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Summary

It is well known that the performance of automatic speech recognition degrades in noisy con-
ditions. To address this, typically the noise is removed from the features or the models are
compensated for the noise condition. The former is usually quite efficient, but not as effective
as the latter, often computationally expensive, approach. This thesis examines a hybrid form
of noise compensation called uncertainty decoding that is characterised by transforming the
features and a simple acoustic model update that increases the model variances in proportion
to the noise level. In particular, a novel approach called joint uncertainty decoding (JUD) is
introduced. JUD compensation parameters are derived from the joint distribution between
the training and test conditions. Two forms of uncertainty decoding are presented: front-end
and model-based joint uncertainty decoding (FE-Joint and M-Joint). An important contribu-
tion is it is shown that front-end uncertainty decoding forms, like SPLICE with uncertainty
and FE-Joint, can exhibit problems in low SNR that do not occur with model-based forms.
Furthermore, M-Joint is as efficient as FE-Joint for the same number of transforms. Thus
JUD provides forms that are fast like feature compensation, yet more efficient than standard
model-based techniques.

Some common shortcomings of noise robustness techniques are that they only work with
stereo data, on small vocabulary systems, are difficult to integrate with other acoustic mod-
elling techniques and are evaluated on artificial data. These are all addressed in this work
for JUD. An EM-based ML noise model estimation technique allows JUD transforms to be
generated given a sample of the noisy speech from the test environment. An ML approach
may update the noise model during speech, can be optimised for the noise compensation type
and provide a suitable noise model for multistyle-trained acoustic models. In addition, it is
shown how JUD can be combined with CMLLR or semi-tied covariance modelling.

The last main contribution is noise adaptive training using JUD transforms called joint
adaptive training (JAT). Instead of forcing the acoustic models to represent extraneous vari-
ability introduced by noise in the training data, as is the case for multistyle training, the
noise effect is modelled by JUD transforms. Adaptive training with CMLLR or normalisation
updates the features and subsequently treats cleaner observations the same as noisier ones.
In contrast, during acoustic model training, JAT directly takes into account the noise level
of observations by de-weighting them in proportion to the uncertainty. In this way, noisier
observations contribute less to the estimation of the canonical model parameters than clean
ones. The resulting acoustic models are then purer representations of the speech variability.

JUD is evaluated on small, medium, and large vocabulary tasks, over a wide range of
SNR, and artificially corrupted databases as well as actual recorded noisy speech data. The
results show that JUD is a flexible, fast, yet powerful noise robustness technique for ASR.

Keywords: speech recognition; noise robustness; hidden Markov models; uncertainty
decoding; model-based noise compensation; adaptation; adaptive training.
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Notation

These are terms and notation used throughout this work.

Variables, Symbols and Operations

≈ approximately equal to

∝ proportional to

x scalar quantity

x̂ estimate of the true value of x

argmax
x

f(x) value of x that maximises f(x)

max
x

f(x) value of f(x), when x maximises f(x)

log(x) natural logarithm of x

exp(x) exponential of x

E{f(x)} the expected value of f(x), where x is a random variable

Var{f(x)} the variance of f(x), where x is a random variable

f(x)
∣∣
µ0

evaluate function f(x) at the point µ0

h(t) ∗ x(t) convolution operator—that is,
∫∞
−∞ h(τ)x(t− τ)dτ

Vectors and Matrices
x vector of arbitrary dimensions

RD D-dimensional Euclidean space

A a matrix

A[p] a projection matrix where the number of rows p is less than the number
of columns

AT transpose of matrix A

diag{A} a diagonalised version of matrix A

|A| determinant of matrix A

v
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A -1 inverse of matrix A

ai column vector that is the ith column of A

aī row vector that is the ith row of A

aij scalar value that is the element in row i and column j of A

I identity matrix

1 column vector of 1’s

∆ij all-zero matrix, except for a 1 in row i and column j

b column vector

a ◦ b element-wise product of a and b yielding a column vector

a • b dot product of a and b, yielding a scalar value

Observations
T number of frames in a sequence of observations

t time frame index

D number of dimensions of full feature vector

Ds number of dimensions of static, delta, or delta-delta components of
static features—therefore 3×Ds = D

d dimension index

S sequence of clean speech vectors [s1 s2 · · · sT ]

st complete clean speech vector, comprised of static, delta and delta-delta
clean speech vectors—that is st = [xT

t ∆xT
t ∆2xT

t ]T

O sequence of noise-corrupted speech vectors [o1 o2 · · · oT ]

ot complete noise-corrupted speech vector, comprised of static, delta
and delta-delta noise-corrupted speech vectors—that is ot =
[yT

t ∆yT
t ∆2yT

t ]T

nt complete additive noise vector, comprised of static, delta and delta-
delta additive noise vectors—that is nt = [zT

t ∆zT
t ∆2zT

t ]T

h convolutional noise vector

C discrete cosine transform matrix

C -1 inverse discrete cosine transform matrix

Probability and Distributions

P(·) probability mass function

p(·) probability density function
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p(x, y) joint probability density function—that is, the probability density of
having both x and y

p(x|y) conditional probability density function of having x given y

N (µ,Σ) multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ

N (x;µ,Σ) probability of vector x given a multivariate Gaussian distribution

δ(x) Dirac delta function, which has value of 0 for x 6= 0, integrates to 1

δij Kronecker delta symbol, which equals 1 when i = j and is 0 otherwise

Γ(·) Gamma function

HMM Parameters
M set of clean speech acoustic model parameters

M̂ set of estimated corrupted speech acoustic model parameters

M̌ set of front-end model parameters

Mn set of noise model parameters

Θ set of all possible state sequences θ for a transcription Wr

θ sequence of discrete clean speech states [θ1 θ2 · · · θT ]

θn sequence of discrete noise speech states [θn
1 θn

2 · · · θn
T ]

M set of all possible component sequences m for a transcription Wr

K number of GMM components in the front-end model

M number of GMM components in the full acoustic model

R number of regression classes—that is the number of clusters of acoustic
model components

rm regression class for component m

ǎ(k) parameter a is associated with front-end component k

a(m) parameter a is associated with acoustic model component m

a(rm), a(r) parameter a is associated with regression class rm or just class r

č(k) component prior associated with front-end component k

c(m) component prior associated with acoustic model component m

µ
(m)
x ,Σ(m)

x static clean speech mean and variance of component m

µ
(m)
∆x ,Σ(m)

∆x delta clean speech mean and variance of component m

µ
(m)
∆2x

,Σ(m)
∆2x

delta-delta clean speech mean and variance of component m
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µ
(m)
s ,Σ(m)

s complete clean speech mean and variance of component m—that is
µ

(m)
s =

[
µ

(m)T
x µ

(m)T
∆x µ

(m)T
∆2x

]T
µ

(m)
y ,Σ(m)

y static noise corrupted speech mean and variance of component m

µ
(m)
∆y ,Σ(m)

∆y delta noise corrupted speech mean and variance of component m

µ
(m)
∆2y

,Σ(m)
∆2y

delta-delta noise corrupted speech mean and variance of component
m

µ
(m)
o ,Σ(m)

o complete noise corrupted speech mean and variance of component m—
that is µ

(m)
o =

[
µ

(m)T
y µ

(m)T
∆y µ

(m)T
∆2y

]T
Parameter Estimation

µh static channel mean

µn additive noise mean, which is an extended static additive noise mean
vector—that is µn = [µT

z 0T 0T]T

Σn additive noise variance and is comprised of static Σz, delta Σ∆z and
delta-delta additive noise Σ∆2z variances

γ
(m)
s,t posterior probability of component m at time t given the complete

clean observation sequence

γ
(m)
s posterior probability of component m given the complete clean obser-

vation sequence, γ
(m)
s =

∑T
t=1 γ

(m)
s,t

γ
(m)
o,t posterior probability of component m at time t given the complete

noisy observation sequence

γ
(m)
o posterior probability of component m given the complete noisy obser-

vation sequence, γ
(m)
o =

∑T
t=1 γ

(m)
o,t

Q
(
M;M̂

)
auxiliary function where component posteriors are computed using
parameter set M and output distribution probabilities with M̂

Wr sequence of words that are the reference transcription of data

Wh sequence of words that are the hypothesised transcription from a de-
coding pass over data
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CHAPTER 1
Introduction

Automatic speech recognition (ASR) has improved markedly over the last decade such that
it can be used to transcribe speech in a variety of domains such as consumer goods1,

call centre applications2 and desktop personal computer software3. However, recognition
accuracy is still far from human levels. Humans make mistakes at a rate of less than one
hundredth of a percent [97] when recognising strings of digits, while the best machine error
rates have only advanced from 0.72% to 0.55% over the last decade [155]. For more difficult
tasks the difference narrows: for example on telephone conversation transcription [56] the
human word error rate is about 4% while state-of-the-art automatic transcription systems
rates are still over three times worse [18, 32]. The difference between human and machine
performance has been attributed to a variety of causes including: the immense variability
of speech [105], poor modelling of spontaneous speech [97, 112], fundamental limitations in
conventional speech feature extraction [107] and the statistical framework [13]. Despite this
“performance gap”, basic ASR technology has advanced to a level where it may be applied
in a variety of commercial applications. However, a major problem is robustness to noise.
Despite decades of research on noise robustness, leading researchers in the field such as Nelson
Morgan and Sadaoki Furui have called on a serious effort to improve recogniser performance
in noise [38]. The reason for poor accuracy in noise is a mismatch between the original
conditions of the data used to train the recogniser and the actual noisy environment it is

1For example, voice-dialling in mobile phones or controlling toys such as the robotic dog AIBO (1999), or
interactive doll Amazing Amanda (2005). Visit the Saras institute (http://www.sarasinstitute.org/) for
an extensive history.

2Examples include Charles Schwab’s stock trading and lookup system (Nuance), Cineworld’s Movieline for
movie information and booking (Telephonetics), or Verizon’s 411 directory assistance (Microsoft/Tellme).

3Such as Dragon NaturallySpeaking, IBM ViaVoice or Microsoft’s Whisper ASR Engine for its Windows
operating system.

1

http://www.sarasinstitute.org/
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tested in. While human speech recognition degrades only slightly in noise, machine error
rates increase dramatically even with noise compensation [97].

There are many challenges when building a speech recogniser that is robust to environ-
mental noise. Noise is unpredictable and has a variety of properties: additive, e.g. car or fan
noise; convolutional, e.g. different microphones; or non-stationarity, e.g. other people talking,
keyboard clicks, lip smacks, or doors slams. Estimating noise accurately is not trivial and its
effects on speech are complex. Even if an accurate model of the noise is available, there is
the classic trade-off between computational efficiency and performance. Noise compensation
algorithms may be used in small, embedded devices where memory and computational power
are constrained. This limits the range of robustness techniques that can be employed. Though
large call centre deployments use a computing grid to serve thousands of calls simultaneously,
an increase in computational cost directly affects the size of the grid. Poor performance of
speech recognition may be blamed on noise, even when it may not be heard1. Undoubtedly
though, improving speech recognition performance in noise will help the adoption of this
enabling technology.

Most noise robustness methods can be classified by how they address this problem. Stan-
dard approaches are: inherently robust front-ends, front-end compensation and model-based
compensation. The first seeks speech features that are immune to noise. While performance
may be acceptable in low-levels of background noise [67], an inherently robust front-end has
yet to be developed that can handle higher and varied noise levels. Hence, the focus of much
research has turned to feature enhancement, or cleaning, whereby noise is explicitly removed
from the observed speech to better match the clean models of speech. Alternatively, the
acoustic model parameters can be updated to reflect the effects of noise. This is a more pow-
erful technique since each component can be individually adapted to account for the degree
to which the noise affects its mean and variance. However improved results typically come
with a significant computational cost. Hence model-based approaches may be impractical for
some commercial LVCSR applications, let alone embedded devices.

Recently, research has been directed at incorporating the uncertainty due to noise into
ASR. The “observation uncertainty” method [4, 5] incorporates the variance of the feature
enhancement process into the decoding step representing the residual enhancement uncer-
tainty. This is different to “uncertainty decoding” [26, 85], which is based on a dynamic
Bayesian network inference approach2. Both these techniques seek to incorporate the frame-
level uncertainty caused by noise into the decoding process to achieve accuracy comparable
to model-based techniques at a speed similar to enhancement style schemes. This amounts
to finding tractable representations of the uncertainty such that the model variance updates
are fast to compute, yet effectively compensate for noise. Ideally, uncertainty decoding will
be efficient like feature-based compensation forms, yet as powerful as more computation-
ally expensive model-based adaptation techniques. This thesis examines new approaches to
uncertainty decoding for noise robust speech recognition.

1See this ASR demonstration gone awry http://www.youtube.com/watch?v=IkeC7HpsHxo
2Observation uncertainty has also been referred to as uncertainty decoding, but for clarity this work dis-

tinguishes these two approaches.

http://www.youtube.com/watch?v=IkeC7HpsHxo
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1.1 Organisation of Thesis
Following this introduction, a brief overview of automatic speech recognition using hidden
Markov models (HMMs) is given in chapter 2 along with semi-tied covariance modelling,
adaptation and adaptive training, which will all be evaluated in this work. A model of the
noisy acoustic environment is presented, along with the effects that noise has on ASR, in
chapter 3. Chapter 4 reviews some relevant noise robustness techniques. In particular, obser-
vation uncertainty, SPLICE with and without certainty, and VTS compensation are discussed
because they provide interesting theoretical and practical comparisons for uncertainty decod-
ing. Joint uncertainty decoding is formally presented in chapter 5. A method for estimating a
model of the noise to predict JUD transforms is given in chapter 6. These Joint transforms are
applied in an adaptive training framework described in chapter 7. In chapter 8, experimental
results on artificially corrupted corpora, Aurora2 and Resource Management, are presented.
The next chapter looks at evaluating the various techniques on speech recorded in noisy con-
ditions such as Broadcast News and Toshiba Research Europe’s internal collection of in-car
speech data. Finally, conclusions and future research directions are presented in chapter 10.



CHAPTER 2
Hidden Markov Model

Speech Recognition

Automatic speech recognition is a classic pattern recognition problem where the goal is to
automatically produce a text transcription of spoken words. Major concerns are finding

compact set of classification features and determining a suitable means of recognising words
from these features. The features should be a compact representation of the audio signal that
is optimal for discrimination. The majority of recognisers use HMMs as models of speech
although how they are trained can vary. Finding the actual transcription should be efficient
as well as accurate and is also known as decoding. This chapter describes this standard
approach to automatic speech recognition in detail.

