Abstract for freitas_tr313

Cambridge University Engineering Department Technical Report CUED/F-INFENG/TR313

THE EM ALGORITHM AND NEURAL NETWORKS FOR NONLINEAR STATE SPACE ESTIMATION

J.F.G. de Freitas, M. Niranjan and A.H. Gee

May 1998

In this paper, we derive the EM algorithm for nonlinear state space models. We show how this algorithm, in conjunction with the well known techniques of Kalman smoothing, can be used for nonlinear system identification. A multi-layer perceptron, whose derivatives are computed by back-propagation, is used to generate the measurements mapping. We find that the method is intrinsically very powerful, simple, elegant and stable. However, it exhibits very slow convergence.


(ftp:) freitas_tr313.ps.gz (http:) freitas_tr313.ps.gz
PDF (automatically generated from original PostScript document - may be badly aliased on screen):
  (ftp:) freitas_tr313.pdf | (http:) freitas_tr313.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.