replaced by true quantisation of the coded representation. A
further pass was then made through both sets of data to yield
the performance measurements.

The modified algorithm of Chan and Fallside discussed in sec-
tion 2.5 was used to dynamically alter the step size scaling factor
during training. Previously these machines have been trained
with fixed learning parameters and weight updates after every
sample (Robinson and Fallside, 1987a) and the use of the adap-
tive training algorithm resulted in a substantially deeper energy

19

minima. Weights were updated after every 1000 samples, that
is about 200 times in one pass of the training data.

6.3 Comparison of Performance

The performance of a coding schemes can be measured by defin-
ing the noise energy as half the mean squared error between the
actual output and the desired output. This energy is the quan-
tity minimised by the error propagation algorithm. The lower
the noise energy in relation to the energy of the signal, the
higher the performance. This error measure is often used to
test speech coders, but as Thorpe (1987) points out, this does
not guarantee a good perceptual quality.

Three non-connectionist coding schemes were implemented for
comparison with the static and dynamic net coders. In the
first the signal is linearly quantised within the dynamic range
of the original signal. In the second the quantiser is restricted
to operate over a reduced dynamic range, with values outside
that range thresholded to the maximum and minimum outputs
of the quantiser. The thresholds of the quantiser were chosen
to optimise the signal to noise ratio. The third scheme used
the technique of Differential Pulse Code Modulation (DPCM)
(for example: Rabiner and Schafer, 1978) which involves a linear
filter to predict the speech waveform, and the transmitted signal
is the difference between the real signal and the predicted signal.
Another linear filter reconstructs the original signal from the
difference signal at the receiver. The linear filter is just a special
case of the dynamic net with a linear activation function, a
discussion of the relationship between linear predictive filters and
connectionist models is given by Fallside (1988). The filter order
of the DPCM coder was chosen to be the same as the number
of state units in the dynamic net coder, thus both coders can
store the same amount of context enabling a comparison with
this established technique.

The resulting noise energy when the signal energy was nor-
malised to unity, and the corresponding signal to noise ratio
are given in table 6.1 for the five coding techniques. Figure 6.2

normalised | signal to
coding method noise noise
energy ratio/dB
linear, original thresholds 0.071 115
linear, optimum thresholds 0.041 13.9
static net 0.049 13.1
DPCM, optimum thresholds 0.037 14.3
dynamic net 0.028 155

Table 6.1: Comparison of five speech coding techniques

shows the waveforms for a small section of the test data taken
from the start of the word ‘did".

The static net may be compared with the two forms of the linear
quantiser. Firstly note that a considerable improvement in the
signal to noise ratio may be achieved by reducing the thresholds
of the quantiser from the extremes of the input. This improve-
ment is achieved because the distribution of samples in the input
is concentrated around the mean value, with very few values near
the extremes. Thus many samples are represented with greater
accuracy at the expense of a few which are thresholded. The
static net has a poorer performance than the linear quantiser
with optimum thresholds. The form of the linear quantiser so-
lution is within the class of problems which the static net can
represent, It's failure to do so may be attributed to finding a

Fig. 6.2: Waveforms of Coded Speech

20

local minima, a plateau in weight space, or corruption of the
true steepest descent direction by noise introduced by updating
the weights more than once per pass through the training data.

The dynamic net may be compared with DPCM coding. The
output from both these coders is the result of filtering the coded
signal and, as a result, the output is no longer constrained to
discrete signal levels. The dynamic net has a significantly lower
noise energy than any other coding scheme, achieved by virtue
of the non-linear processing at each unit, and the flexibility of
data storage in the state units.

As expected from the measured noise energies, there is an im-
provement in signal quality and intelligibility from the linear
quantised speech through to the DCPM and dynamic net quan-
tised speech.

Chapter 7

Application to Continuous
Speech Recognition

Connectionist models provide a new approach to the problem of
automatic speech recognition. By adapting a large number of in-
ternal parameters, a connectionist machine can learn to map the
relevant features of a speech waveform onto the desired word or
phoneme label. The error propagation algorithm has had some
success already in the field of automatic speech recognition, for
example Elman and Zipser (1987) and Burr (1987), have used
it to identify a stop followed by a vowel by presenting a fixed
length utterance to their machines.

For continuous speech recognition it is important to be able to
process the speech a frame at a time with contextual informa-
tion. As discuused in section 5.1 one way to achieve this is to
use a fixed length window which encompasses several frames of
speech, training the machine to label the central frame. Robin-
son (1986), Bourlard and Wellekens (1987¢; 1987a) and Prager
and Fallside (1988) have built phoneme recognition machines
employing this form of context. An alternative way of adding
context is to allow feedback of contextual information within
the error propagation network. A form of dynamic or ‘recur-
rent’ net has been used by Watrous, Shastri and Waibel (1987)
to identify stops and vowels.

The work presented in this chapter extends the previous work
in three directions. The input is continuous speech so the nets
must perform the segmentation as well as the labelling opera-
tion. The dynamic net used to process the speech has no ‘fixed
links' and so it is more flexible than previously used nets. Finally,
most of the English phonemes are represented by the output,
which illustrates the generality of this approach.

7.1 Weight Update Strategy

Whilst the error propagation algorithm is based on the math-
ematically clean principle of gradient descent, several 'hacks’
were used to improve the performance. If a reduction in energy
at every weight change is enforced, then the machine must drop
in to the first local minimum, which in practice was found to
be at a high energy. This problem can be overcome by adding
a ‘momentum’ term (Rumelhart, Hinton and Williams, 1986)
which places a first order filter on the weight changes. Now,

21

by allowing changes that increase the energy, the machine can
‘ride over’ small local minima. The smoothed estimate of the
weight changes is a good approximation to the true direction of
steepest descent and the information is available before all the
data has been presented. This gives the additional advantage
that the weights can be updated more frequently, which results
in significantly faster learning.