2.1 Overview of ASR
The main components of a generic speech recognition system, or recogniser, and how they
interact are shown in figure 2.1. The input speech, captured by some transducer, is processed
by the front-end to provide a compact and effective set of features for recognition. The front-
end may perform some speech detection, also known as endpointing, to remove background
silence or noise reduction before passing feature vectors to the decoder. Given the features
provided by the front-end, the goal is to classify or “recognise” the speech uttered. This
amounts to “decoding” the most likely word sequence Wh, i.e. the hypothesis, given the
observation sequence S and a set of model parameters M̄

Wh = argmax
W

P(W|S;M̄) (2.1)

4
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Figure 2.1: Architecture of a speech recognition system.

Rather than directly estimate the posterior probability of a word sequence, Bayes’ rule may
be applied to compute the posterior as the product of the class conditional distribution and
the prior

Wh = argmax
W

P(W|S;M̄)

= argmax
W

p(S|W;M) P(W;Ṁ)
p(S;M̄)

= argmax
W

p(S|W;M) P(W;Ṁ) (2.2)

where the complete set of model parameters M̄ are comprised of the acoustic model M and
language model Ṁ. Often p(S|W;M) is referred to as the acoustic score and P(W;Ṁ)
the language score. The normalising probability of the observation sequence p(S;M̄) is not
needed since it is independent of the word sequence. Hence the decoder incorporates acoustic
and language models to produce a word sequence that maximises the posterior probability of
the feature sequence.

The recogniser is limited to only recognising words that exist in a known vocabulary
although tests may be conducted where the words are known beforehand, i.e. closed vo-
cabulary, or not, i.e. open vocabulary. Words that are not in the vocabulary are labelled
out-of-vocabulary (OOV), and depending on scoring rules, may not be counted in error rates.
There is a direct impact on the number of words in the vocabulary on the computational
cost of searching for the optimal word sequence. Often, recognition tasks are categorised as
small vocabulary, when the number of words is less than 100; medium vocabulary when the
number of words is greater than 100, but less than 5000; and large vocabulary for 5000 or
more words. The number of words is rather arbitrary in the definitions, but they give a sense
of task complexity.

The optimal word sequence, or sometimes a word lattice [72], confusion network [31],
or list of possible transcriptions, is then passed to the application. The application may
simply provide transcriptions, where post-processing could be required to add punctuation
and capitalisation, or might be a call center application in which case an intention may need
to be discerned from the speech to direct a dialog interaction. Most ASR systems will also use
some form of adaptation to increase accuracy by improving acoustic or language modelling.
The focus of this work is on ASR noise robustness and improving the core acoustic modelling
aspects: the front-end, decoder, acoustic models and adaptation. The following sections
discuss these in more detail.
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2.2 Front-end Processing
The front-end processes audio to produce or “extract” features that ideally are optimal for
speech recognition and invariant to extraneous factors such as different speakers, microphones
or environmental noise. The front-end stage may also be divided into two steps: segmenta-
tion and feature extraction [27]. The first involves isolating relevant speech segments from
the background. For example, in dialogue systems a speech detector, or end-pointer, senses
the beginning and end points of speech from the background. Or in broadcast news transcrip-
tion, a segmentation stage may precede the front-end to remove the opening titles, musical
interludes and commercials [131]. Once these segments are identified, they are processed to
yield salient features for classification.

In the feature extraction stage, the speech signal captured by the microphone is sampled
and digitised into discrete samples over time. A popular feature representation is mel fre-
quency cepstrum coefficients (MFCC) [20], which arise from a homomorphic transform of the
short-term spectrum expressed on a mel frequency scale. Figure 2.2 shows how they may be
computed. Their use is motivated by both perceptual and performance aspects. In speech
production, the vocal tract may be viewed as a filter acting on a sound source, such as the
glottis—this is the source-filter model [57, 72, 125]. In continuous speech, it has been noted
that the vocal tract changes shape slowly in continuous speech; therefore at small enough
time scales, on the order of 10 ms, it may be considered a filter of fixed characteristics [125].
Hence, a short-time Fourier transform is applied, converting the time domain signal into the
frequency or spectral domain. A first-order pre-emphasis filter is usually applied to accen-

Figure 2.2: Front-end processing for MFCC. Speech waveform converted to smoothed short-
term log spectrum every 10 ms. Discrete cosine transform is applied and dynamic terms
appended to produce the complete feature vector st.
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tuate the higher frequencies in the formant structure. The signal is windowed at intervals
to produce frames of speech. A typical frame rate is 10 ms, with a window size of 25 ms.
Overlapping the windows and using a Hamming window smooths transitions between frames
and reduces frame edge discontinuities respectively. The discrete Fourier transform (DFT)
is applied to compute the spectrum. Because of the short time steps, each frame can be a
considered stationary signal.

Normally as the frequency rises, greater increases in frequency are necessary to double the
perceived pitch—the mel scale [20] warps the frequency scale by logarithmically compressing
it to linearise with relation to perceived pitch. The spectral envelope may be sampled by
a series of triangular band-pass filters, to produce a set of m filter bank coefficients. The
number of filters can vary, usually between 20-40, where more filters are used with a larger
bandwidth. Each filter captures the spectral energy for its particular band or “bin”. The
filters are spaced according to the mel scale

fmel = 1127 log
(

1 +
fHz

700

)
(2.3)

where fmel is the mel frequency and fHz is standard frequency. For low frequencies, the
spacing is approximately linear, but at high frequencies it becomes logarithmic. Hence the
filterbank reduces the normal FFT window of 256 points to a set of 20-40 smoothed filterbank
coefficients or channels. The dynamic range of each filterbank output is also compressed using
the natural logarithm to give log-spectral filterbank coefficients.

Although these log-spectral coefficients may be used directly as features for speech recog-
nition, they are highly correlated, e.g. loudness is reflected in most parameters, and hence a
poor representation. This motivates applying the discrete cosine transform (DCT) to decorre-
late the features and compact information into lower-frequency cepstral coefficients. Cepstral
processing is also homomorphic, allowing separation of the source excitation from the vocal
tract filter. Cepstral coefficients may be derived as follows, where xt,d is the coefficient at
time t for dimension d

xt,d =

√
2
N

N∑
i=1

log(xfi,t) cos
(

πd

N
(i− 0.5)

)
(2.4)

and xfi,t is the energy output of filter i [152]. Thus equation (2.4) transforms the log-spectral
features into MFCC. MFCC are not strictly homomorphic, since the natural log is applied
after the filterbank smoothing, however they are approximately homomorphic for filters with
smooth transfer functions [72], e.g. the vocal tract response. Due to the energy compacting
effect of the DCT, the number of coefficients can be limited to 13; increasing the number has
shown not to reduce the error rate [72]. The 0th cepstral coefficient is sometimes replaced with
a normalised log energy coefficient [152]. Although MFCC are a widely used speech param-
eterisation, its optimality has been questioned [63, 65, 67]. Alternatively, perceptual linear
prediction (PLP) coefficients have been used [64] giving similar performance to MFCC [69].
An extensive review of speech signal representations can be found in Huang et al. [72] or Gold
and Morgan [57].
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2.2.1 Dynamic Features
The set of “static” MFCC features are often appended with additional coefficients to explic-
itly model the changing speech signal at each time instance [37]. This is done to overcome
the limited temporal modelling of current HMMs, specifically breaking the conditional inde-
pendence assumption discussed in the next section. Dynamic features may be computed by
using simple differences, e.g. ∆xt = xt+2 − xt−2, or linear regression

∆xt =
∑∆

δ=1 δ(xt+δ − xt−δ)

2
∑∆

δ=1 δ2
(2.5)

where xt is the vector of static cepstral features, and ∆xt the dynamic features. A window
size of ∆ = 1 gives coefficients that are simply the difference between the previous and
following frame. A large window size of ∆ = 2 gives a more robust estimate of dynamic
coefficients. As noted in [39], delta parameters may be considered an approximation to the
first derivative of the static parameters; hence in the Continuous-Time approximation, time
derivatives of the static coefficients may be used as dynamic coefficients. Higher order delta-
delta acceleration coefficients may be computed in similar manner using simple differences
or linear regression. For a front-end that produces 13 static MFCC or PLP coefficients, the
addition of these velocity and acceleration parameters results in a feature vector of 39 elements
with the feature vector structured as follows

st =

 xt

∆xt

∆2xt

 (2.6)

It is shown in Huang et al. [72] that a greater number of cepstral coefficients or third-order
dynamic coefficients do not improve system accuracy.

2.3 Acoustic Modelling
HMMs have proven to be a powerful means of representing time varying signals, such as
speech, as a parametric random process [72, 118]. In ASR, an HMM is used to model the
acoustics of each word, syllable or phone to generate the acoustic score p(S|W,M) in equa-
tion (2.2). The HMM is a first-order, discrete-time Markov chain, as depicted in figure 2.3,

Figure 2.3: Dynamic Bayesian network for speech recognition. Arrows indicate dependencies,
observed variables are shaded, and hidden variables unshaded. Circles represent continuous
variables, squares discrete.

with a hidden state sequence. Two key assumptions are made. With discrete time, the first-
order Markov assumption assumes the probability of a state θt at time t is only dependent
on the previous state θt−1

P(θt|θt−1
1 ) ≈ P(θt|θt−1) (2.7)
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where θt−1
1 = θ1, θ2, . . . , θt−1. This provides some memory of past events, but does not

explicitly require the storage of all past states. In figure 2.3 this is reflected by the left-to-
right dependency arrow. The hidden aspect of HMMs is that the state sequence is not actually
observed and thus unknown. Rather the hidden state at time t, θt, emits an observation st.
This leads to the second assumption, that an observation is conditionally independent of all
other observations given the state

p(st|St−1
1 ,θt

1) ≈ p(st|θt) (2.8)

In figure 2.3 this is reflected by the downward pointing arrows that indicate the observation is
only dependent on the hidden state, and hence conditionally independent of all other obser-
vations. The dynamic features previously discussed in section 2.2.1 violate this assumption,
but are useful in modelling the continuous nature of speech by incorporating neighbouring
frames. These assumptions imply that transitions between states are instantaneous and whilst
in a state, observations are stationary. Given that speech itself is continuous in nature, not
piece-wise stationary and can exhibit long-term dependencies, these assumptions are poor,
although HMMs continue to be the dominant acoustic model form for ASR.

Figure 2.4: First-order HMM with left-to-right topology and three emitting states.

A three emitting state HMM with a left-to-right topology and no skips is shown in fig-
ure 2.4. The use of a start/initial state and end/absorbing state allow HMMs to be easily
concatenated. In general HMMs may have initial probabilities of each state, typically de-
noted by π, but this notion is not relevant by incorporating these two non-emitting states.
The observed speech sequence of T feature vectors is S = [s1 · · · st · · · sT=7] while the hidden
state sequence is θ = [θ1 =ω2 · · · θt =ω3 · · · θT=7 =ω4]. The transition probability between the
first state and the second is always one, i.e. a12 = 1. Valid transitions for emitting states are
either to the next state, or self loop. The transition probability from state i to j is defined as

aij = P(θt = ωj |θt−1 = ωi;A) (2.9)

and for every state ωi, all the transitions out should sum to one,
∑J

j=1 aij = 1, except the
last, non-emitting, absorbing state. The output or observation emission probability for state
ωj is defined as

bj(st) = p(st|θt = ωj ;B) (2.10)

The set of transition probabilities A, also expressible as a matrix, and output distribution
parameters B, constitute the acoustic model M.

Now that the HMM topology for speech recognition has been described, the three main
issues in using them, as discussed in Rabiner [118], are:
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• Likelihood Evaluation: Given an acoustic model M, what is the likelihood that it
generated the observed speech S?

• Parameter Estimation: Given training observations S, their transcription Wr, and
the topology of the HMM, including the number of states and output distribution form,
how are the acoustic model parameters M to be estimated?

• Decoding: Given an acoustic model M, what is the most likely hidden state sequence
θ̂ that generated a segment of observed speech S?

The following subsections give solutions to the first two issues, while the last is covered in
section 2.4.2.

2.3.1 Likelihood Evaluation
The probability of the observed clean speech sequence S, for a transcriptionWr and the HMM
parameters M, is

p(S|Wr;M) =
∑
θ∈Θ

p(S|θ;M) P(θ|Wr;M) (2.11)

where Θ is the set of all possible state sequences θ for the transcription Wr. This may be
approximated by applying the first-order Markov and conditional independence assumptions

p(S|Wr;M) ≈
∑
θ∈Θ

T∏
t=1

p(st|θt;M) P(θt|θt−1;M) (2.12)

As given in Rabiner [118], this probability may be recursively computed efficiently by using
a forward probability, defined as the joint probability of the partial observation sequence
s1s2 · · · st and state ωj at time t given the transcription Wr

αj(t) = p(s1s2 · · · st, θt = ωj |Wr;M) = p(St
1, θt = ωj |Wr;M)

= p(st|θt = ωj ;M)
J−1∑
i=2

P(θt = ωj |θt−1 = ωi;M) p(St−1
1 , θt−1 = ωi|Wr;M)

= bj(st)
J−1∑
i=2

aijαi(t− 1) (2.13)

for 1 < t ≤ T , where T is the index of the last frame of the observation sequence S, and J is
the number of states in the HMM, and the following two initial conditions

α1(1) = 1 (2.14)

αj(1) = a1jbj(s1), for 1 < j < J (2.15)

where α1(1) represents the probability at the start state θ1 and a1j = 0 for all j, except when
j = 2 where a12 = 1, for the topology shown in figure 2.4. The terminating step at time T is

αJ(T ) =
J−1∑
i=2

αi(T )aiJ (2.16)
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Equation (2.12) may now simply be expressed as

p(S|Wr;M) = αJ(T ) (2.17)

This is the forward probability of being in the final state ωJ . This recursive form is far more
efficient at O

{
(J)2T

}
rather than O

{
(J)T T

}
to exhaustively evaluate each possible state

sequence individually.
A backward probability [118], may be similarly defined. It is the conditional probability

the model will generate the rest of the observation sequence from time t, given θt = ωi and
transcription Wr

βi(t) = p(st+1st+2 · · · sT |θt = ωi,Wr;M) = p(ST
t+1|θt = ωi,Wr;M)

=
J−1∑
j=2

P(θt+1 = ωj |θt = ωi;M) p(st+1|θt+1 = ωj ;M) p(ST
t+2|θt+1 = ωj ,Wr;M)

=
J−1∑
j=2

aijbj(st+1)βj(t + 1) (2.18)

for 1 ≤ t < T and initial conditions

βJ(T ) = 1 (2.19)

βi(T ) = aiJ , for 1 < i < J (2.20)

and terminating condition at t = 1

β1(1) =
J−1∑
j=2

a1jbj(s1)βj(1) (2.21)

The backward probability may now be used in equation (2.17): p(S|Wr;M) = β1(1).

