CLASSIFICATION USING HIERARCHICAL MIXTURES OF EXPERTS
Steve Waterhouse and Tony Robinson
September 1994
There has recently been widespread interest in the use of multiple models for classification and regression in the statistics and neural networks communities. The Hierarchical Mixture of Experts (HME) has been successful in a number of regression problems, yielding significantly faster training through the use of the Expectation Maximisation algorithm. In this paper we extend the HME to classification and results are reported for three common classification benchmark tests: Exclusive-Or, N-input Parity and Two Spirals.
If you have difficulty viewing files that end '.gz'
,
which are gzip compressed, then you may be able to find
tools to uncompress them at the gzip
web site.
If you have difficulty viewing files that are in PostScript, (ending
'.ps'
or '.ps.gz'
), then you may be able to
find tools to view them at
the gsview
web site.
We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.