The choice of step size is also crucial to finding a low energy
solution. If a good solution is found with a low step size and
the step size is subsequently increased, the machine generates
weight changes which considerably overshoot the minimum, re-
sulting in a larger energy. However, a large step size is necessary
at the start to achieve a reasonable speed of learning. The Chan
and Fallside procedure (section 2.5) for adapting the step size
during training was used to provide a large initial step size which
decayed when the machine found a minimum. The adoption of
this adaptive step size algorithm made a significant contribution
to the final performance of the machine.

7.2 Speech Database

The complete database consisted of four utterances of 31 sen-
tences spoken by seven speakers, sampled at 10kHz and digi-
tised to 12 bits. The sentences used in the database, known
as the C.U.E.D. Hotel database, are given in table 7.1, and the
phonetic description of this database is discussed in section 7.4.

We wish to see the tallest room

What did you tell me

| need to repair this car

Could you send a taxi to meet the bus
Where can | see some art

| must return to the airport

Yes | shall need a credit card

We do not need to see the docks
Should | wear boots on the sea shore
Can you see past the mesh

Can you direct me to the shops

| need a rare treat when | come back
The popular Blackpool rock can be bad
| shall be in my room at six

Can you send the picnic party to the sea shore
Are there any night clubs in Sidney street
Can you list all the banks

This book costs sixty yen

| need a ride to the red light district
We all need sunshine and a palm tree
My little red car might possibly be rusty
See that pretty red pot under my bed
My solicitor shall be in contact soon
This room might be a little bit too dark
Did you put ‘yes’ on the sheet

You might unwind and relax there
Where do tourists retreat by night

You can expect a canteen at the castle
We all insist on the aquarium

| wish to discuss additional treatment
We remarked on the obscure club across the street

Table 7.1: Sentences used in the Hotel database

For the single speaker work, two of the four utterances from a
single speaker (speaker "mha") were used for training and the
other two used for testing. For the multiple speaker work, a

single utterance was taken from each speaker for training and a
second for testing.

The training sentences were displaced by eight different tem-
poral offsets before presentation to the preprocessor, resulting
in eight slightly differing versions. Training using all eight ver-
sions improved the performance of the net when presented with
test data of unknown temporal shift. In total there were about
300,000 input and output pairs in the multiple speaker train-
ing data, making this one of the largest problems tackled to
date using the error propagation algorithm. The achievement
of reasonable training times was only made possible by running
the simulation on a 64 processor array of T800 transputers, as

described by Chong and Fallside (1988) and in appendix A.

7.3 Front End Processing

The preprocessor takes a raw speech waveform and transforms
it into a form suitable for presenting to the net. The require-
ments for a good preprocessor are to perform as much of the
initial stages of the speech-to-phoneme transformation as possi-
ble whilst losing as little of the information in the speech signal
which is needed in later stages. Although it is possible not to
use a preprocessor, it is computationally advantageous not to
have to learn the initial processing, and not to have to repeat
this processing every time the data is presented to the net.

Two assumptions are common in speech processing: the first is
that the power spectrum of the speech waveform is slowly vary-
ing; and the second is that the phase and pitch of the speech
signal is unimportant. These may be realised by Hamming win-
dowing the speech then performing a Fourier transform to give a
short term power spectrum. The power spectrum contains pitch
and vocal tract information but by grouping adjacent frequen-
cies into ‘bins’ the pitch information is blurred. Twenty bins
were used, spaced evenly on a Bark scale, which is a non-linear
frequency scale derived from psychoacoustic measurements into
masking by Zwicker and Terhart (1980). The energy in each of
these bins display a large dynamic range, which was reduced by
taking the cube root of each value, so distributing the example
points more evenly in the input space.

The behaviour of the dynamic net is dependent on the time
scale of the preprocessor. If a small frame size is chosen then
the contextual information must be stored in the state units for
many frames of speech. If a large frame size is chosen then there
will be a loss of resolution on short time scale events, such as
bursts. A common choice is to use a 25.6ms Hamming window
repeated every 12.8ms which gives a stable spectrum over steady
state portions of speech. In addition to this spectrum the four
short term energies which fall in the repeat distance were used,
so allowing for the timing and identification of bursts.

7.4 Phoneme Labels

Phonemes are regarded as the smallest linguistic unit that can
be used to distinguish meaning (for example: Ladefoged, 1982:
p 23). By their symbolic nature they provide a natural bound-
ary for artificial speech recognition systems between the lower
level distributed representations such as the acoustic waveform
and its transformations, and the higher level symbolic represen-
tations such as words and the representation of syntactic and
semantic knowledge.

The phoneme set used in this chapter consists of 27 of the
phonemes of English and a label for silence. Diphthongs were

22

not represented explicitly; instead occurrences were labelled as
two adjacent vowels. Table 7.2 gives the International Pho-
netic Association (I.P.A.) symbols, the machine readable sym-
bols which are modified from ARPABET symbols, and an ex-
ample of the occurrence of these symbols. The output the net
consisted of one unit per label which had a target activation of
0.8 if the label was active, and —0.8 if not.

[.LP.A. | ARPA | example || [.P.A. [ARPA | example
-BET -BET
[i:/ IY bEAd /17 L Loyal
/1/ IH bld /r/ R Rear
/e/ EH bEd /m/ | M MiMe
/&/ | AE bAd /n/ N NoNe
/a:/ | AA bARd /b/ B BarB
/D/ OH bOdy /d/ D DeeD
/2:/ | AO bAWdy /p/ P PiP
Ju/ UH bOOk /t/ T TighT
Ju:/ uw bOOt /k/ K KicK
/3:/ | XX | bIRd /8/ | DH | oTHer
/d/ AX bAnanA | /3/ ZH meaSure
/A/ AH bUd /s/ S CeaSe
/i/ Y Year /1) SH SHeepiSH
/w/ W Weal _ silence

Table 7.2: Phonetic labels used in the database

7.5 Back End Processing

To measure the performance of the net, and to interface to
higher level processing, a symbolic output is useful. One method
of converting the distributed output representation of the net
to a symbolic form is simply to choose the unit with the largest
activation, and output the corresponding symbol. The largest
activation may then be considered as a certainity measure on
this decision. Whilst this is a reasonable scheme, it makes poor
use of the information contained in the activations of the re-
maining units.