Figure 2.5: The relationship between joint probability αi(t) and the conditional probability
βi(t) in the forward-backward algorithm. The forward path is highlighted in red and backward
in blue. The likelihood of state ωj at time t is given by γ

(j=3)
s,t=4 = αj=3(t = 4)βj=3(t = 4)).
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Figure 2.5 illustrates the relationship between the forward and backward probabilities.
Thus, the forward and backward probabilities can be combined to give the likelihood of state
ωj at time t, given S and Wr. This probability may then be simply expressed as

γ
(j)
s,t = P(θt =ωj |S,Wr;M)

=
P(θt =ωj ,S|Wr;M)

P(S|Wr;M)
=

αj(t)βj(t)
P(S|Wr;M)

(2.22)

such that
∑J

j=1 γ
(j)
s,t = 1. The subscript s reinforces the fact that γ

(j)
s,t is computed from the

training data S. Though the forward probability αj(t) and backward probability βj(t) may
be considered reversed counterparts, there is asymmetry: the forward probability includes
the output probability at time t, bj(st), whereas the backward does not.

The form of the output distribution has so far not been discussed. The majority of
continuous density HMM-based speech recognisers use a multivariate Gaussian mixture model
(GMM) to model the state emission probability, although mixtures of Laplacian distributions
have also been used successfully [61].

bj(st) = p(st|θt = ωj ;M)

=
M∑

m=1

c(jm) p(st|θt = ωj ,mt = m;M)

=
M∑

m=1

c(jm)N
(
st;µ(jm)

s ,Σ(jm)
s

)
(2.23)

where m indexes a model component Gaussian in the GMM and mt denotes the component
at time t. The component prior weights c(jm) are constrained to be positive and sum to one

M∑
m=1

c(jm) = 1 (2.24)

The subscript s notation indicates the parameters are derived from the training data S1.
Each component of the GMM is a multivariate Gaussian of the form

N
(
st;µ,Σ

)
=

1

(2π)
D
2 |Σ|

1
2

exp
{
−1

2
(
st − µ

)TΣ -1(st − µ
)}

(2.25)

where D is the number of feature dimensions. Since the term outside the exponential is
not dependent on the observation, it may be pre-computed and cached for efficiency. As
discussed in section 2.3.4, feature dimensions may be correlated, therefore full covariances
should be used. However, there are two issues with using full covariance matrices. There may
not be sufficient data to robustly estimate them is the first. Secondly, there is a significant
increase in the number of operations necessary to compute equation (2.23): full covariances
are O{D(D− 1)} compared to diagonal ones at O{2D}. Hence diagonal covariance matrices
are often used. A GMM with diagonal covariances can model some of these intra-frame
correlations as well as more complex multimodal and skewed distributions compared to using
a single Gaussian output distribution. More advanced covariance modelling methods [130],
that are not as expensive as using full covariances, can give improved results, e.g. semi-tied
covariance matrices [41] discussed in section 2.3.4

1Later it will be important to distinguish these parameters from those associated with mismatched test
data O which are subscripted with o.
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2.3.2 Parameter Estimation
The HMM parameters may be estimated using the Maximum Likelihood (ML) criterion. The
optimal set of parameters should maximise the log likelihood of the training data for the
reference transcription Wr

L(M) = log p(S|Wr;M) (2.26)

where L is the log-likelihood function. There is no known way to analytically solve for the
acoustic model which globally maximises this function [118]. One iterative method to find
a local maximum is the Baum-Welch (BW) or forward-backward algorithm [9]. This is an
example of the expectation maximisation (EM) algorithm [21]. Instead of maximising L, an
auxiliary function Q is optimised which guarantees the log-likelihood will not decrease

L(M̂)− L(M) ≥ Q(M;M̂)−Q(M;M) (2.27)

which is derived using Jensen’s inequality [21] and M is the current model and M̂ the re-
estimated model. The auxiliary function is defined as

Q(M;M̂) = EM
[
log p(S,Θ,M |M̂)

]
=
∑
θ∈Θ

∑
m∈M

p(S,θ,m|Wr;M)
p(S|Wr;M)

log p(S,θ,m|Wr;M̂)

=
∑
θ∈Θ

∑
m∈M

p(S,θ,m|Wr;M)
p(S|Wr;M)

(
log p(S|θ,m,Wr; B̂) + log P(θ,m|Wr; Â)

)
(2.28)

where EM denotes the expectation over all possible hidden state sequences Θ and for all
possible hidden component sequences m in M for the transcription Wr, given the observation
sequence S computed with parameter set M. Since the transition parameters Â and the
output distribution parameters B̂ are separate in the summation they may be estimated
separately. The overall EM algorithm may be described in the following manner

Initialise Mi, i = 0
Do

E-step: compute Q(Mi;Mi)
M-step: estimate Mi+1 = argmaxMQ(Mi;M)

While Q(Mi;Mi+1)−Q(Mi;Mi) > threshold.

Figure 2.6: The EM algorithm.

The E-step requires the calculation of the joint probability p(S,θ,m|Wr;M) for possible
state sequences and components. The forward-backward algorithm gives an efficient means
to compute this using the forward and backward probabilities αj(t) and βi(t) as shown in the
derivation of equation (2.22).

Two other terms are necessary to estimate the HMM parameters. The first is the proba-
bility of transitioning from state ωi to state ωj given the complete observation sequence and
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model parameters

ζ
(ij)
t = P(θt−1 = ωi, θt = ωj |S,Wr;M)

=
p(θt−1 = ωi, θt = ωj ,S|Wr;M)

p(S|Wr;M)

=
αi(t− 1)aijbj(st)βj(t)

αJ(T )
(2.29)

The second quantity is the probability that component m, of state ωj , generated the
observation at time t given the compete observation sequence

γ
(jm)
s,t = P(θt = ωj ,mt = m|S,Wr;M)

=
p(θt = ωj ,mt = m,S|Wr;M)

p(S|Wr;M)

=
∑J−1

i=2 αi(t− 1)aijc
(jm)bjm(st)βj(t)

αJ(T )
(2.30)

These two quantities are related in that

M∑
m=1

γ
(jm)
s,t = γ

(j)
s,t =

J∑
j=1

ζ
(ij)
t (2.31)

With their definition, equation (2.28) may be expressed as

Q(M;M̂) =
∑
θ∈Θ

∑
m∈M

p(S,θ,m|Wr;M)
p(S|Wr;M)

(
log p(S|θ,m,Wr; B̂) + log P(θ|Wr; Â)

)
=

T∑
t=1

{ J∑
i=1

γ
(j)
s,t log b̂j(st) +

J∑
i=1

J∑
j=1

ζ
(ij)
t log âij

}

=
T∑

t=1

{ J∑
i=1

M∑
m=1

γ
(jm)
s,t

[
log ĉ(jm) + log b̂jm(st)

]
+

J∑
i=1

J∑
j=1

ζ
(ij)
t log âij

}
(2.32)

Equating equation (2.32) to zero and solving gives ML estimates for the transition weights
and mean, variance and weights of the acoustic model components

âij =
∑T

t=1 ζ
(ij)
t∑T

t=1

∑J
k=1 ζ

(ik)
t

(2.33)

ĉ(jm) =

∑T
t=1 γ

(jm)
s,t∑M

m=1

∑T
t=1 γ

(jm)
s,t

(2.34)

µ̂(jm)
s =

∑T
t=1 γ

(jm)
s,t st∑T

t=1 γ
(jm)
s,t

(2.35)

Σ̂(jm)
s,full =

∑T
t=1 γ

(jm)
s,t

(
st − µ̂

(jm)
s

)(
st − µ̂

(jm)
s

)T∑T
t=1 γ

(jm)
s,t

(2.36)
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Derivations for these solutions can be found in Huang et al. [71, 72]. To compute diagonal
variances, as discussed on page 2.3.1, the full covariance is diagonalised

Σ̂(jm)
s = diag

{
Σ̂(jm)

s,full

}
(2.37)

By using a mixture of Gaussians with diagonal covariances, some intra-frame correlations can
still be captured, with fewer parameters and without the associated computational cost.

Beyond this section, the state index j for the component parameters will be omitted for
simplicity; the summation over all the HMM states and model components within each state
will be been reduced to a single summation over all components in the model.

2.3.3 Context Dependent Models and State Clustering
In acoustic modelling, whole-word models may be used for small vocabulary recognition tasks.
While effective in limited domains such as isolated word, yes/no or digit recognition, there is
difficulty in capturing the co-articulatory effects between words and having sufficient training
data to estimate models for every word in a large vocabulary system. Sub-word units such
as phones or syllables are alternatives to whole-word models. The acoustic expression of a
phone will often be different depending on the neighbouring phones, i.e. the context. This
co-articulatory effect motivates the use of context-dependent phone models [7]. Left and
right biphone models depend on the phone that precedes or follows. However, the most
popular choice is the triphone, where different models exist based on both the immediate
left and right contexts. More data are required to train triphone acoustic models compared
to biphone due to the increased context. An example of the triphones, using HTK naming
convention, that constitute the word ’lexicon’ is shown in figure 2.7. This example shows word-
internal models. In contrast, cross-word models are used in this work, where the start and
end models, i.e. ’l+eh’ and ’a-n’, are further contextualised by the preceding and subsequent
words respectively. Larger contexts may also be used such as quinphones [32, 121], with two
phones to the left and two to the right, and even septaphones where this is increased to three
phones to the left and right [18].

lexicon → l+eh l-eh+k eh-k+s k-s+ih s-ih+k ih-k+a k-a+n a-n

Figure 2.7: Word-internal triphone representation of the word “lexicon”.

Increasing the size of the phone context exponentially raises the number of models and
parameters to train. For instance, with the reduced standard TIMIT [54] phone set of 39, a
triphone system would require almost sixty thousand models and a quinphone system nine
million models. Even with copious amounts of data, some models may be “unseen” and not
represented in the data. To address this, and deal with models with little training data,
HMM states with similar output distributions may be tied or clustered together to share
training data. Which states are tied together may be determined using data-driven clustering,
however unseen contexts cannot be clustered. Alternatively, state clustering using decision
trees [7, 111, 154] built from expert phonetic knowledge avoids this issue. An example decision
tree is shown in figure 2.8.
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Figure 2.8: Decision tree for triphone state clustering. Example triphone models are shown
in green, with their middle state being clustered.

2.3.4 Covariance Modelling
The DCT does not fully decorrelate the static cepstral features [100] and the addition of
dynamic coefficients introduces further intra-frame correlations; recognisers that model these
correlations achieve greater accuracy [114]. However, using full or block-diagonal covariance
matrices greatly increases the number of parameters that need to be estimated [41]; there may
be insufficient data to do so. Moreover, there is a significant increase in computational cost
to perform a full or block-diagonal Gaussian evaluation compared to a diagonal form. This
has motived a form of covariance modelling called semi-tied covariance (STC) matrices [41].
In STC, each component covariance matrix is divided into two parts: a component-specific
diagonal variance Σ(m)

s,diag and a shared, semi-tied non-diagonal matrix H. The term Σ(m)
s,diag

is equivalent to that given in equation (2.37), but with the state index j omitted for brevity,
and the subscript diag added to emphasise the diagonal matrix structure. The covariance
matrix may be expressed as

W (m)
s = HΣ(m)

s,diagH
T (2.38)

It is easier to deal with the inverse of the matrix, i.e. Astc = H -1. This matrix Astc is called
the semi-tied transform. Here it will be discussed as a global transform, however it may be
class dependent. The semi-tied transforms may be estimated iteratively using the following
auxiliary function [41]

Q(M;M̂)=
M∑

m=1

T∑
t=1

γ
(m)
s,t

{
log
((

astc,̄ip
T
ī

)2)− log|Σ(m)
s,diag| −

D∑
d=1

(
astc,d̄(st − µ

(m)
s )

)2
σ

(m)2
s,d

}
(2.39)

The row vector astc,̄i is the ith row of Astc; the bar over the row index term, i or d, denotes
the index gives a row vector for a matrix. The starting acoustic model M, and updated
acoustic model M̂, include the HMM parameters and the semi-tied transform. The semi-tied
transform may be initialised with an identity matrix. The scalar variance σ

(m)2
s,d is the dth

element of the leading diagonal of Σ(m)
s,diag. The matrix Gi is given by

Gi =
M∑

m=1

γ
(m)
s

σ
(m)2
s,i

Σ(m)
s,full (2.40)



CHAPTER 2. HIDDEN MARKOV MODEL SPEECH RECOGNITION 17

An estimate of the full covariance matrix Σ(m)
s,full is given by equation (2.36). The rows of the

transformation matrix are given by

astc,̄i = pīG
-1
i

√
T

pīG
-1
i pT

ī

(2.41)

and pī is the ith co-factor row, [χi1 χi2 · · · χiD], of Astc. A co-factor i, j is defined as
χij = (-1)i+jmij where mij is the minor i, j defined as the reduced determinant of Astc

computed without row i and column j. The estimation of the transform matrix is iterative
and row-by-row. Each row of Astc is optimised with all other rows fixed; rows are related to
each other by the co-factors. Once the semi-tied transform is estimated, the model parameters
may be re-estimated. Though equations (2.34) and (2.36) are unchanged, the estimate of the
diagonal model variance in equation (2.37) now becomes

Σ̂(m)
s,diag = diag

{
AstcΣ̂

(m)
s,fullA

T
stc

}
(2.42)

The output probability given in equation (2.23) is modified as follows

b(st) =
M∑

m=1

c(m)N
(
Astcst;Astcµ

(m)
s ,Σ(m)

s

)
(2.43)

Since the variance remains diagonal, the output probabilities can still be efficiently computed.
The main cost is transforming M component means, although once µ

(m)
s is updated the result

may be cached.

2.3.5 Discriminative Training
Traditionally, acoustic model parameters are trained to maximise the likelihood of the training
data. However, maximising the likelihood of the training data is not closely related to the
typical evaluation criteria: error rate. Also during the maximisation step in EM, each set of
model parameters is estimated independently from all other models. Furthermore for the ML
training to be optimal, it is assumed that HMMs are the optimal representation for speech
which is not the case. These issues with ML estimation motivate an alternative form of
estimating model parameters called discriminative training.

Discriminative training focuses on estimating model parameters that minimise the er-
ror rate. An early form of discriminative training used a maximum mutual information
(MMI) [141] criterion. MMI aims to optimise the posterior probability that a model gener-
ated a portion of the training utterance—this maximises the mutual information between the
training data and the models. While this addresses the independent model parameter estima-
tion issue, other forms of discriminative training may more closely link parameter estimation
to recognition errors. Various forms of discriminative training have been described in a uni-
fying minimum Bayes’ risk (MBR) training framework. The acoustic model parameters M
are trained to minimise the expected loss during decoding [16]. Thus the following objective
function is minimised

Fmbr(M) =
∑
u∈U

∑
W(u)

h

P(W(u)
h |S,M)K(W(u)

h ,W(u)
r ) (2.44)
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where P(W(u)
h |S,M) is posterior probability of a hypothesis and K(W(u)

h ,W(u)
r ) is the loss

function. The loss is computed over all training utterances U and all possible hypothesised
word sequences for an utterance u. It is a function between an utterance hypothesis W(u)

h and
the reference W(u)

r . Actually using all competing hypothesis is intractable, so lattices or N-
best lists represent a subset of word sequences. In this way, MBR training takes into account
competing hypotheses, minimising their posterior probability, during parameter estimation
whereas ML training only uses the reference hypothesis.

