Q2.7: How do I convert to/from mu-law format?

Mu-law coding is a form of compression for audio signals including speech. It is widely used in the telecommunications field because it improves the signal-to-noise ratio without increasing the amount of data. Typically, mu-law compressed speech is carried in 8-bit samples. It is a companding technqiue. That means that carries more information about the smaller signals than about larger signals.

On SUN Sparc systems have a look in the directory /usr/demo/SOUND. Included are table lookup macros for ulaw conversions. [Note however that not all systems will have /usr/demo/SOUND installed as it is optional - see your system admin if it is missing.]

OR, here is some sample conversion code in C.

/**
 ** Signal conversion routines for use with Sun4/60 audio chip
 **/

#include stdio.h

unsigned char linear2ulaw(/* int */);
int ulaw2linear(/* unsigned char */);

/*
** This routine converts from linear to ulaw
**
** Craig Reese: IDA/Supercomputing Research Center
** Joe Campbell: Department of Defense
** 29 September 1989
**
** References:
** 1) CCITT Recommendation G.711  (very difficult to follow)
** 2) "A New Digital Technique for Implementation of Any
**     Continuous PCM Companding Law," Villeret, Michel,
**     et al. 1973 IEEE Int. Conf. on Communications, Vol 1,
**     1973, pg. 11.12-11.17
** 3) MIL-STD-188-113,"Interoperability and Performance Standards
**     for Analog-to_Digital Conversion Techniques,"
**     17 February 1987
**
** Input: Signed 16 bit linear sample
** Output: 8 bit ulaw sample
*/

#define ZEROTRAP    /* turn on the trap as per the MIL-STD */
#define BIAS 0x84   /* define the add-in bias for 16 bit samples */
#define CLIP 32635

unsigned char
linear2ulaw(sample)
int sample; {
  static int exp_lut[256] = {0,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,
                             4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
                             5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
                             5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
                             6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
                             6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
                             6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
                             6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
                             7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7};
  int sign, exponent, mantissa;
  unsigned char ulawbyte;

  /* Get the sample into sign-magnitude. */
  sign = (sample >> 8) & 0x80;		/* set aside the sign */
  if (sign != 0) sample = -sample;		/* get magnitude */
  if (sample > CLIP) sample = CLIP;		/* clip the magnitude */

  /* Convert from 16 bit linear to ulaw. */
  sample = sample + BIAS;
  exponent = exp_lut[(sample >> 7) & 0xFF];
  mantissa = (sample >> (exponent + 3)) & 0x0F;
  ulawbyte = ~(sign | (exponent << 4) | mantissa);
#ifdef ZEROTRAP
  if (ulawbyte == 0) ulawbyte = 0x02;	/* optional CCITT trap */
#endif

  return(ulawbyte);
}

/*
** This routine converts from ulaw to 16 bit linear.
**
** Craig Reese: IDA/Supercomputing Research Center
** 29 September 1989
**
** References:
** 1) CCITT Recommendation G.711  (very difficult to follow)
** 2) MIL-STD-188-113,"Interoperability and Performance Standards
**     for Analog-to_Digital Conversion Techniques,"
**     17 February 1987
**
** Input: 8 bit ulaw sample
** Output: signed 16 bit linear sample
*/

int
ulaw2linear(ulawbyte)
unsigned char ulawbyte;
{
  static int exp_lut[8] = {0,132,396,924,1980,4092,8316,16764};
  int sign, exponent, mantissa, sample;

  ulawbyte = ~ulawbyte;
  sign = (ulawbyte & 0x80);
  exponent = (ulawbyte >> 4) & 0x07;
  mantissa = ulawbyte & 0x0F;
  sample = exp_lut[exponent] + (mantissa << (exponent + 3));
  if (sign != 0) sample = -sample;

  return(sample);
}

Back to Section 2 of the comp.speech FAQ Home Page.
Jump to SpeechLinks, [Q2.1], [Q2.2], [Q2.3], [Q2.4], [Q2.5], [Q2.6], [Q2.8]

Administrivia, Copyright, Submit Information : Last Revision: 01:53 12-Apr-1996