The approach adopted here is to use the minimum mean squared
error to define an energy for each of the possible target outputs,
as discussed in section 3.3. This forms a local distance between
the actual output and each different phoneme label and the error
propagation algorithm minimises this distance for the correct

label.

This local distance may be used directly to measure the perfor-
mance of labelling frames, or it can be used to recognise tem-
plates consisting of a string of phoneme labels. The problem
of finding the correct sequence of templates for an unknown
chapter of speech is efficiently solved using the technique of
Dynamic Time Warping (D.T.W.). This technique has the ad-
vantage that it finds the minimum value of the summed local
distances over the whole of the speech, precisely the quantity
minimised by the error propagation algorithm for the training
data.

An example plot of the activations of the output units, and the
corresponding local distances for the single speaker dynamic net
is given in figures 7.1 and 7.2. A continuous line is plotted for
each of the phoneme labels, and where this coincides with the
hand label it is marked with a cross. The symbolic form of the
hand label and the best machine label are given under the plot.
The performance figures quoted in the remainder of this chapter
refer to the proportion of occurrences where the label of a hand
labelled frame is also the label with lowest energy.

Fig. 7.1: Activations of Output Units

Fig. 7.2: Energy of Output Units

23

7.6 Static Net Results

The fixed context static net was trained on both the single
speaker and the multiple speaker training data, for a range of
contexts and numbers of hidden units. The performance is given
in table 7.3. The entries marked ‘-’ were not available as the
number of weights exceeded limitations on memory capacity,
which corresponded to about 20,000 weights. From the table it
can be seen that increasing the number of hidden units makes
a small contribution to the performance as compared with in-
creasing the number of frames of context. Indeed, in the cases
considered here, the performance of the nets was often worse
with 128 hidden units than with 32 hidden units.

no. of no. of hidden units

12.8ms single speaker seven speakers

frames 0 32 128 0 32 128
1 52.7% | 563.1% | 53.6% | 41.2% | 43.1% | 41.0%
3 57.5% | 60.0% | 59.3% | 44.5% | 47.7% | 45.6%
7 64.2% | 69.2% - 50.3% | 53.4% -
15 70.8% | 73.0% - 54.7% | 57.5% -
31 74.0% - - 59.2% - -

Table 7.3: Fixed context performance for single and multiple
speakers

7.7 Dynamic Net Results

When training the dynamic network it is possible, and indeed
advantageous, to displace the phoneme labels from the portion
of speech to which they refer. Placing the labels later in time
than the speech segment has the advantage that the net can
not only use the information from the speech before the seg-
ment (backward context) but also a finite amount of speech
after the segment (forward context). Thus the later the output
of the phoneme label is delayed, the greater the amount of con-
text available to the machine which can be used to classify the
segment. The disadvantage of a long delay is that the informa-
tion relating to the output must be held in the finite store of
the state units over the period of the delay. The performance
of a dynamic net with 64 state units on the single speaker and
multiple speaker tasks is given in table 7.4.

delay/ | single seven
frames | speaker | speakers

| 2 75.2% 67.0%
4 76.5% 69.0%

6 78.1% 70.8%

8 77.3% 69.2%

Table 7.4: Dynamic net performance for single and multiple
speakers

7.8 K Nearest Neighbour (KNN) Re-
sults

The previous results may be compared to the technique of k
nearest neighbour analysis which takes a majority vote on the
k training frames which have the smallest Euclidean distance
from the test frame. Table 7.5 gives the best single speaker
recognition performance over a range of contexts for values of
k up to 16. The recognition accuracy decreases with increasing
context because, unlike the fixed context net, equal weighting
is given to all frames.

| context | best k | performance
1 3 48.1%
3 3 45.9%
7 3 44.2%

| 15 2 44.0%

Table 7.5: KNN single speaker performance

KNN analysis was also carried out for all seven speakers with a
single frame of context. The KNN and best dynamic net results
are broken down in table 7.6 according to speaker. This table
shows that there is a large variation in recognition accuracy
across speakers, and the speech of one speaker in particular
(speaker "jen") was considerably harder to recognise than the
remainder.

speaker | best k [KNN [dynamic net

jen 3 39.1% 60.9%
doc 5 40.5% 72.4%
rwp 5 43.1% 72.3%
mvs 5 43.2% 68.0%
rjn 3 47.0% 73.2%
reb 4 48.5% 73.0%
mha 6 49.2% 72.4%
mean - 44.4% 70.3%

Table 7.6: Speaker variation

7.9 Discussion

This chapter has presented two forms speech recogniser based
on error propagation nets and one based on KNN analysis. Both
forms of net gave better performance on single and multiple
speaker recognition tasks than the KNN analysis, and did so with
considerably less computation during recognition. The nets re-
quire little more than one multiplication and addition operation
per weight, which is also an order of magnitude less computa-
tion than required by either the preprocessor or a D.T.W. back
end processor.

The dynamic net shows better recognition performance than the
fixed context static net in both recognition tasks, and does so
with fewer weights than the best performing static nets. The
two most common types of error made by the nets are the mis-
placement of a boundary between phonemes and mis-labelling
with a similar sounding phoneme. Indeed these decisions are
difficult in principle, there are no formal rules and the ‘right’
answer may be subjective. It has been the aim of this chapter

24

to show that dynamic error propagation nets are a valid ap-
proach to time dependent problems that must be trained by
example.