One form of MBR training, which may be called minimum word error (MWE), uses the
Levenshtein string error to compute the loss function making it close to evaluation using word
error rate [16, 113] discussed later in section 2.4.3. Minimum classification error (MCE) [75]
may be viewed as MBR training where the loss function is zero when the word sequence
matches the reference and one otherwise. Hence MCE minimises the string-level error rate
by reducing the posterior probability of competing hypotheses and not the reference. MPE
instead computes the loss over phone sequences—the loss is a function of the number of
phone errors. To improve generalisation acoustic de-weighting, language model simplification
during training and various smoothing techniques are often used [45]. Minimum phone error
(MPE) was found to consistently give better results than MMI [113]. A modified MCE form
that optimises a discriminative ”margin” between the correct class and the next best class has
given the best reported performance on the TIDigits task so far [155]. On the large vocabulary
Wall Street Journal (WSJ) task, MCE gives performance [102] similar to the MPE results
in Povey [113], although direct comparisons are difficult to find.

2.4 Speech Recognition
This section discusses some aspects related to using HMMs for speech recognition. Language
modelling to provide the language score in equation (2.2) is introduced. Common methods of
decoding with HMMs are presented. Lastly, how recognition performance may be evaluated
is discussed.

2.4.1 Language Modelling
In addition to the acoustic score, the recogniser requires a language score P(W;Ṁ) to provide
the posterior probability of a word sequence. It may be assumed that the probability of an
individual word depends only on the words that preceded it, i.e. the word history. Thus, the
probability of a sequence of N words, W = {w1, ..., wN}, may be written as the product of
the conditional probability of each word in the sequence given the word’s history

P(W;Ṁ) = P(w1;Ṁ)
N∏

i=2

P(wi|W i−1
1 ;Ṁ) (2.45)

where W i−1
1 is the partial sequence of words up to word i− 1.

A popular form of language model (LM) is based on the n-gram. N-gram models are
trained on a large amount1 of data and exhibit good coverage. N-grams assume that the
likelihood of a word is only dependent on the n− 1 words that precede it

P(wi|W i−1
1 ;Ṁ) ≈ P(wi|wi−1, wi−2, . . . , wi−n+1;Ṁ) (2.46)

1For example, Google has publicly released a trillion-word corpus with 5-gram counts in 2006.
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N-gram LMs tend to be domain specific and require back-off and smoothing techniques to
handle data sparseness [72]. Their complexity may also lead to unacceptable latency when
implemented in a dialogue system [34]. Simple systems use unigram (n=1) or bigram (n=2)
probabilities, whereas more complex ones will involve trigram (n=3), 4-gram (n=4) or even
5-gram (n=5) models. The IBM TC-STAR LVCSR system [121] directly decodes using a 4-
gram LM for European parliamentary speech transcription: a 5.5M n-gram LM is used in the
static decoding graph, while a much larger 130M n-gram LM is used to re-score and improve
results. An alternative strategy is to use a trigram LM to produce N-best lists re-scored
with a 5-gram LM in Mandarin broadcast news transcription [74]. LMs may be compared by
computing their perplexity [72] for a text corpus.

2.4.2 Decoding
As discussed at the beginning of this chapter, in section 2.1, decoding refers to the process
of searching for the word sequence that may have generated an observation sequence. Often
this is approximated by finding the most likely state sequence θ̂, given acoustic and language
models M and Ṁ. The search is then conducted on all possible state sequences to find the
best, which in an ML framework is the maximum likelihood sequence

θ̂ = argmax
θ

p(S,θ;M,Ṁ)

= argmax
θ

p(S|θ;M) P(θ;Ṁ) (2.47)

The word sequence is then recovered from the state sequence. To simplify the discussion
of decoding, aspects such as multiple pronunciations and model tying are not discussed.
Exhaustively searching for the optimal state sequence is O

{
JT T

}
, where J is the number of

states and T the number of observation frames—impractical for all but the smallest systems.
Fortunately the Viterbi algorithm [72] provides an efficient recursive form to find bmθ. A
function based on the probability of the most likely partial state sequence θt−1

1 , ending in
state j at time t, is defined as follows, omitting the M for clarity

vj(t) = max
θ1θ2···θt−1

p(s1s2 · · · st, θ1θ2 · · · θt = ωj)

= max
θt−1
1

p(St
1,θ

t−1
1 , θt = ωj) (2.48)

This function can be recursively computed

vj(t) = p(st|θt = ωj) max
1<i<J

P(θt = ωj |θt−1 = ωi) p(St−1
1 ,θt−2

1 , θt−1 = ωi)

= bj(st) max
1<i<J

aijvi(t− 1) (2.49)

with starting conditions

v1(1) = 1 (2.50)

vj(1) = a1jbj(s1), for 1 < j < J (2.51)

and final condition

vJ(T ) = max
1<i<J

aiJvi(T ) (2.52)
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Figure 2.9: Viterbi path highlighted in green, chosen from possible paths for state ωj=3 and
time t = 4. vj(t) gives likelihood of this path.

Hence the likelihood of the observation sequence may be approximated as

p(S|W) ≈ vJ(T ) (2.53)

The Viterbi algorithm is time-synchronous, progressing from left to right, and has complexity
O{J2T} [72]. Unlike the forward probability αj(t), which gives the likelihood for all paths to
ωj at time t, vj(t) gives the likelihood for only the maximum. Figure 2.9 can be compared
with figure 2.5, for state ωj=3 and time t = 4, to contrast the difference between the Viterbi
likelihood and the forward probability.

The Viterbi algorithm discussed so far has been in the context of isolated word recognition.
However, in LVCSR there is usually insufficient data to robustly estimate an HMM for every
word. Hence, sub-word units such as syllables or phones are used. A spoken phrase may
be generated by concatenated words, which are composite HMMs formed by sequences of
phone models as dictated by a dictionary as shown in figure 2.10. Now uncovering the most

Figure 2.10: Connecting HMMs for continuous speech recognition or when sub-word units
are used. An optional silence/pause model may be used between words.
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likely hidden state sequence is no longer trivial. A specific implementation of the Viterbi
algorithm, token passing [153], provides a method of recovering the most likely state sequence
for an observation sequence when connected HMMs are used. Every model state contains one
token. A token holds a score qn,score, which is the likelihood of the partial path up to the
current time frame vj(t), and frame index qn,start, which is the time frame when the token
first entered the HMM. At each time step, these tokens are propagated simultaneously in
parallel for all models and states. As shown in the diagram, the token qn with the highest
score qn,score, i.e. likelihood, is propagated to the start state of all models. At this point, a
model insertion penalty or word insertion penalty may be added to qn,score. At the end of
the utterance, the highest likelihood token in all of the exit states of all the models is used to
begin a traceback of the token history to yield the most likely word sequence. The traceback
requires an array which for each time frame stores two values: the identity of the model
generating the best token for the time frame, and that token’s start frame index. Tracing
back through the array gives the sequence of models that most likely produces the observation
sequence. The word sequence can be ascertained from the model sequence.

There are some practical considerations when using the approach outlined here. The prob-
abilities may become very small and hence should be stored as log probabilities. Also there
is often a large difference in the dynamic range between the acoustic score and the language
score. The acoustic score is usually underestimated due to the independence assumptions.
Applying a language or grammar scale factor, which is empirically determined, can address
this issue [72]. Also, a word insertion penalty is frequently applied to counteract the tendency
of short words being inserted [72]. Hence the most likely word sequence is given by

Ŵ = argmax
W

{log p(S|W) + plm log P(W) + piplength(W)} (2.54)

where plm is the language model scale factor, pip is the word insertion penalty, and length(W)
gives the number of words in W.

Increased complexity of the acoustic models, e.g. adding states or context, and language
models, e.g. accounting for word histories, can greatly increase the decoding search space.
This increased cost of searching the state space may be alleviated by pruning out low like-
lihood tokens. This is usually implementing by setting a pruning threshold; those tokens
whose log probability fall below this beam-width from the best token at the time step are de-
activated [152]. Decreasing the beam-width improves search speed, by reducing the number
of likelihood calculations. This comes at the expense of possibly introducing search errors
when a token containing the most likely partial path is pruned out before reaching the end
of the utterance.

Token passing is a breadth first, time-synchronous search since paths are extended at each
time frame in parallel. Since the incorporation of contexts such as phone and word history can
greatly increase the network size, such that memory issues may arise, the search space may be
dynamically expanded as contexts are encountered during decoding. Nevertheless, creating a
static graph of the entire search space for LVCSR with context dependent models and n-gram
language models has proven possible [103]. An alternative to token passing is stack decoding.
Stack decoding grows a tree of hypotheses word-by-word and expands the most promising
paths first making it a best-first search. Since paths may vary in length, it is asynchronous,
which can complicate pruning when comparing acoustic scores [6]. Stack decoding does ease
the application of language models since the word history is readily available for each path.



CHAPTER 2. HIDDEN MARKOV MODEL SPEECH RECOGNITION 22

As the complexity of acoustic and language models increases, the time required to decode
may increase dramatically. One strategy to address this is to perform multiple decoding
passes over the test data with successively more complex systems. Following the initial pass,
a second adaptation pass over the data with a simple bigram or trigram language model may
be used to generate a word lattice to represent a reduced search space of possible hypotheses.
This can then be re-scored by a more powerful language model using 4- or 5-gram probabilities
to yield the final transcription [121] or lead into a third pass using even more powerful cross–
adaptation [53] and system combination methods such as ROVER [33] or CNC [31]. Efficient
LVCSR decoding techniques with complex acoustic and language models continues to be an
area of active research. A brief overview of decoding techniques is given in Aubert [6].

2.4.3 Evaluation
The recognition accuracy of a speech recognition system may be determined by comparing
the hypothesised transcription with a reference transcription. One metric is the sentence or
string error rate which is the number of correctly recognised sentences over the total number of
sentences. Another common metric, which is predominantly quoted in this work, is the word
error rate (WER). This is computed using the Levenshtein string edit distance. The word
sequences are compared using a dynamic programming-based string alignment algorithm [72]
to determine the number of deletion errors D, substitution errors S, and insertion errors I.
The percentage WER is then

%WER =
D + S + I

N
× 100% (2.55)

where N is the number of words in the reference transcription. An alternative measure is
sentence-level accuracy, which is the number of exactly transcribed sentences over the total
number of sentences [152]. While WER or sentence accuracy are sensible evaluation criteria
for transcription tasks, for other ASR systems it may not be an optimal guide to performance.
For example, dialogue system evaluations may quote concept accuracy [12] or task completion
rate.

2.5 Adaptation and Normalisation
Despite the amount of data used to train the acoustic models and efforts to produce speaker
independent systems, there is still degradation when factors or conditions in testing are
not represented in the training data. For example, these may be new speakers, different
accents, unseen microphones, or environmental noise. In this work, parameters associated
with the training conditions are typically denoted by a subscript s as in equations (2.34)
to (2.36). Those associated with the mismatched, observed, test conditions are denoted by o.
To distinguish between observations that match the training conditions, st, the vector ot, of
the same structure and dimensionality, will represent mismatched, test condition observations.

Two main categories for approaches that address this mismatch between training and test
conditions are

• Adaptation: given some data from the test condition, the acoustic model parameters,
mainly B, are updated to better match the condition, and
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• Normalisation: factors are removed from the training data and test, before model
parameter estimation and decoding, such that they conform to a standard measure.

The first updates the output distribution parameters B while the second normalises the fea-
tures. These techniques may require a word-level transcription of the data. Normalisation
schemes transform features to conform to a target norm, such as zero mean in cepstral mean
normalisation. Some conventional approaches that fit these schemes are discussed in more
detail in the following sections. The first two may be classified as adaptation techniques, the
second two normalisation schemes.

2.5.1 Maximum Likelihood Linear Regression
ML linear regression (MLLR) adaptation [46, 89] estimates an affine transformation of the
acoustic model parameters. The transformation maximises the likelihood of the available
adaptation data. Since the amount of adaptation data is usually limited compared to the
amount of data available for training the acoustic models, it is useful to share the data such
that a single transform is estimated from observations associated with many components.
MLLR transforms have the following form

µ(m)
o = A(rm)µ(m)

s + b(rm) (2.56)

This transforms the component mean µ
(m)
s , estimated in training conditions, to an adapted

mean µ
(m)
o , such that it matches the test adaptation conditions designated by the subscript

o. The superscript rm indicates that the transform applied to acoustic model component m is
based on the regression class r that component m belongs to. The total number of classes R is
usually small, especially compared to the number of model components M . Components may
be clustered together in a regression class tree, an example of which is shown in figure 2.11. If

Figure 2.11: Regression class tree for adaptation.

sufficient data are available, then all the base classes, the leaf nodes in the tree, may each have
their own transform. However if there are insufficient data to reliably estimate a transform, as
indicated by the dotted node, the class may regress to using the transform of its parent. The
adaptation data for estimating this transform is aggregated from its children. How much data
is sufficient for a transform to be estimated is empirically determined by a “split” threshold;
this depends on the complexity of transform, e.g. a diagonal matrix transform requires less
data than a full matrix.
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Hence, using a regression tree gives an elegant means to scale the number of transforms
to the available adaptation data. In the example tree, the unvoiced recognition model com-
ponents would use the consonant transform, which is trained on the combined data from
voiced and unvoiced consonant observations. In practice adaptation schemes use a data-
driven clustering approach to generate regression class trees [40, 129]. This may be achieved
through k-means clustering and a Kullback-Leibler distance measure [129, 146] or simpler
centroid-splitting with a Euclidean distance measure [152].

For a solution to estimate diagonal MLLR transforms see Leggetter and Woodland [89],
and for block-diagonal and full see Gales [46]. The latter forms give improved performance
since correlations between dimensions are captured, but require more adaptation data to
be robustly estimated. The estimation of MLLR transforms also requires a transcription of
the adaptation data. If the transcription is known, eg in speaker enrollment scenarios, then
the adaptation is supervised ; otherwise, in unsupervised training an initial recognition pass
over the data gives a hypothesised transcription. In Sankar et al. [123] it was found that
adaptation data transcription word error rates of 20% had a minimal effect on the MLLR
transforms estimated in comparison to transforms estimated in a supervised fashion. Hence
MLLR transforms can be estimated in an unsupervised fashion if the word error rate of the
hypothesised transcription are around 20% or less.

