Abstract for logan_icslp98

Proc. ICSLP '98


B. T. Logan and A. J. Robinson

Nov 1998

We have previously developed a speech enhancement scheme which can adapt to unknown additive noise. We model speech and noise using perceptual frequency or `warped' autoregressive HMMs (AR-HMMs) and estimate the clean speech and noise parameters within this framework. In this current work, we investigate the use of our system as a front end to a MFCC recognition system trained on clean speech. To use our system as a front end, we make two modifications. First, we use minimum mean squared error (MMSE) spectral rather than time domain estimators for enhancement. Second, for computational reasons, we form estimators from non-warped AR-HMMs. To avoid mismatch introduced when converting between warped and non-warped models, we use parallel sets of models.

Results are presented for small and medium vocabulary tasks. On the simple task, we are able to approach the performance of a matched system when language model information is included. On the second task, we are not able to incorporate a language model due to modelling deficiencies in AR-HMMs. However, we still demonstrate substantial improvements over baseline results.

(ftp:) logan_icslp98.ps.gz (http:) logan_icslp98.ps.gz
PDF (automatically generated from original PostScript document - may be badly aliased on screen):
  (ftp:) logan_icslp98.pdf | (http:) logan_icslp98.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.