Chapter 8

Reinforcement Driven Dynamic
Nets

Both the static net and the dynamic net presented so far have
been trained pairs of input and output vectors. In contrast, a
reinforcement driven net is trained by repreated presentation of
an input and a judgement on the calculated output, the rein-
forcement signal. Reinforcement driven dynamic nets learn to
calculate the output which maximises the reinforcement signal
for a given input stream. This is a very powerful property, since
all that is required is that the reinforcement signal is a function
of the input and output data streams within the considered con-
text. Such nets have the potential to create complex internal
models of the external world based on their own interrelation-
ship with it. Applications may include the control of industrial
plant where only the performance of the system as a whole is
known, or the building of ‘intelligent’ machines.

8.1 Architectures

A reinforcement driven dynamic net can be formed from two
dynamic nets and a possible architecture is shown in figure 8.1.
The first dynamic net (net Y) computes the overall output from
the input and the second net (net Z) takes both the output and
input and learns their relationship to the reinforcement signal.

\
input(t) >
(Error
Propag- —
Error output(t)) ation rgér:ic;rn—t
Propag- vi Net
ation \ z
Net
Y
Unit Unit
time time ¢
delay \\ delay N——

Fig. 8.1: The Reinforcement Driven Dynamic Net

Both nets train at the same time, although without net Z it is
impossible to train net Y at all. Net Z learns the relationship be-
tween the behaviour of net Y and the reinforcement signal using
the learning procedure for dynamic nets without any modifica-
tion. Net Y can not be trained directly as the desired output is
only specified as that which maximises the reinforcement signal.
However, the error signal for the output can be calculated by
setting the output of net Z to its desired value, that is with
the reinforcement signal high, and propagating this error signal

25

through net Z and subsequently though net Y. This is a new
use for the error signal in error propagation networks, for it is
simultaneously used to train a net and to generate the error
signal for training another net.

In practice net Y and net Z may be combined to achieve a
more compact net, as in figure 8.2. This net may be trained

input(t) output(t+1
Error
Prgpag—‘ reinfor-
output(t)¥ ation |cement(t+})
Net |
Unit
time
delay \—

Fig. 8.2: A Compact Reinforcement Driven Dynamic Net

in a similar way to a FID or |ID net. Knowing the observed
reinforcement and output, an error signal can be generated and
propagated though successive sets of state units to learn the
mapping function. Now by setting the target reinforcement high
a second error signal is generated which is propagated back
through the current net to form the error signal for the previous
outputs. This error S|gna| is then propagated through previous
sets of state units to maximise the reinforcement. As observed
earlier, the propagations of errors is a linear process, so the error
S|gna|s may be combined by addition and propagated back as a
single signal, so reducing the computation. This reinforcement
driven net can be specified by the number of input, output,
hidden and state units. A simple example of this net has been
presented by Robinson and Fallside (1987a) in which the net
received a high reinforcement if the output has the same sign
as the previous input, otherwise the reinforcement was low.

8.2 A General Game Playing Program

A subclass of the general net outlined above can be used for
game playing, in which case the reinforcement signal is defined
only at the end of the game. The technique adopted here is
to play a game using the network of figure 8.1, storing the
intermediate activations of all units. At the end of the game
two separate computations are performed, one to make a more
accurate prediction of the reinforcement signal signal at the end
of the game, and the second to bias this signal to the ‘high’
reinforcement state.

8.2.1 Noughts and Crosses

The game of ‘noughts and crosses’ was chosen for several rea-
sons:

o It is well known and regarded as a ‘simple’ childrens game.
However, it may be classified as 'difficult’ when judged by

the current standard of connectionist reinforcement driven
learning procedures.

The mapping of a board position onto the optimal next
move is a complex non-linear function requiring the learning
of disjoint pattern classes.

The state of the game is uniquely defined by the board
position, so that net Z does not need any state units.

The board may be represented in relatively few bits. Each
of the nine locations may be unoccupied or occupied by
either a ‘O’ or a 'X'. Thus an upper bound on the number
of legal states is 3% = 19683, which can be represented in
15 bits.

The game has a short duration as no player may place more
than five pieces on the board. Thus as far as assigning
credit or blame for the outcome of the game, the error
signal must be propagated back through a maximum of
five states.

The ‘opponent’ to the net was a simple algorithm that would
win by completing a line of two if possible, otherwise a piece
would be placed randomly. If the net places pieces randomly,
as is the case before any learning, then the net wins about
30% of the games which are not drawn. A suitably experienced
player would never lose and only occasionally draw against this
algorithm.

8.2.2 Input and Output Representations

Two 3x3 matrices were used to represent the board position.
One has each element set high if the corresponding board po-
sition is occupied, the other is used to record the owner of the
piece placed on the occupied site. No attempt was made to
take advantage of the symmetry of the game.

The output representation was chosen to be a 3x3 matrix, the
legal move with the largest value in this matrix was taken as the
move to be made. A strict winner-takes-all rule was found to be
unstable, as the magnitude of the difference between the largest
and the second largest activation is unimportant which results
in a discontinuity in the weight space. For example, a marginal
difference of activity in an output unit will change the move
made during a game, so changing the outcome of the game.
So, for the same reason as step activation functions can not be
used within a network, a step response in interpreting the output
must be avoided. An alternative probabilistic representation of
the the output vector was used to improve the stability. This
was implemented by adding random noise to the output vector
before choosing the largest element. The noise was generated
by the difference of two random numbers with range 0.1. Thus
if one output was more than 0.2 above all the others this noise
is unimportant, otherwise the noise results in random decisions
which, when averaged, blur out the discontinuities in the weight
space.

8.2.3 Implementation

The machine was trained the 65 processor array of T800 trans-
puters described in Appendix A. Two hundred games were
played per processor per update, so the weights were updated on
gradient information collected over 13000 games. Each net had
18 hidden units and the target values for the outputs were cho-
sen to be in the linear region of the signed activation function,
+0.1 for positive reinforcement and —0.1 for negative reinforce-
ment.