MLLR is often compared to maximum a posteriori (MAP) adaptation [55]. MAP produces
an adapted model set that may be considered a weighted combination of well-trained, but
mismatched, prior models and ML parameter estimates from limited matched test adaptation
data. It was shown that MLLR is more effective with less adaptation data than MAP for
speaker adaptation, however with an adequate amount of data MAP outperforms MLLR [72].
This is because MAP has greater flexibility to individually update each acoustic model com-
ponent [72, 152].

An ML model variance transformation [49] of this form may be estimated

Σ(m)
o = B(m) -TH(rm)B(m) -1 (2.57)

where B(m) is the Choleski factor of the inverse of the unadapted model variance Σ(m) -1
s so

Σ(m) -1
s = B(m)B(m)T (2.58)

The MLLR variance transformation H(rm) adapts diagonal model variances into full covari-
ances if H(m) is full, which can make likelihood calculations expensive.

2.5.2 Constrained Maximum Likelihood Linear Regression
A different form of affine transformation is possible by constraining the transformation of the
variances to be the same as the mean transform

µ(m)
o = H(rm)µ(m)

s − g(rm) (2.59)

Σ(m)
o = H(rm)Σ(m)

s H(rm)T (2.60)

This constrained form is called CMLLR [46] or sometimes FMLLR [124]. In contrast to the
MLLR variance transform, CMLLR can be efficiently applied in the feature space

õ
(rm)
t = A(rm)st + b(rm) (2.61)
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where A(rm) = [H(rm)] -1 and b(rm) = [A(rm)] -1g(rm). The term o
(rm)
t indicates that each class

of model components has its own transformed feature vector—this equates to having R parallel
feature streams being propagated to the decoder. A normalisation term of log |A(rm)| is also
required during the likelihood calculation [46] which is

p(ot|θt;M̌) =
∑
m∈θt

c(m)|A(rm)|N
(
A(rm)ot + b(rm);µ(m)

s ,Σ(m)
s

)
(2.62)

Like in MLLR, the matrix A(rm) need not be full; it may have a block-diagonal or diagonal
structure. CMLLR has been used to provide robustness to varying speakers [3] and noise [83].

The CMLLR transforms are estimated by optimising the extended transform matrix
W (rm) = [b(rm)A(rm)] in the following auxiliary function

Q(M, T ;M, T̂ ) = K − 1
2

M∑
m=1

T∑
t=1

γ
(m)
o,t

[
log(|Σ(m)

s |)− log(|A(rm)|2)+

(W (rm)ξt − µ(m)
s )TΣ(m) -1

s (W (rm)ξt − µ(m)
s )

] (2.63)

where ξt is the extended observation vector
[

1
ot

]
and K is a constant term associated with the

transition probabilities and Gaussian normalisation terms. The number of test adaptation
frames is given by T and ot denotes a test observation. Note that the component posterior
for time t, γ

(m)
o,t , is computed from the test data using either a reference or hypothesised

transcription. The parameters of the auxiliary function Q indicate that the acoustic model
parameters, M, are constant, but the set of transforms T is updated to T̂ . The ML estimate
of the ith row of W (r), given all other rows, is

w
(r)

ī
=
(
αp

(r)

ī
+ k

(r)T
i

)
G

(r) -1
i (2.64)

where ī indexes the row, yielding a row vector, rather than a column and a column vector. A
co-factor was defined in section 2.3.4, except here it is of A(rm). A solution for α was given
in Gales [46]. The sufficient statistics for regression class r and row i are given by

G
(r)
i =

∑
m∈r

1

σ
(m)2
s,i

T∑
t=1

γ
(m)
o,t ξtξ

T
t (2.65)

k
(r)
i =

∑
m∈r

µ
(m)
s,i

σ
(m)2
s,i

T∑
t=1

γ
(m)
o,t ξt (2.66)

where m∈r indicates components m in regression class r. Like with STC, equation (2.64)
is applied to estimate each row of W (r) while keeping the others fixed. The estimate is
guaranteed to improve the likelihood and provides one step in a stable, row-by-row, iterative
process [46].

2.5.3 Cepstral Mean and Variance Normalisation
An effective method to address channel mismatch is cepstral mean normalisation (CMN), also
known as cepstral mean subtraction. This technique removes the cepstral bias that results
from fixed or slowly changing convolutional noise sources

x̂t = xt − µcmn (2.67)
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where xt was defined as a vector of the static elements of the feature vector st in equation (2.6).
The dynamic coefficients are not affected. Since MFCC is approximately homomorphic,
as discussed in section 2.2, subtracting the cepstral bias can remove the effects of linear
filtering. The bias may be estimated per utterance, that is µcmn = 1

T

∑T
t=1 st, or over an

entire conversation side, that is a set of utterances from one speaker. Per utterance CMN
is effective, but if the length of utterances varies substantially, the cepstral mean estimate
may be unreliable due to the changing proportion of speech to silence. Also for real-time use,
there is the issue of how to estimate the bias without incurring a large delay in response time.
Reports [96, 151] clearly show how well CMN addresses channel mismatch.

A natural extension to CMN is cepstral variance normalisation (CVN) where the target
variance of the observations is set to some constant value such as unity

ŝt,d =
1√

σ2
cvn,d

st,d (2.68)

where σ2
cvn,d is the variance of the dth dimension of the observed data. Note here that the

complete feature vector is being normalised. Normalising the distribution of the feature space
to zero mean and unit variance is also known as sphering the data. As in CMN, the scale
factor may be computed per utterance, or per speaker. The cost of applying CMN and CVN
is minimal since it is a simple shift and scale of the feature vector. Hence, it is a widely
applied technique in ASR systems.

2.5.4 Gaussianisation
More powerful non-linear transforms can be applied to match the histogram of the test data
to the training data. These include histogram equalisation [139, 140] or normalisation [104]
and Gaussianisation [17, 99]. In the latter, histograms are modelled using GMMs. The
combination of the source cumulative density function (CDF) with the inverse Gaussian
CDF gives a function that transforms the source histogram to a Gaussian PDF as shown in
figure 2.12. The result is a non-linear function applied to the features

ŝt,d = φ -1
(∫ st,d

−∞

K∑
k=1

č
(k)
d N

(
s; µ̌(k)

d , σ̌
(k)2
d

)
ds

)
(2.69)

where φ -1(·) denotes the inverse Gaussian CDF and µ̌
(k)
d , σ̌

(k)2
d and čd the component mean,

variance and weight for each mixture component k. Gaussianisation may be applied on a
per utterance, per speaker or a global level, with each entity at a level requiring D single-
dimensional GMMs, each with K components. Single component GMMs are equivalent to
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Figure 2.12: Histogram normalisation with Gaussianisation.
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Figure 2.13: Multistyle trained system versus adaptively trained system. Dotted circles
represent clusters of homogeneous speaker/environment data.

CMN and CVN. Greater number of components may be viewed as normalising higher-order
moments. As in with CMN and CVN, Gaussianisation should be applied to both the training
and test features. This scheme provides a compact representation of the histogram compared
to some of the other techniques.

2.5.5 Adaptive Training
Adaptive training may be applied to remove unwanted, non-linguistic factors, such as speaker
differences or the acoustic environment, from being included in the acoustic models [3, 22, 43,
44]. In multistyle training [98] the acoustic model is forced to represent all these factors; a
speaker independent model may be considered a multistyle model. Adaptive training instead
uses transforms to model the variation from different factors. There are two main sets of
parameters in an adaptive training framework:

• The Canonical Model: This captures the “true” acoustic variability of speech. It
models the training data given the appropriate factor transform. It is an HMM repre-
sented by M.

• Transforms: These represent extraneous acoustic variability due to different factors.
A different transform is necessary to adapt the canonical model to each specific homo-
geneous condition. The entire set of transforms is denoted by T .

Adaptive training should produce an canonical acoustic model that is more amenable to
being adapted to another speaker or environmental condition compared to clean- or multistyle-
trained models [44]. Figure 2.13 provides an illustration why this may be the case. In sub-
figure ’a’, the multistyle model must capture more variability in the data due to speaker or
environmental factors. In sub-figure ’b’, during training a set of transforms for each cluster
of homogeneous data is estimated. The canonical model parameters are then estimated using
these transforms to reduce variability of the speech data due to extraneous factors. Thus
adapting the multistyle model for a particular condition may be less precise than with a
compact canonical model.
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Normalisation techniques like CMN and Gaussianisation may be viewed as adaptive train-
ing schemes since factors are being removed from the features before model training. Noise
compensation techniques [22, 157] that attempt to remove the noise from the features to
give “clean”, normalised features for training have been also used in a similar manner. A
crucial difference is that while normalisation techniques transform features to some stan-
dard, adaptive training in general does not require such a target. Adaptive training schemes
have been classified as either model independent, model-dependent feature transformation or
model transformation [44]. The key difference between the first scheme and the latter two is
whether or not the acoustic models are needed to compute the factor transform. Normalisa-
tion techniques typically fall under model-independent schemes, the notable exception being
vocal tract length normalisation (VTLN) [88]. VTLN is a speaker normalisation technique
that warps the frequency scale to reduce the variability due to differing vocal tract lengths.
It is model-dependent because the warping factor is estimated in an ML fashion with the
acoustic models [88].

ML forms of adaptive training will necessarily be model-dependent to compute the like-
lihood of the factor transform—they may be divided into techniques that only update the
features, e.g. CMLLR [46] and VTLN, or update the model parameters, e.g. MLLR [3] or
cluster adaptive training (CAT) [42]. With the addition of condition dependent transforms,
the likelihood of the training data, which was defined in equation (2.12), must be updated
for the application of the factor transform

p(S|Wr;M, T ) =
H∏

h=1

p(S(h)|W(h)
r ;M, T (h)) (2.70)

where h indexes a homogeneous block of training data S(h), e.g. when the speaker and acoustic
environment is fixed, which has an associated transcription W(h)

r . H indicates the total
number of homogeneous blocks of training data. Thus H sets of transforms are required
and the entire set of transforms denoted by T =

{
T (1), . . . , T (h), . . . , T (H)

}
. Each set of

transforms T (h) may have multiple transforms, one for each regression class. In ML adaptive
training, the estimate of the canonical model parameters M̂ maximises equation (2.70)

M̂ = argmax
M

p(S|Wr;M, T ) (2.71)

To do so, a set of transforms T̂ must also be estimated for training purposes

T̂ = argmax
T

p(S|Wr;M, T ) (2.72)

Due to the difficultly in directly optimising both (2.71) and (2.72), EM is used. The iterative,
interleaved training procedure is shown in figure 2.14. The initial parameters may be identity
transforms and a well-trained speaker independent, multistyle-trained acoustic model. Con-
vergence occurs when the increase in the auxiliary function, when optimising M for a fixed
T , fails to increase beyond a threshold. While the final acoustic model is used in testing, a
new set of transforms must be estimated for the test condition.
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Initialise Mi and T i, i = 0
Do

E-step: compute Q(Mi, T i;Mi, T i)
M-step: estimate T i+1 = argmaxT̂ Q(Mi, T i;Mi, T̂ )
E-step: compute Q(Mi, T i+1;Mi, T i+1)
M-step: estimate Mi+1 = argmaxM̂Q(Mi, T i+1;M̂, T i+1)

While Q(Mi, T i+1;Mi+1, T i+1)−Q(Mi, T i+1;Mi, T i+1) > threshold.

Figure 2.14: Adaptive training algorithm.

Adaptive training may be conducted with CMLLR transforms. Transforms are estimated
using an auxiliary function similar to equation (2.63)

Q(M, T ;M̂, T̂ ) = EM,T

[
log p(S,M ;M̂, T̂ )

]
= −1

2

M∑
m=1

H∑
h=1

T (h)∑
t=1

γ
(mh)
s,t

[
K(m) + log(|Σ(m)

s |)− log(|A(rmh)|2)+ (2.73)

(W (rmh)ξt − µ(m)
s )TΣ(m) -1

s (W (rmh)ξt − µ(m)
s )

]
but now the transform set T is also used to compute γ

(mh)
s,t , which is the posterior probability

of an observation being generated by component m, homogeneous block h, with transcription
W(h)

r with the set of all possible component/state sequences denoted by M . The K(m)

terms related to transition and mixture weights. If s̃
(rmh)
t = W (rmh)ξt then equations (2.35)

and (2.37) are now

µ̂(m)
s =

∑H
h=1

∑T (h)

t=1 γ
(mh)
s,t s̃

(rmh)
t∑H

h=1

∑T (h)

t=1 γ
(mh)
s,t

(2.74)

Σ̂(m)
s = diag

{∑H
h=1

∑T (h)

t=1 γ
(mh)
s,t

(
s̃

(rmh)
t − µ̂

(m)
s

)(
s̃

(rmh)
t − µ̂

(m)
s

)T∑H
h=1

∑T (h)

t=1 γ
(mh)
s,t

}
(2.75)

The set of transforms T (h) contains a group of transforms T (rmh) for each homogeneous
block; the class index rm associates the transform to the model component as described in
section 5.2.4.

While SAT normalises out speaker variability, more than one factor may contribute to non-
discriminatory variation in the observed data. Hence, adaptive training may be generalised to
account for multiple acoustic factors [43]. An example is CAT combined with CMLLR [156]
to give structured transforms. A CAT system specifies speaker dependent models by a set
of cluster mean interpolation weights; CMLLR provides environmental adaptation using an
affine transform of the feature vector. The CAT-CMLLR system showed better results than
a conventional SAT system using only CMLLR on CTS [156].

2.6 Summary
This chapter has described automatic speech recognition using HMMs with continuous out-
put distributions. The various front-end processing steps necessary to generate a standard



CHAPTER 2. HIDDEN MARKOV MODEL SPEECH RECOGNITION 30

speech parameterisation, MFCC, were given. The use of hidden Markov models for the
acoustic modelling of speech was presented. How to estimate the model parameters and
performing recognition with such models is discussed. Some conventional LVCSR schemes,
such as semi-tied covariances and discriminative training, used to improve acoustic modelling
were introduced. Lastly, a few standard adaptation and normalisation techniques to boost
performance further are presented. These include MLLR and CMLLR for adaptation, cep-
stral normalisation and Gaussianisation for normalisation, and adaptive training as a general
method of removing extraneous variation during training of the acoustic models.



CHAPTER 3
The Effects of Noise

It is important to understand the difficulties noise presents to current algorithms in order
to begin to address the problem of automatic speech recognition in noise. In this section,

a general model of how environment noise affects the features used in LVCSR systems is
described. The empirical effects are simulated, presented and discussed.

