CONNECTIONIST PROBABILITY ESTIMTAION IN HMM SPEECH RECOGNITION
Steve Renals and Nelson Morgan
December 1992
This report is concerned with integrating connectionist networks into a hidden Markov model (HMM) speech recognition system, This is achieved through a statistical understanding of connectionist networks as probability estimators, first elucidated by Herve Bourlard. We review the basis of HMM speech recognition, and point out the possible benefits of incorporating connectionist networks. We discuss some issues necessary to the construction of a connectionist HMM recognition system, and describe the performance of such a system, including evaluations on the DARPA database, in collaboration with Mike Cohen and Horacio Franco of SRI International. In conclusion, we show that a connectionist component improves a state of the art HMM system.
If you have difficulty viewing files that end '.gz'
,
which are gzip compressed, then you may be able to find
tools to uncompress them at the gzip
web site.
If you have difficulty viewing files that are in PostScript, (ending
'.ps'
or '.ps.gz'
), then you may be able to
find tools to view them at
the gsview
web site.
We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.