26

8.2.4 Problems with Reinforcement Driven
Learning

Reinforcement driven learning is a harder task than supervised
learning for the simple reason that less information is provided
about the desired output. For the game playing program pre-
sented here there is the additional problem that changes to the
weights change the response given to early moves, so the whole
style of the game can change. For example, the initial moves
are random, so the prediction and maximisation of the rein-
forcement signal is carried out for nearly fully populated boards
of randomly placed pieces. However, towards the end of the
learning period the game length has become shorter and there
are correspondingly fewer pieces on the board. Thus the predic-
tion and maximisation functions must relearn for this new set
of training data. Because the form of the input is dependent on
the current performance of the net, the net does not perform
a gradient descent in a single function throughout the train-
ing, but performs a gradient descent in a continually changing
function. Thus there is no guarantee of convergence.

The algorithm used as an ‘opponent’ to the net used a ran-
dom number generator to pick a legal move if it could not place
a piece to win the game. This randomness means that some
responses would be given more often than others in an unpre-
dictable way, which hinders the learning by the introduction of
noise into the error signal.

The problem with needing a symbolic representation in the mid-
dle of the network has already been discussed. In a ‘real world’
environment, such as robot control, the analogue output may
be appropriate so avoiding the problem.

8.2.5 Results

The initial performance of the net was to win about 30% of
the games played. After playing 300,000 games this figure im-
proved to 59%, and playing a further 10% games produced no
further improvement. Whilst the performance of the net is lower
than the optimal performance, the net did learn sufficiently to
perform better than the ‘opponent’ algorithm which it played
against.

Chapter 9

Conclusion

The original work presented in this thesis concerns the devel-
opment of supervised, unsupervised and reinforcement driven
dynamic error propagation nets. More specifically:

e The generalisation of node types for the error propagation
network which broadens the scope of these networks to
include connectionist models such as the modified Kanerva
model and those of radial basis functions.

The formulation of the Infinite Input Duration Dynamic
Network. This network has the same properties as a stan-
dard recurrent network which extends back in time to the
first input. This is achieved with fixed storage an computa-
tional requirements, unlike the standard recurrent network
whose resources required increase linearly with time.

The formulation of the State Compression Network which
can be viewed as a superset of the networks used by Jordan
(Jordan, 1986) and followers. Like the Infinite Input Dura-
tion Dynamic Network this network has the advantage that
the computational and memory resources are fixed, and
lower than those required for the previous network. This
advantage is achieved at the expense that the network no
longer performs a true gradient descent.

The application of dynamic nets to speech coding. The
popular method of Differential Pulse Code Modulation em-
ploys two linear filters to encoded and decode speech. By
generalising these to non-linear filters, implemented as dy-
namic nets, a reduction in the noise imposed by a limited
bandwidth channel was achieved.

The application of dynamic nets to a continuous speech
recognition task. The field of Automatic Speech Recogni-
tion is one where the required mapping from the acoustic
waveform to the symbolic phoneme string is unknown. The
use of dynamic nets was found to give a higher recognition
rate both in comparison with a fixed window net and with
the established k nearest neighbour technique. This is one
of the largest connectionist problems reported to date.

The development of the reinforcement driven dynamic error
propagation network. The example problem of learning
to play the game of noughts and crosses has shown that
whilst the performance is inferior in comparison to symbolic
programs, the connectionist approach was able to perform
better than the opponent algorithm.

The author has two positive hopes for connectionism, firstly that
it will yield useful products like a voice operated wordprocessor
and other aids for the disabled, and secondly that it will stir
people up into realising that there is nothing special about the
human brain other than as a powerful information processing
system. On the negative side, there is already considerable in-
terest being shown by the military who are already far too good
at killing people without the help or hindrance of connectionist
models.

Appendix A

Implementation on a Transputer
Array

The simulations described in chapters 7 and refch:reinforce were
implemented on a 65 processor array of T800 transputers devel-
oped under the ParSiFal project IKBS/146 using a scheme simi-
lar to that used by Chong and Fallside (1988). The T800 trans-
puter contains a floating point unit and four hardware links for
connection with other transputers. The transputers are hosted
by a Sun 3/110 which contained one of the T800’s, (the ‘tad-
pole’ transputer), and the remaining 64, (the ‘t-rack’ transput-
ers), were housed externally. The layout of this system is given
schematically in Figure A.1.

For the speech recognition experiment, data was downloaded
onto the transputer array over an Ethernet connection to the
Sun. The Sun performed some data type conversion before
writing to an area of dual port memory shared with the tadpole
transputer. Handshaking of this data transfer was achieved by
using a link adapter that was polled by the Sun to receive syn-
chronisation bytes from the tadpole transputer. The data were
divided up over all the transputers such that the n'" transputer
in the ring started its data buffer n/64 of the way into the

27

| T-Racki] T-Rackz}-‘
Du <

Ethernet |Sun 3/1é@| Tadpo|e|
E— AaN

| T-Rack6H T_Racke}al

Fig. A.1: The architecture of the transputer array

whole of the data. As each data buffer was larger than 1/64 of
the whole data there was some overlap of data between trans-
puters. Typically 10 Mbytes of data were downloaded from a
remote host in 3 minutes.

All t-rack processors executed the same piece of code, so ap-
proximating a ‘Single Instruction Multiple Data’ (SIMD) archi-
tecture. This was advantageous in that it simplified the design
of the software and reduced the amount of code that had to
to be written. The speech recognition simulations were written
in OCCAM and the reinforcement driven learning experiments
were written in C. Each learning cycle was split up into four
phases, as given in table A.1.

step | tadpole process t-rack process
0 broadcast weights recelve new weights
1 write old weights to Sun | calculate new changes
2 send null gradient vector | add local gradient
3 update weights idle

Table A.1: The four phases of a learning cycle

An LED was switched on when the processor was waiting for
or performing communications, this was used to confirm that
negligible time was spent in internal communications. The per-
formance limiting step on initialisation varied between the data
transfer rate over the Ethernet and converting between data
types on the Sun, depending on the loadings of the respec-
tive systems. The performance limiting step during the learning
phase was the speed of the floating point unit internal to the

T800.