3.1 Model of the Environment
It is not possible to name and describe all the noises that a speech recogniser could encounter:
noise is inherently unpredictable. Fortunately, noise may be approximately characterised by
a model of the acoustic environment. The production of the underlying speech signal is
influenced by stress, emotion or noise. What is spoken can then be coloured by additive
background noise, channel distortions either due to the microphone or network with channel
noise added, and finally possible noise at the near end of the speech recognition system. This
is summarised in a model from [62] shown in figure 3.1.

y(τ)=
[({[

x(τ)
∣∣∣Task Workload

Stress

Noise

]
zenv(τ)

+zenv(τ)
}
∗hmic(τ)+zchan(τ)

)
∗hchan(τ)

]
+znear(τ) (3.1)

Figure 3.1: Sources of noise and distortion that can effect speech.

31
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This model accounts for changes in speech production due to the task workload, stress
or surrounding noise by conditioning x(τ) on these factors. The last factor, noise, is the
cause of the Lombard effect: as the level of noise increases, speakers tend to hyper-articulate,
emphasising vowels while consonants become distorted [77]. It is well known that recognition
performance degrades significantly for stressed speech, such as Lombard, angry or loud speech
compared to neutrally produced speech [15, 76], which recognisers are trained on. Attempts
to address these effects have been beneficial [14, 132]; however in this work, these effects on
speech production will not be directly addressed.

In the model given in equation (3.1), a major source of corrupted noise is the additive,
ambient environmental noise, zenv(τ), present when the user is speaking. The combined speech
and noise signal is then captured and filtered by the microphone impulse response, hmic(τ),
which can be another large source of distortion. Transmission may also add noise, represented
by ztrans(τ) and htrans(τ), although it is expected to be small. The noise at the receiver side
znear(τ) is also expected to be minimal. Equation (3.1) may be simplified by combining the
various additive and convolutional noise sources into single additive noise, z(τ), and linear
channel noise, h(τ), variables. Doing so gives this standard, oft-used model [1, 39, 106] of the
noisy acoustic environment in the time domain show in figure 3.2. The noisy signal is now
given by

y(τ) = x(τ) ∗ h(τ) + z(τ) (3.2)

where y(τ) is the noise corrupted speech and x(τ) the “clean” speech. Note that z(τ) is a
microphone and channel filtered version of the actual ambient noise zenv(τ) present with the
speaker and therefore dependent on h(τ); still for simplicity, they are assumed independent.

Figure 3.2: Simplified model of the noisy acoustic environment.

Using this model of the noise environment, the front-end processing steps given in sec-
tion 2.2 may be applied to determine how the noise and speech interact in the cepstral domain.
After applying the DFT, the spectrum is warped and smoothed using the mel-spaced filter-
bank to give a linear-spectral relationship

yfi,t = xfi,thfi,t + zfi,t

≈ xfi,thfi
+ zfi,t (3.3)

where yfi,t, xfi,t, hfi
and zfi,t are noisy speech, clean speech, channel and additive noise

variables expressed in the frequency domain warped by the filterbank. The subscript fi

denotes filterbank bin i and t the signal time frame. It is assumed the channel is time
invariant. The spectral phase is usually discarded, hence the power spectrum is obtained
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from equation (3.3) as follows

|yfi,t|
2 = y∗fi,t

yfi,t

= |xfi,t|
2|hfi

|2 + |zfi,t|
2 + 2 cos(κi)|xfi,t||hfi

||zfi,t| (3.4)

where y∗fi,t
is the complex conjugate of yfi,t and κi is the phase difference between the speech

and noise, ∠xfi,t−∠nfi,t. By assuming there is sufficient smoothing over the filterbank bins,
the cross-terms may be ignored; the magnitude spectrum is then approximated by

|yfi,t| ≈ |xfi,t||hfi
|+ |zfi,t| (3.5)

Equation (3.5) is the environment model in the linear-spectral domain. To obtain a log-
spectral model, the natural logarithm may be applied

log |yfi,t| ≈ log
(
|xfi,t||hfi

|+ |zfi,t|
)

= log
(
|xfi,t||hfi

|
(

1 +
|zfi,t|

|xfi,t||hfi
|

))
= log

(
|xfi,t||hfi

|
)

+ log
(

1 + exp
(

log
|zfi,t|

|xfi,t||hfi
|

))
= log |xfi,t|+ log |hfi

|+ log
(
1 + exp

(
log |zfi,t| − log |xfi,t| − log |hfi

|
))

(3.6)

These log-spectral variables are converted to the cepstral domain as follows

yl
t =

[
log |yf1,t| log |yf2,t| · · · log |yfN ,t|

]T
yt = Cyl

t (3.7)

xl
t =

[
log |xf1,t| log |xf2,t| · · · log |xfN ,t|

]T
xt = Cxl

t (3.8)

hl =
[
log |hf1 | log |hf2 | · · · log |hfN

|
]T

h = Chl (3.9)

zl
t =

[
log |zf1,t| log |zf2,t| · · · log |zfN ,t|

]T
zt = Czl

t (3.10)

where the subscript l indicates a log-spectral variable and N is the number of channels in
the filterbank. The terms C and C -1 indicate the DCT matrix and its inverse (IDCT). The
coefficients of the DCT matrix are given by

cdi =

√
2
N

cos
(

πd

N
(i− 0.5)

)
(3.11)

to obtain a N × N matrix. The IDCT matrix may be obtained by inverting the DCT. As
discussed in section 2.2, the number of MFCC may be truncated to 13 or less where N is
usually 20 or greater. Hence rows in the IDCT matrix may be truncated such that a smoothed
version, ỹl

t, of the original log-spectral vector, yl
t, may be obtained, i.e. ỹl

t = C -1yt.
Finally, equation (3.6) is transformed to the cepstral domain by first considering its vector

form and then applying the DCT

yl
t = xl

t + hl + log
(
1 + exp

(
(zl

t − xl
t − hl)

))
Cyl

t = Cxl
t + Chl + Clog

(
1 + exp

(
C -1(Czl

t −Cxl
t −Chl)

))
yt = xt + h + Clog

(
1 + exp

(
C -1(zt − xt − h)

))
(3.12)

where the bold log and exp functions indicate element-wise operations that yield a vector of
the same dimensionality as the input vector. Equation (3.12) clearly shows that the corrupted
speech is a complicated non-linear function of the channel, noise and clean speech.
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Figure 3.3: Corrupted speech distribution with clean speech of mean 10, variance 5, and ML
estimate of Gaussian distribution.

3.2 Effect on Speech Distributions
To more clearly understand the effects of noise, a simulation of its influence on a Gaussian
distribution can be conducted. Figure 3.3 shows how a single Gaussian representing the clean
speech xl

t, is affected by additive noise zl
t at different levels in the log-spectral domain for a

single dimension.If noise and clean speech are considered to be Gaussian distributed in the
log-spectral domain, the following equation, derived from equation (3.5), can be used to draw
random vectors and plot a histogram of the corrupted speech yl

t

yl
t = log(exp(xl

t) + exp(zl
t)) (3.13)

The noise is a randomly generated Gaussian variable with the mean rising from 0 to 6 at
a constant variance of 1. The clean speech is also a randomly generated Gaussian variable
with mean 10 and variance 5. In the log-spectral domain, the magnitude of the variables
correspond to the energy level. At first there is a distinct bimodal distribution, but as the
noise mean increases, the separability is lost and the distribution is once again unimodal
with a strong skew. Also, there is a shift in the mean and a sharp decrease in variance.
The dotted line shows the ML estimate of a Gaussian model of the noisy distribution. It
is clear that with the increasing noise, it becomes a poorer fit for the data. As discussed
in Gales [39], this may be addressed by increasing the number of components used to model
the corrupted speech distribution for each clean speech acoustic model component; this may
come with a large computational cost. In practice, most systems use GMMs to model the
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state output distributions. Since the effect of noise is non-linear, most components may be
either unaffected by the noise or subsumed by it, hence few clean components may actually
lead to a bimodal corrupted speech distribution.

The same trend can be seen with actual speech data as shown in figure 3.4. This plots
histograms of the 0th cepstral coefficient (C0) for telephone number utterances in a single
vehicle from the Toshiba In-car corpus described in section 9.2. The histograms are normalised
to have the same area. It shows how the distribution of C0 can vary widely. Of the three
Car conditions, at idle the SNR1 is highest, maintaining a roughly bimodal distribution with
sharp noise peak at 40 and a spread out speech distribution centred around 60. However, as
the SNR decreases to 18 dB, the noise becomes highly intermingled with the speech producing
a unimodal distribution. These effects demonstrate how real noise causes changes to speech
distributions, producing mismatch problems and reduced ASR performance.

Figure 3.4: Histograms of C0 for noisy speech recorded in three car conditions: idling and
city and highway driving.

3.3 Effect on Intra-frame Correlations
Section 2.3.4 discussed how diagonal model covariances are not optimal for ASR. Recent
ASR systems [32, 53, 121, 134] have demonstrated the importance of modelling correlations
between dimensions by either using full adaptation transforms, HLDA [87], or STC [41]
techniques. Thus it is interesting to examine how environmental noise affects these intra-
frame correlations. Figure 3.5 shows contours of equal probability for full bivariate Gaussian
distributions modelling C0 and C1 for the same Toshiba test conditions from figure 3.4 but
with the addition of an Office condition. As in figure 3.3, the variances compress as the SNR
decreases—C1 also follows this trend. Since C0 correlates strongly with signal energy, there
is a greater shift in the mean in this dimension, and more compression in the contour, which
causes a slight rotation. For the office data, the major axis of the probability contour is about a
45◦ rotation from the car data and clearly different. Hence different environmental conditions

1The wavmd tool from the NIST Speech Quality Assurance Package v2.3 was used to determine the SNR.
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Figure 3.5: Covariance between C0 and C1 of noisy speech recorded in an office and three car
conditions: idling and city and highway driving.

can give very different dimensional correlations. Systems that model these correlations, for
example with HLDA or STC transforms, may exhibit a larger performance degradation than
without this additional modelling, due to mismatched correlations between the training data
and the noisy test environment. This is obvious in figure 3.6 where the correlations are
plotted for Office and Car at highway speed conditions; the correlations are quite distinct for
these two conditions. Thus it is also important to consider how noise may change intra-frame
correlations when improving the robustness of state-of-the-art ASR systems.

Figure 3.6: Global correlation between dimensions of the full feature vector.
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3.4 Summary
This chapter discussed how noise affects speech in the context of ASR. A standard model
describing how noisy speech is produced from clean speech corrupted by additive and con-
volutional noise was presented. The model was discussed for various domains that speech
recognisers may operate in including spectral, log-spectral and cepstral. The model was used
to simulate how Gaussian distributed noise and speech variables interact. These simulations
were then compared with real noisy data. Significant changes occur to speech distributions
in the presence of the noise: as the noise level increases, the noisy speech mean increases,
variances compress and the correlations between dimensions change. These are all factors
that should be kept in mind when considering noise robustness algorithms for ASR.



CHAPTER 4
Techniques for Noise

Robustness

There are many approaches to robustly recognising noise corrupted speech. Ideally, a
noise invariant speech parameterisation should be found. This has not proven possible

for widely varying levels of noise. Hence this thesis examines techniques that reduce the
mismatch between the training and usage conditions. These techniques can be grouped into
two distinct approaches as shown in figure 4.1. Front-end noise compensation approaches
modify noise corrupted observations to provide an estimate of the feature vector that more
closely resembles the clean speech found in training. These estimates can then be decoded
using the clean-trained acoustic models. Acoustic model compensation updates the clean-
trained acoustic models to a corrupted model set that better matches the noise corrupted
observations in the target environment. Many of the techniques in section 2.5 may be used
for noise robustness. This chapter discusses techniques that are more specifically targeted for
noise robustness.

4.1 A Framework for Noise Robust ASR
The previous chapter described the effects of noise on speech. With these effects in mind, it is
clear a general framework for robust speech recognition that explicitly accounts for the pres-
ence of noise is needed. As in the presentation of adaptation techniques, the mismatched test
observation sequence may be denoted O = {o1, . . . ,oT }, where in this chapter the primary
cause of mismatch is noise. A single, corrupted speech observation ot can be thought of as
the combination of the outputs from hidden clean speech and noise processes. Thus it may

38
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Figure 4.1: Methods of reducing the acoustic mismatch between test and training conditions.

be assumed that observations are conditionally independent given the hidden clean speech
st and the corrupting noise nt observations at a time instance. Thus the clean speech S
and noise sequence N can be considered independent, each generated by a hidden first-order
Markov processes. The likelihood of the observation sequence can then be expressed as

p(O;M,Mn) =
∫∫

2RDT

p(O|S,N ;M,Mn) p(S;M) p(N ;Mn)dSdN

≈
∑

θ,θn∈Θ

P(θ;M) P(θn;Mn)
T∏

t=1

∫∫
2RD

p(ot|st,nt) p(st|θt) p(nt|θn
t )dstdnt (4.1)

where θt and θn
t denote the hidden state of the clean speech and noise respectively at time t,

Θ the set of all possible sequences of length T through the state space, M the clean speech
model and Mn the noise model, and D is the dimensionality of the feature space including
both static and dynamic coefficients. The first double integration takes place over the entire
D-dimensional Euclidean space and T time, whereas the second just over the RD space. The
clean speech output probability p(st|θt) is conditioned on the state θt in the model set M,
hence M is not explicitly stated; this also applies for p(nt|θn

t ) and Mn. The conditional
independence assumptions are compactly specified in the dynamic Bayesian network shown
in figure 4.2. This extends the DBN for clean speech, shown previously in figure 2.3, with a
second, parallel, first-order Markov chain representing the noise process.

Hence this framework is an extension of the typical application of HMMs for speech recog-
nition. However, assumptions that are tolerable with clean speech, such as the conditional
independence of observations, and the lack of explicit duration modelling may result in in-
creased fragility to noise. Hermansky [66] contends that the fragility of ASR in realistic
situations is due to excessive attention to spectral structure and poor modelling of the tem-
poral structure of speech signals. A frequent comparison is made to the robustness of human
perception to speech that has the features of limited spectral resolution, broad temporal
memory of larger acoustic segments, and the ability to mask unreliable features in the signal.
The assumption that the clean speech is independent of the noise is not true as demonstrated
by the Lombard effect; however, it may be assumed for simplicity. Speech signal production
has strong constraints that could be exploited for more robust recognition that are not ex-
ploited by the first-order Markov assumption. For example recent work has looked into using
a switching linear dynamic model to take advantage of the smooth time varying qualities of
speech [25] for speech enhancement.
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Figure 4.2: Dynamic Bayesian network for noise robust speech recognition. Arrows indicate
dependencies, observed variables are shaded, and hidden variables unshaded. Circles represent
continuous variables, squares discrete.

