Abstract for logan_euro97

Proc. Eurospeech '97

IMPROVING AUTOREGRESSIVE HIDDEN MARKOV MODEL RECOGNITION ACCURACY USING A NON-LINEAR FREQUENCY SCALE WITH APPLICATION TO SPEECH ENHANCEMENT

B. T. Logan and A. J. Robinson

September 1997

A new method to improve the accuracy of Autoregressive Hidden Markov Model (AR-HMM) based recognition systems is proposed. The technique uses the bilinear transform to warp the frequency scale of the observation vectors, hence it uses a better perceptual measure to compare the observation vectors to the trained models. Results presented for the E-set letters from the ISOLET database and the first speaker dependent task of the Resource Management (RM) database show that this technique improves recognition accuracy considerably. However, in the case of the RM system, the recognition results still fall short of those obtained from a similar mel-frequency cepstral (MFCC) based system without delta parameters. Reasons for the inferior performance of the AR-HMM system are proposed and future research directions are suggested. The models built for the RM task are incorporated into an existing enhancement algorithm to form a large vocabulary speaker dependent enhancement system. Preliminary results are presented for this system.


(ftp:) logan_euro97.ps.Z (http:) logan_euro97.ps.Z
PDF (automatically generated from original PostScript document - may be badly aliased on screen):
  (ftp:) logan_euro97.pdf | (http:) logan_euro97.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.