Some problems were encountered in parallelising the original se-
quential code. In the original sequential implementation of the
speech recognition code the weights were updated after every
200 frames. However, in the parallel implementation at least 16
frames were required to provide sufficient context for the feed-
back, which when multiplied by the 64 parallel processes gives
an update every 1024 frames. This was found to be a problem
in the initial stages when a small amount of data was used from
a single speaker as 1024 frames represented a significant pro-
portion of the data set. However, with the increased processing
power available, the number of data frames could be increased
to about 300,000 at which point the quantisation of the weight
updating was no longer a problem.

A rough comparison between the transputer array and a VAXs-
tation Il with a floating point unit yielded a speed up of about
300. Chong and Fallside (1988) investigated a similar problem
and found a linear speed up by a factor of 280. The results
contained in this thesis could not have been attained without

access to this, or equivalent, hardware.

Bibliography

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A
learning algorithm for Boltzmann machines. Cognitive Sci-
ence, 9, 147-169.

Almeida, L. B. (1987). A learning rule for asynchronous per-
ceptrons with feedback in a combinatorial environment. In
Proceedings of the IEEE First Annual International Confer-
ence on Neural Networks, pages 11:609-618, San Diego.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neu-
ronlike adaptive elements that can solve difficult learning
control problems. [EEE Transactions on Systems, Man, and
Cybernetics, 13(5), 834-846.

Baum, E. B. and Wilczek, F. (1987). Supervised learning of
probability distributions by neural networks. In Proceedings
of Neural Information Processing Systems (ed. D. Z. Ander-
son), American Institute of Physics, Denver.

Boothroyd, C. B. (1989). Department of Material Science,
Cambridge University. Personal communication.

Bourlard, H. and Kamp, Y. (1987). Auto-Association by
Multilayer Perceptrons and Singular-Value Decomposition.
Manuscript M217, Philips Research Laboratory, Brussels.

Bourlard, H. and Wellekens, C. J. (1987a). Speech Pattern Dis-
crimination and Multilayer Perceptrons. Manuscript M211,
Philips Research Laboratory. Submitted to Computer
Speech and Language.

Bourlard, H. and Wellekens, C. J. (1987b). Links
between Markov Models and Multilayer Perceptrons.
Manuscript M263, Philips Research Laboratory.

Bourlard, H. and Wellekens, C. J. (1987c). Multilayer percep-
trons and automatic speech recognition. In Proceedings of
the IEEE First Annual International Conference on Neural
Networks, pages 1V:407-416, San Diego.

Broomhead, D. and Lowe, D. (1988). Multi-variable Interpo-
lation and Adaptive Networks. RSRE memo #4148, Royal
Signals and Radar Establishment, Malvern.

Burr, D. J. (1987). Speech recognition results with percep-
trons. In Proceedings of Neural Information Processing Sys-
tems (ed. D. Z. Anderson), American Institute of Physics,
Denver.

Chan, L. W. and Fallside, F. (1987a). An Adaptive Learning
Algorithm for Back Propagation Networks. Technical Re-
port CUED/F-INFENG/TR.2, Cambridge University Engi-

neering Department.

Chan, L. W. and Fallside, F. (1987b). An adaptive training
algorithm for back propagation networks. Computer Speech

and Language, 2(3/4), 205-218.

Chong, M. W. H. and Fallside, F. (1988). A Parallel/ Implemen-
tation of a Neural Network for Speech Recognition. Techni-
cal Report CUED/F-INFENG/TR.8, Cambridge University

Engineering Department.

28

Chong, M. W. H., Fallside, F., Marsland, T. P., and Prager,
R. W. (1989). Parallel Processing for Interactive Speech
Recognition. Technical Report in preparation, Cambridge
University Engineering Department.

Cottrell, G. W., Munro, P., and Zipser, D. (1986). Image Com-
pression by Back Propagation: An Example of Existential
Programming. 1CS Report 8702, Institute for Cognitive Sci-
ence, University of California, San Diego.

Deterding, D. H. (1988). Speaker Normalisation for Automatic
Speech Recognition. PhD thesis, University of Cambridge.

Elman, J. L. and Zipser, D. (1987). Learning the Hidden Struc-
ture of Speech. ICS Report 8701, University of California,
San Diego.

Fallside, F. (1988). On the Analysis of Linear Predictive Data
such as Speech by a (lass of Single Layer Connectionist
Models. Technical Report CUED/F-INFENG/TR.27, Cam-
bridge University Engineering Department. Presented at
the 24 Symposium on Advanced Man-Machine Interface,
Hawaii.

Feldman, J. A. (1986). Neural Representation of Conceptual
Knowledge. Technical Report TR189, Department of Com-
puter Science in the University of Rochester, Rochester, New

York 14627.

Ferry, G. (1987). Networks on the brain. New Scientist, July,
h4-58.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-

mization and Machine Learing. Addison Weslay.

Hanson, S. J. and Burr, D. J. (1987a). Minkowski-r back-
propagation: learning in connectionist models with non-
euclidean error signals. In Proceedings of Neural Information
Processing Systems (ed. D. Z. Anderson), American Insti-
tute of Physics, Denver.

Hanson, S. J. and Burr, D. J. (1987b). Knowledge Represen-
tation in Connectionist Networks. Technical Report, Bell
Communications Research, New Jersey.

Harrison, T. D. (1988). A Connectionist Framework for Contin-
uous Speech Recognition. PhD thesis, Cambridge University
Engineering Department.