Despite the drawbacks in using HMMs for noise robust speech recognition, there have
been successful applications. In general, to find the most likely combined state sequence of
noise and speech states, for a DBN as shown in figure 4.2, requires a 3-dimensional Viterbi
search [143]. The additional computational cost may be avoided if certain assumptions are
made. This chapter will discuss various noise robustness techniques and such assumptions
within this framework for noise robust speech recognition.

4.2 Inherently Robust Front-ends
A straightforward response to the problem of environmental noise is to build a system that
is immune to it. The move from using log-spectral features to MFCC could be considered as
shifting towards a more robust parameterisation compared to filterbank parameters. However
it is widely known that MFCC and PLP parameters on their own are not immune to noise.
In this framework for noise robust speech recognition, an inherently robust front-end would
remove the dependency of the observations from the noise process and allow decoding with
the noisy observations directly. The acoustic score of O for a word sequence W may be given
by

p(O|W;M) ≈
∑
θ∈Θ

P(θ;M)
T∏

t=1

p(ot|θt) (4.2)

where θ is the best state sequences for W. Many other front-end parameterisations have
been proposed for their robustness against noise including PMVDR [150] and synchrony-
based processing [78] although they give limited gains and can degrade performance in clean
environments. Moreover, they can complicate the speech-noise mismatch function, i.e. equa-
tion (3.12) for MFCC.

RASTA-PLP [67, 72] is a popularly cited robustness technique. Relative spectral (RASTA)
processing is usually applied to PLP coefficients, although not a requirement, to give RASTA-
PLP coefficients. The band-pass filtering in RASTA is motivated by observing that modu-
lations in the spectrum below 1 Hz and above 12 Hz are usually noise and best removed.
The integration over several frames of speech yielding smoothing over 150-170 ms simulates
the human feature of incorporating information over time. The net effect is enhancement of
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dynamic features and the suppression of static or slowly changing ones. The addition of a
variable linear-log function applied in the spectral domain gives rise to J-RASTA. To what
degree the function is logarithmic or linear depends on the J parameter. It effectively con-
trols between removing convolutional cepstral bias or additive spectral noise. J-RASTA can
address modest levels of additive and convolutional noise [82].

4.3 Feature-based Noise Compensation
As shown in figure 4.1, one approach to improve ASR robustness to noise is to remove the
noise from the incoming observations O. This “cleaning” results in features that better match
the original clean speech acoustic model was trained on

Ŝ = F(O,M,Mn) (4.3)

where Ŝ = {ŝ1, . . . , ŝT } denotes the set of estimated clean speech observations generated by
function F computed from the noise-corrupted observations O and the clean and noise models.
For enhancement, it is often the case that the corrupted speech is mapped deterministically
to a clean speech estimate, given some estimate of the noise∫

RD

p(ot|st,nt) p(nt|θn
t ) dnt ≈ p

(
ot|st;M̌

)
≈ δ(ŝt − st) (4.4)

The marginalisation on the left may not be conducted, nor actual forms for the distributions
in the integrand specified. As the delta function indicates, standard feature enhancement
simply computes a mapping from the noisy speech vector to the clean. It may do so using
some compensation parameters denoted by M̌. Since in feature compensation, the noise
process is considered to be the same for all models, the probability of the noise sequence
can be ignored P(θn;Mn). Thus substituting equation (4.4) into equation (4.1), yields the
following expression where the estimate of the clean speech is directly used for decoding

p(O|W;M,Mn) ≈
∑
θ∈Θ

P(θ;M)
T∏

t=1

p(ŝt|θt) (4.5)

There are various methods to compute ŝt. These can be broadly classified into those that
enhance the spectral domain, and those that compensate the cepstral parameters. Figure 4.3
outlines the standard feature compensation process.

Figure 4.3: The standard feature compensation process.
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4.3.1 Speech Enhancement
An early method of addressing additive noise is spectral subtraction (SS) [11]. The noise
magnitude spectrum is estimated from frames that are classified as not having speech. This
estimate of the noise can then be subtracted from the corrupted signal to yield an enhanced
feature vector assuming the noise is additive and varies slowly in time. A general form for SS
is

|x̂fi,t|
α = max

(
|yfi,t|

α − E{|zfi,t|
α}, ε

)
(4.6)

where E{|zfi,t|} is the expected value of the noise spectrum. Power SS results from α = 2
and magnitude SS at α = 1. These remove the additive noise in the power spectral domain
in equation (3.4) or magnitude spectral domain in equation (3.5). This technique is fairly
effective although negative spectra that result must be addressed, here with the floor constant
ε, and a voice activity detector is needed to provide a background noise estimate. Magnitude
SS assumes the speech and noise are in phase, which is generally not true. In contrast, power
SS assumes the noise and speech are uncorrelated, which should give better results.

The enhancement can also be improved by having a more detailed model of the speech
rather than a simple global one. This motivates state-based speech enhancement where
improved results can be attained by aligning a simple front-end HMM to the corrupted speech
and using the state statistics to more informatively enhance the speech using Wiener filters.
The corrupted speech models of the front-end HMM can be recursively estimated from a
combination of the clean and noise models using an EM algorithm as suggested in Ephraim
et al. [30]. Since the corrupted state sequence should map to the clean in a one-to-one fashion,
the clean speech state sequence can be obtained. This allows for better estimates of the clean
and noise speech statistics, by using the state rather than global statistics, for use in the
enhancement process. Enhancement with auto-regressive, hidden Markov models of speech is
studied in Ephraim [28], Logan and Robinson [101], Seymour and Niranjan [128].

As discussed in [29], speech enhancement can be viewed as minimising the average dis-
tortion between an estimator of the clean speech vector št and the hidden, true clean speech
vector st. If the distortion measure is the Euclidean norm || · || then this leads to the following
MMSE estimate of the clean speech

ŝt = argmin
št

E
{
||st − št||2

∣∣O;M̌
}

(4.7)

where and M̌ is the set of front-end parameters used for enhancement. Thus the commonly
used MMSE clean speech estimator may be derived as follows

ŝt = argmin
št

E
{
||st − št||2

∣∣O;M̌
}

= E
{
st|O;M̌

}
=
∫
RD

st p(st|O;M̌)dst (4.8)

for the complete cepstral domain clean speech feature vector st. Note that the enhanced
vector at time t depends on the entire noisy observation sequence O and thus computing it
is not causal. This can be addressed by conditioning the estimate only on the current frame
as discussed in the following section.
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4.3.2 SPLICE
The SPLICE [22] algorithm is a recent technique that has shown good results on a standard
noise robustness testing corpus called Aurora2 [68]. SPLICE stands for stereo piece-wise
linear enhancement. SPLICE may be considered a special case of the earlier probabilistic
optimum filtering (POF) [109] technique; both are MMSE estimators of the form given in
equation (4.8). They make use of stereo data to train compensation parameters. Stereo data
refers to parallel corpora where there is one channel of noisy speech and one channel of clean
speech, but the same speech is being said in both channels. Such a corpus can be made by
artificially adding noise to a clean speech database or for example using a close talk and a far
talk microphone to record speech in a noisy environment. SPLICE and POF are also both
piece-wise transformations since correction vectors are estimated for different regions of the
acoustic space. With POF, the transformation of the current frame may include a rotation
of the space and surrounding frames, whereas in SPLICE a simple linear bias between the
current clean and noisy frame is estimated for each region. In SPLICE, the MMSE estimate
of the clean speech from equation (4.8) makes the approximation that the clean speech at
time t is dependent only on the observation at that time frame ot

ŝt =
∫
RD

st p
(
st|O;M̌

)
dst

≈
∫
RD

st p
(
st|ot;M̌

)
dst (4.9)

The clean speech posterior may be modelled by a GMM such that

ŝt =
∫
RD

st

K∑
k=1

P(k|ot) p(st|ot, k) dst

=
K∑

k=1

P(k|ot)
∫
RD

st p(st|ot, k) dst (4.10)

where k indexes a component in the front-end model set M̌. To derive the component clean
speech posterior p(st|ot, k), the noise-corrupted feature space is modelled by a GMM

p
(
ot;M̌

)
=

K∑
k=1

P(k|ot)N
(
ot;µ(k)

o ,Σ(k)
o

)
(4.11)

where the posterior of component k is given by

P(k|ot) =
č(k) p(ot|k)∑K
i=1 č(i) p(ot|i)

(4.12)

and č(k) or č(i) are the prior component weight. For each region of the noise-corrupted feature
space represented by component k, a bias is estimated to map the noisy speech to clean
speech. Thus the component clean speech posterior has the form

p(st|ot, k) = N
(
st;ot + µ̌(k), Σ̌(k)

)
(4.13)

The noisy to clean speech mapping, or bias, vectors are estimated using stereo data as follows

µ̌(k) = E {st − ot|k} (4.14)

Σ̌(k) = E
{

(st − ot)(st − ot)T|k
}
− µ̌(k)µ̌(k)T (4.15)
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The term Σ̌(k) can be interpreted as the expected square error for component k. Substituting
equation (4.13) into equation (4.10) gives

ŝt =
K∑

k=1

P(k|ot)
∫
RD

stN
(
st;ot + µ̌(k), Σ̌(k)

)
=

K∑
k=1

P(k|ot)
(
ot + µ̌(k)

)
= ot +

K∑
k=1

P(k|ot) µ̌(k) (4.16)

This form may be called soft SPLICE enhancement since the clean speech estimate is updated
by a weighted sum of the bias vectors. Alternatively, instead of a soft weighted estimate, the
component with the highest posterior probability, denoted by k∗, can be used

k∗ = argmax
k

P(k|ot) (4.17)

This hard selection yields a more efficient version of SPLICE

ŝt = ot + µ̌(k∗) (4.18)

SPLICE is not intrinsically tied to stereo data; with a prior clean speech GMM, a corrupted
speech GMM may be estimated using VTS compensation [2, 106] and the biases computed
from the two GMM. Limiting the update of the feature vector to only a bias form is efficient,
however a MLLR-like affine transform would be more accurate as suggested in Deng et al.
[22]. Examples of feature compensation techniques that use affine transformations are the
front-end GMM form of CMLLR [93] and MBFE, which is discussed in the next section.

4.3.3 MBFE
An alternative to using a front-end GMM is to have a front-end HMM which is theoretically
a better model of the temporal aspects of speech. This requires decoding with a simplified
HMM in the front-end to determine the state sequence used for compensation. In the model-
based feature enhancement (MBFE) [137] technique, an ergodic HMM is used and only the
static features are compensated. However, a version which enhances the complete feature
vector may be devised. The MMSE estimate of the clean speech for this form is given by

ŝt =
∫
RD

st p
(
st|O;M̌

)
dst

≈
K∑

k=1

γ
(k)
o,t

∫
RD

st p(st|ot, k)dst

=
K∑

k=1

γ
(k)
o,t

{
µ(k)

s + Σ(k)
os Σ(k) -1

o

(
ot − µ(k)

o

)}
(4.19)

where k now indexes the front-end HMM state in the front-end model set M̌. The probability
of state k at time t given the noisy observation sequence O, i.e. the state posterior γ

(k)
o,t , is
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calculated using the forward-backward algorithm. It was found that using more detailed
phoneme-based models would provide more accurate state statistics, however higher error
rates in determining the front-end state negatively impacted overall performance [138] .

A GMM version may be derived where no decoding in the front-end is required. This
would be similar to the SPLICE form, except the posterior probability of the clean speech for
each region of acoustic space is predicted from the joint distribution. The MMSE estimate
from equation (4.10) becomes

ŝt ≈
K∑

k=1

P(k|ot)
∫
RD

st p(st|ot, k) dst

=
K∑

k=1

P(k|ot)
{

µ(k)
s + Σ(k)

os Σ(k) -1
o

(
ot − µ(k)

o

)}
(4.20)

and as in SPLICE, a single “max” component k∗ may be selected for each time frame

ŝt ≈ µ(k∗)
s + Σ(k∗)

os Σ(k∗) -1
o

(
ot − µ(k∗)

o

)
(4.21)

The joint distribution may be predicted from a model of the clean speech and noise using
a model compensation scheme such as VTS or PMC. This gives an affine transform of the
feature vector of the form suggested in Deng et al. [22] which is more powerful than the simple
SPLICE bias.

4.4 Acoustic Model Compensation
Rather than updating the features, the acoustic model parameters can be compensated to
match the noisy test conditions. This is the other main noise robustness approach illustrated
in figure 4.1. An obvious example of updating the models is to re-train them with data
from the new environment. This may be referred to as matched or multipass training. While
matched training usually yields the best results in a variety of papers surveyed [47, 58, 151], it
is not very practical since large amounts of noisy training data are required and the noise con-
dition may vary. Artificial methods of corrupting the training data have been explored which
also yield good results. Samples of noise, such as those from the NOISEX-92 database [144],
can be added to the clean training data to generate noise-corrupted training data. This pro-
vides good results for levels of noise down to 6-10dB. However, matched training cannot easily
address changing noise conditions. Adding a variety of noise samples to clean training data
is known as multistyle or multicondition training [22, 98], which has shown to improve noise
robustness [68].

Due to the unpredictable nature of noise, it is not possible to account for all noise condi-
tions that may be encountered by including them in the training data. Thus other acoustic
model compensation methods that update the model parameters may be categorised as either:
adaptive, where sufficient corrupted speech data are available to update the acoustic models
to match the noisy speech observations; or predictive, where a noise model is combined with
the clean speech models to provide a corrupted speech acoustic model using some model of
the acoustic environment. MAP [55] and MLLR-style transforms can be considered adaptive
forms, whilst PMC and VTS are predictive techniques. The noisy speech acoustic models can
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be predicted from the clean acoustic models by combining them with a model of the noise
Mn using some function

M̂ = G(M,Mn) (4.22)

where M̂ is the compensated noisy acoustic model. Hence decoding is performed using
unaltered noisy observations

p(O;M̂) =
∑
θ∈Θ

P(θ;M̂)
T∏

t=1

p(ot|θt) (4.23)

where θt indicates a state in M̂ and thus the dependency on M̂ omitted for concision. The
next few subsections will discussed various methods of deriving M̂. The first is SPR, which is
a form of re-training all the model parameters. Adaptive model-based compensation schemes
like MLLR and CMLLR have been previously discussed in chapter 2; hence after the subsec-
tion on SPR, predictive forms are discussed.

4.4.1 Single-pass Re-training
When re-training acoustic models directly on corrupted speech training data, the state pos-
teriors may be poor due to noise—this will reduce the variation between states and blur the
boundaries between distinct regions of speech [39]. Single-pass re-training (SPR) [39] is a
method of re-estimating the acoustic models that avoids this issue. If a stereo database is
available then the state posteriors can be estimated on clean speech and the distribution pa-
rameters on noise-corrupted data. For example the noise compensated model mean may be
estimated as follows

µ(m)
o =

∑T
t=1 γ

(m)
s,t ot∑T

t=1 γ
(m)
s,t

(4.24)

where γ
(m)
s,t is the component posterior obtained from clean observation data. This represents

an ideal form of model compensation since the state posteriors and component weights are
estimated from clean data, but the distribution parameters are the ML estimates for noisy
data.