Hebb, D. O. (1949). The Organization of Behavior. Wiley, New
York.

Hinton, G. E. (1987). Connectionist Learning Procedures.
Technical Report CMU-CS-87-115, Computer Science De-
partment, Carnegie-Mellon University.

Hinton, G. E. and McClelland, J. (1987). Learning representa-
tions by recirculation. In Proceedings of Neural Information
Processing Systems (ed. D. Z. Anderson), American Insti-
tute of Physics, Denver.

Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986).
Distributed representations. In Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Vol. I:
Foundations. (eds. D. E. Rumelhart and J. L. McClelland),
chapter 3, Bradford Books/MIT Press, Cambridge, MA.

Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984).
Boltzmann machines: constraint satisfaction networks that
learn. Technical Report CMU-CS-84-119, Carnegie Mellon

University.

Holland, J. H. (1975). Adaption in Natural and Artificial Sys-
tems. University of Michigan Press.

Hopfield, J. J. (1982). Neural networks and physical systems
with emergent collective computational abilities. Proceed-
ings of the National Academy of Science U.S.A., 79, 2554—
2558.

Hopfield, J. J. (1984). Neurons with graded response have
collective computational properties like those of two-state

neurons. Proceedings of the National Academy of Science
U.S.A., 81, 3088-3092.

Huang, W. Y. and Lippmann, R. P. (1987). Neural net and
traditional classifiers. In Proceedings of Neural Information
Processing Systems (ed. D. Z. Anderson), American Insti-
tute of Physics, Denver.

Jacobs, O. L. R. (1974).
Clarendon Press, Oxford.

Introduction to Control Theory.

Jordan, M. I. (1986). Serial Order: A Parallel Distributed Pro-
cessing Approach. ICS Report 8604, Institute for Cognitive
Science, University of California, San Diego.

Kanerva, P. (1984). Self Propagating Search: A Unified Theory
of Memory. PhD thesis, Stanford University Centre for the
Study of Language and Information.

Kawahara, H. and lIrino, T. (1988). Introduction to satu-
rated projection algorithm for artificial neural network de-
sign. NTT Basic Research Laboratories, 3-9-11 Midori-cho
Musashino, Tokyo 180, Japan.

Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing. Science, 220, 671-
680.

Kohonen, T. (1988). Self-Organization and Associative Mem-
ory. Springer-Verlag, New York, second edition.

Kuffler, S. W., Nicholls, J. G., and Martin, A. R. (1984). From
Neuron to Brain: A Cellular Approach to the Function of
the Nervous System. Sinauer Associates Inc., Sunderland,
MA, second edition.

Ladefoged, P. (1982). A Course in Phonetics. Harcourt Brace
Jovanovich, New York, second edition.

Lapedes, A. and Farber, R. (1987). How neural nets work. In
Proceedings of Neural Information Processing Systems (ed.
D. Z. Anderson), American Institute of Physics, Denver.

Lindsay, P. H. and Norman, D. A. (1977). Human Informa-
tion Processing: An Introduction to Psychology. Academic
Press, Inc., Orlando, Florida, second edition.

Linsker, R. (1986). From basic network principles to neural ar-
chitecture. Proceedings of the National Academy of Science

US.A., 83, 7508-7512; 8390-8394; 8779-8783.

Linsker, R. (1988). Self-organization in a perceptual network.
IEEE Computer, 21(3), 105-117.

Lippmann, R. P. (1987). An introduction to computing with
neural nets. [EEE ASSP Magazine, 4(2), 4-22.

McClelland, J. L. and Rumelhart, D. E. (1986). Paralle/ Dis-
tributed Processing: Explorations in the Microstructure of
Cognition. Vol. II: Psychological and Biological Models. MIT
Press, Cambridge, MA.

29

McCulloch, N. and Ainsworth, W. A. (1988). Speaker indepen-
dent vowel recognition using a multi-layer perceptron. In
Proceedings of Speech'88, Edinburgh.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduc-
tion to Computational Geometry. MIT Press, Cambridge,
MA.

Moody, J. and Darken, C. (1988). Learning with Localised Re-
ceptive Fields. Research Report YALEU/DCS/RR-649, Yale
University Department of Computer Science.

Munro, P. W. (1987). A dual back-propagation scheme for
scalar reinforcement learning. In Proceedings of the Ninth
Annual Conference of the Cognitive Science Society, Seatle,

WA.

Niranjan, M. (1988). Cambridge University Engineering Depart-
ment. Personal communication.

Niranjan, M. and Fallside, F. (1988). Neural Networks and
Radial Basis Functions in Classifying Static Speech Pat-
terns. Technical Report CUED/F-INFENG/TR.22, Cam-
bridge University Engineering Department.

Parker, D. B. (1982). Learning Logic, Invention Report. Tech-
nical Report S81—-64, File 1, Office of Technology Licencing,
Stanford University.

Plumbley, M. D. (1988). Cambridge University Engineering De-

partment. Personal communication.

Plumbley, M. D. and Fallside, F. (1988). An Information-
Theoretic Approach to Unsupervised Connectionist Models.
Technical Report CUED/F-INFENG/TR.7, Cambridge Uni-

versity Engineering Department.

Poggio, T. and Koch, C. (1987). Synapses that compute mo-
tion. Scientific American, May, 42-48.

Powell, M. J. D. (1985). Radial Basis Functions for Mul-
tivariable Interpolation. A Review. Report DAMTP
1985/NA12, Department of Applied Mathematics and The-
oretical Physics, University of Cambridge.

Prager, R. W. and Fallside, F. (1988). The Modified Kan-
erva Model for Automatic Speech Recognition. Technical
Report CUED/F-INFENG/TR.6, Cambridge University En-

gineering Department.

Prager, R. W., Harrison, T. D., and Fallside, F. (1986a).
Boltzman Machines for Speech Recognition. Technical Re-
port CUED/F-CAMS/TR.260, Cambridge University Engi-

neering Department.

Prager, R. W., Harrison, T. D., and Fallside, F. (1986b). Boltz-
mann machines for speech recognition. Computer Speech
and Language, 1(1), 3-27.

Rabiner, L. R. and Schafer, R. W. (1978). Digital Processing
of Speech Signals. Prentice Hall, Englewood Cliffs, New
Jersey.

Rayner, P. J. W. and Lynch, M. R. (1988). A new connection-
ist model based on a non-linear adaptive filter. Cambridge
University Engineering Department.

Renals, S. and Rohwer, R. (1989). Phoneme classification ex-
periments using radial basis functions. Submitted to the
International Joint Conference on Neural Networks.

Robinson, A. J. (1986). Speech Recognition with Associative
Networks. M.Phil. Computer Speech and Language Process-
ing Thesis , Cambridge University Engineering Department.

Robinson, A. J. and Fallside, F. (1987a). The Utility
Driven Dynamic Error Propagation Network. Technical Re-
port CUED/F-INFENG/TR.1, Cambridge University Engi-

neering Department.

Robinson, A. J. and Fallside, F. (1987b). Static and dynamic
error propagation networks with application to speech cod-
ing. In Proceedings of Neural Information Processing Sys-
tems (ed. D. Z. Anderson), American Institute of Physics,
Denver.

Robinson, A. J. and Fallside, F. (1988) A dynamic connec-
tionist model for phoneme recognition. In Proceedings of

nEuro’'88, Paris.

Robinson, A. J., Niranjan, M., and Fallside, F. (1988). General-
ising the Nodes of the Error Propagation Network. Techni-
cal Report CUED/F-INFENG/TR.25, Cambridge University

Engineering Department.

Rohwer, R. (1988). Instant solutions for perceptron-like nets.
Submitted to Neural Computation.

Rohwer, R. and Forrest, B. (1987). Training time-dependence
in neural networks. In Proceedings of the IEEE First Annual
International Conference on Neural Networks, pages 11:701—

710, San Diego.

Rohwer, R. and Renals, S. (1988). Training recurrent networks.
In Proceedings of nEuro'88, Paris.

Rosenblatt, F. (1958). The perceptron: A probabilistic model
for information storage and organization in the brain. Psy-

chological Review, 65, 386-408.

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan,
New York.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).
l_earn/ng Internal Representatfons by Error Propagation.
Technical Report 1C5-8506, University of California, San
Diego.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning internal representations by error propagation. In
Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. Vol. I: Foundations. (eds. D. E.
Rumelhart and J. L. McClelland), chapter 8, Bradford
Books/MIT Press, Cambridge, MA.

Rumelhart, D. E. and McClelland, J. L. (1986). Paralle/ Dis-
tributed Processing: Explorations in the Microstructure of
Cognition. Vol. I: Foundations. MIT Press, Cambridge,
MA.

Scales, L. E. (1985).

Macmillan.

Introduction to non-linear optimisation.

Sejnowski, T. J. and Rosenberg, C. R. (1986). NETtalk: A
Parallel Network that Learns to Read Aloud. Technical Re-
port JHU/EECS-86/01, The John Hopkins University Elec-

trical Engineering and Computer Science Department.

Servan-Schreiber, D., Cleeremans, A., and McClelland, J. L.
(1988). Encoding Sequential Structure in Simple Recur-
rent Networks. Technical Report CMU-CS-88-183, Carnegie
Mellon University.

30

Stornetta, W. S., Hogg, T., and Huberman, B. A. (1987).
A dynamical approach to temporal pattern processing. In
Proceedings of Neural Information Processing Systems (ed.
D. Z. Anderson), American Institute of Physics, Denver.

Sutton, R. R. (1984). Temporal Credit Assignment in Reinforce-
ment Learning. PhD thesis, University of Massachusetts,
Department of Computer and Information Science.

Tank, D. W. and Hopfield, J. J. (1987). Neural computation
by concentrating information in time. Proceedings of the

National Academy of Science U.S.A., 84, 1896-1900.

Thorpe, T. F. (1987). Performance Bounds for Digital Coding
of Speech. PhD thesis, Cambridge University Engineering
Department.

Vogl, T. P, Manglis, J. K., Rigler, A. K., Zink, W. T., and
Alkon, D. L. (1988). Accelerating the Convergence of the
Back-Propagation Method. Technical Report, Enviromental
Research Institute of Michigan, Arlington.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang,
K. (1987). Phoneme Recognition Using Time—Delay Neural
Networks. Technical Report, ATR Interpreting Telephony
Research Laboratories.

Watrous, R. L. and Shastri, L. (1987). Learning phonetic fea-
tures using connectionist networks: An experiment in speech
recognition. In Proceedings of the IEEE First Annual Inter-
national Conference on Neural Networks, pages I1V:381-388,
San Diego.

Watrous, R. L., Shastri, L., and Waibel, A. H. (1987). Learned
phonetic discrimination using connectionist networks. In
Proceedings of the European Conference on Speech Tech-

nology (eds. J. Laver and M. A. Jack), CEP Consultants
Ltd, Edinburgh.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits.
In Proceedings WESCON, pages 96-104.

Williams, R. J. (1986). Reinforcement Learning in Connection-
ist Networks: A Mathematical Analysis. 1CS Report 8605,
Institute for Cognitive Science, University of California, San
Diego.

Williams, R. J. and Zipser, D. (1988). A Learning Algorithm for
Continually Running Fully Recurrent Neural Networks. 1CS
Report 8805, Institute for Cognitive Science, University of
California, San Diego.

Zwicker, E. and Terhart, E. (1980). Analytical expressions for
critical-band rate and critical bandwidth as a function of

frequency. Journal of the Acoustical Society of America,
68, 1523-1525.