With SPR though, the corrupted speech distributions may still be badly modelled since
each Gaussian distribution is only shifted and scaled, whereas figure 3.3 clearly shows that
corrupting noise may yield a bi-modal distribution. This is a general problem for all model
compensation techniques that yield a Gaussian distribution as the compensated distribution
for each Gaussian in the uncompensated acoustic model. In reality, a stereo database is
not usually available, and SPR is a limited offline compensation technique not suitable for
varying acoustic environments. It is unfeasible to have the entire training database online and
corrupt it using samples of the current noise to re-train the model parameters. Nevertheless
SPR, when possible, is a useful method for evaluating model compensation schemes since it
provides a reasonable upper limit baseline.
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4.4.2 Parallel Model Combination
Parallel model combination (PMC) combines separate noise and speech models to form a
corrupted speech model directly for use in the recognition process. It assumes the component
posteriors remain unchanged in noise [51]. Therefore only the model component distribu-
tions need updating. In non-iterative forms of PMC, each clean speech model component
is combined with the noise model via a mismatch function to yield an updated component.
Specific additive, convolutional, additive and convolutional, and bandwidth limited channel
mismatch functions can be found in Gales [47]. The log-normal approximation is a popular
and efficient choice that assumes the sum of two log-normal distributions is approximately
log-normal, however it cannot be applied with delta and delta-delta parameters due to the
resulting complexity of the forms [50]. Another approximation is the log-add, which may be
used to update the component means of the static dimensions

µ
l(m)
y,i = log

(
exp(µl(m)

x,i ) + exp(µl
z,i)
)

= µ
l(m)
x,i + log

(
1 + exp(µl

z,i − µ
l(m)
x,i )

)
(4.25)

where the superscript l indicates the parameter belongs to the log-spectral domain rather
than an exponent. This is derived from equation (3.13) by assuming the variances of the
variables are small.

As discussed with SPR, the transform of each Gaussian component in the clean model, to
reflect the noise, does not give a good model of the overall corrupted speech distribution as
seen in figure 3.3. Iterative PMC (IPMC) addresses this issue by representing each component
with multiple components, iteratively re-estimating the GMM modelling the corrupted speech,
still based on state alignments from the clean speech model [39]. This increases the number
of components in the overall system. Alternatively, data-driven iterative PMC [39] directly
estimates the corrupted speech distribution by drawing sample corrupted speech vectors from
combinations of the clean and noise models to re-estimate the GMM on a per state basis. The
efficient log-add approximation can be used to combine the model and the overall number
of components can remain unchanged, however anywhere from 25-1000 observations need
to be generated per Gaussian in the system [47]. DPMC gave results equivalent to matched
systems at levels below 20 dB SNR [52]. However, this iterative estimation is computationally
expensive.

4.4.3 Vector Taylor Series Model Compensation
As the discussion of PMC shows, deriving a corrupted speech output distribution, given
the clean acoustic model and a noise model, is not straightforward. Directly determining
the expected value of equation (3.12) is problematic due to the non-linear effect of noise on
cepstral speech features. For convenience it is repeated here without the time subscripts for
brevity

y = x + h + Clog
(
1 + exp

(
C -1(z − x− h)

))
(4.26)

Hence many approximations to this function have been proposed, such as selecting the max-
imum of either the noise or speech, i.e. noise masking [145] or PMC as discussed in the
previous section. Another approach is to linearise it with a truncated vector Taylor series
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(VTS) [2, 80, 106] to individually update each model component. The first-order VTS ap-
proximation of the static corrupted speech may be expressed as

yvts = y
∣∣
µ

(m)
0

+ J (m)
x

(
x− µ(m)

x

)
+ J (m)

z

(
z − µz

)
+ J

(m)
h

(
h− µh

)
(4.27)

where |µ(m)
0

indicates evaluation at the Taylor series expansion point of the clean speech
component mean µ

(m)
x , and the additive noise mean µz and channel noise µh. The Jacobian

matrices are defined as follows

J (m)
x =

∂y

∂x

∣∣∣
µ

(m)
0

=
[
∇x y1

∣∣
µ

(m)
0

· · ·∇x yi

∣∣
µ

(m)
0

· · ·∇x yDs

∣∣
µ

(m)
0

]T

=


∂y1

∂x1

∣∣
µ

(m)
0

· · · ∂y1

∂xDs

∣∣
µ

(m)
0

...
...

∂yDs
∂x1

∣∣
µ

(m)
0

· · · ∂yDs
∂xDs

∣∣
µ

(m)
0

 = I −CFC -1 (4.28)

J
(m)
h =

∂y

∂h
= J (m)

x (4.29)

J (m)
z =

∂y

∂z
= CFC -1 (4.30)

where Ds is the number of static features and the elements of the diagonal matrix F are

fii =
exp(c -1

ī
(z − x− h))

1 + exp(c -1
ī

(z − x− h))

∣∣∣
µ

(m)
0

=
exp(c -1

ī
(µz − µx − µh))

1 + exp(c -1
ī

(µz − µx − µh))
(4.31)

The term cī is a row vector that is the ith row of the DCT matrix C. The terms fii vary from
0 to 1 depending on the ratio of the speech to the noise. If the noise level µn is greater than
the speech µ

(m)
x in the log-spectral domain, then fii → 1 and J

(m)
x tends to zero; otherwise

if little noise is present, fii → 0 and J
(m)
x tends to identity. The term J

(m)
z behaves in the

opposite manner to J
(m)
x .

Taking the expected value of equation (4.27), given a specific component m, is straight-
forward since it is a linear function of three vectors: the additive noise, the clean speech, and
the channel noise. This may be expressed as

µ(m)
y = E{y|m} ≈ E{yvts|m}

= y
∣∣
µ

(m)
0

= µ(m)
x + µh + Clog(1 + exp(C -1(µz − µ(m)

x − µh))) (4.32)

Without considering the channel noise, this is equivalent to the log-add approximation result
given in equation (4.25) transformed to the cepstral domain. Unlike using the log-add ap-
proximation, VTS model compensation provides a covariance matrix update. The covariance
of the linear corrupted speech function is simply the sum of the transformed covariances of
the clean speech, additive noise and channel

Σ(m)
y,full = E

{
yyT

∣∣m}−µ(m)
y µ(m)T

y ≈ E
{
yvtsy

T
vts

∣∣m}−µ(m)
y µ(m)T

y

≈ J (m)
x Σ(m)

x J (m)T
x + J (m)

z ΣzJ
(m)T
z + J

(m)
h ΣhJ

(m)T
h (4.33)
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assuming the clean speech, additive noise and channel noise are independent of each other.
Equation (A.24) in section A.3 gives the mean and covariance of a linear function of Gaussian
variables. The term Σz denotes the variance of the static additive noise and Σh the variance
of the static channel variance. Since the Jacobian matrices J

(m)
x , J

(m)
z and J

(m)
h are full,

the corrupted speech covariance matrix will also be full and hence diagonalised for standard
decoders. Also, it is often assumed that the channel noise does not vary, that is Σh = 0.
Thus the static corrupted speech variance may be given by

Σ(m)
y ≈ diag

{
J (m)

x Σ(m)
x J (m)T

x + J (m)
z ΣzJ

(m)T
z

}
(4.34)

Similar to PMC, using these update formula assumes that a clean speech Gaussian component
corrupted by noise may be approximated by another Gaussian distribution; this is clearly not
optimal since it was shown in figure 3.3 that the corrupted speech distribution can be bimodal.
Nevertheless, for efficiency this approximation is often maintained.

From equations (4.28) and (4.30) it can be seen that

J (m)
x + J (m)

z = I (4.35)

Hence it can be observed that the compensated variance in equation (4.34) scales between the
clean speech variance in low noise to the additive noise variance in high noise. The shifting
correlations between dimensions are captured in figure 3.5. Thus the diagonal approximation
of the corrupted speech variance in equation (4.34) may be less appropriate if the noise has
correlations between dimensions that differ from the speech and when the SNR becomes low
enough that this difference emerges.

Standard acoustic models use simple differences or linear regression to compute delta
parameters to model the dynamic features of speech as discussed in section 2.2.1. This com-
plicates the compensation of these features for noisy conditions, for example making it difficult
to apply the log-normal approximation to compensate the dynamic covariance matrices. In
this thesis, a Continuous-Time approximation [39] is used to derive the compensated dynamic
parameters. Full derivations for the dynamic features are given in appendix B.1, with the
final compensation formulae summarised here. Assuming that the additive noise is stationary,
E{∆z} = 0, and the convolutional noise is constant, i.e. ∆h = 0, the delta noisy speech mean
may be approximated by

µ
(m)
∆y ≈ E

{
∂yvts

∂t

∣∣∣∣m} = E
{

∂yvts

∂x

∂x

∂t
+

∂yvts

∂z

∂z

∂t
+

∂yvts

∂h

∂h

∂t

∣∣∣∣m}
≈ J (m)

x µ
(m)
∆x (4.36)

Similarly for the dynamic noisy speech variance

Σ(m)
∆y ≈ E

{
∂yvts

∂t

∂yvts

∂t

T∣∣∣∣m}− µ
(m)
∆y µ

(m)T
∆y

≈ diag
{

J (m)
x Σ(m)

∆x J (m)T
x + J (m)

z Σ∆zJ
(m)T
z

}
(4.37)

Following the same reasoning, the delta-delta parameters are then

µ
(m)
∆2y

≈ J (m)
x µ

(m)
∆2x

(4.38)

Σ(m)
∆2y

≈ diag
{

J (m)
x Σ(m)

∆2x
J (m)T

x + J (m)
z Σ∆2zJ

(m)T
z

}
(4.39)
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Derivations for these delta-delta parameters are presented in section B.2. To summarise, the
noisy speech mean and variance are approximated by

µ(m)
o =

µ
(m)
y

µ
(m)
∆y

µ
(m)
∆2y

≈
µ

(m)
x + µh + Clog(1 + exp(C -1(µz − µ

(m)
x − µh)))

J
(m)
x µ

(m)
∆x

J
(m)
x µ

(m)
∆2x

 (4.40)
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(4.41)

where the block-diagonal matrix Σ(m)
o is diagonalised. Taking first- and second-order deriva-

tives of the linearised version of the noisy speech vector to compute the expected values of
the dynamic features is not optimal. It would be more effective to first take the derivatives
of the noisy speech vector, given in equation (3.12), and then linearise them to obtain the
expected values.

4.4.4 Algonquin
Algonquin was derived as a MMSE feature enhancement scheme [35] which addresses the
phase component in equation (3.4). For this thesis, the model adaptation version of Algo-
nquin is of interest since uncertainty of observations due to noise is discussed. This form
of model adaptation directly computes state conditional likelihoods using variational estima-
tion [84]. The posterior distribution of the clean speech, noise, channel and state variables is
approximated by a simpler parameterised distribution

p(xt,zt, θ, θz|yt) ≈ q(xt,zt, θ, θz) (4.42)

where θ and θz indicate the hidden clean speech and noise states. The variational parameters
of qy are optimised per frame for every model component in an iterative fashion. This approxi-
mation to the posterior distribution is used for estimating the clean speech in the enhancement
version of Algonquin, and for computing the soft information score in the model adaptation
form. The output calculations in the recogniser are then approximated: p(yt|θ) ≈ q(θ)/ p(θ).
While the log-spectral domain results are promising, Algonquin requires the approximation
of every state in the acoustic model using variational inference to obtain a Gaussian approx-
imation of each state posterior. This makes it rather computationally expensive.

4.5 Uncertainty-based Schemes
The term “uncertainty” has been loosely applied in a variety of contexts to describe various
robustness techniques for ASR. In this work, the concept of uncertainty decoding is distinct
from uncertain observation decoding [4, 5] and uncertain model parameters [73]. The so called
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“soft-information” paradigm presented in the Algonquin framework [84, 85] is viewed in this
work as a model-based compensation approach for the reasons outlined in section 4.4.4. For
missing feature theory [19, 119], data imputation with soft data is an observation uncertainty
approach. In contrast, data marginalisation can be construed as a limited form of front-
end uncertainty decoding, restricted to the spectral domain, and where features are either
completely certain or uncertain. These different uncertainty-based techniques are elaborated
in the following subsections.

4.5.1 Observation Uncertainty
Feature compensation schemes, such as speech enhancement, provide an estimate of the clean
speech to the decoder. This assumes the enhancement is exact and the estimate is the true
value. However, it may be reasonable to consider that the de-noising process is not exact
and there is some residual uncertainty that may be passed to the decoder. Hence in the
observation uncertainty approach1, instead of using a point estimate of the features as shown
in figure 4.3, the clean speech posterior is passed to the decoder as shown in figure 4.4.

Figure 4.4: Feature compensation with uncertain observations.

Hence, if the clean speech estimate is now considered a multivariate Gaussian distribution
st ∼ N (ŝt,Σŝ), then the decoding likelihood requires integration over the true clean speech

p
(
ot|m;M̌

)
≈
∫
RD

p(st|ot;M̌) p(st|m)dst

≈
∫
RD

N
(
st; ŝt,Σŝ

)
N
(
st;µ(m)

s ,Σ(m)
s

)
dst

= N
(
ŝt;µ(m)

s ,Σ(m)
s + Σŝ

)
(4.43)

where ŝt is the clean speech estimate, and Σŝ is the expected error of the enhancement
process. In SPLICE this is

Σŝ = Σ̌(k∗) (4.44)

and defined in equation (4.15). In MBFE, this is

Σ(k)
ŝ = Σ(k)

s −Σ(k)
so Σ(k) -1

o Σ(k)
os (4.45)

Other enhancement schemes have been extended to provide this uncertainty, for example
computed from the formants [70], a polynomial function of the SNR [4], a parametric model of
the clean speech [23, 24], Weiner filtering [10] or a particle filter [147]. Although this approach
is widely used, adding the variance of enhancement process has not been well motivated in the

1Observation uncertainty has also been called uncertain observation decoding [4], soft data [108] and more
confusingly uncertainty decoding [23, 60, 133].
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literature. Perhaps this is why the variances need to be scaled before being added in MBFE
with uncertainty [137], the variances are considered too large [23], the adding the variance of
the delta-delta features did not improve results [23, 24] or there is degradation compared to
the non-uncertainty form in high SNR [10].

4.5.2 Uncertainty Decoding
Uncertainty decoding first appeared in the context of SPLICE [26] and Algonquin [84], al-
though as previously discussed, the latter may be viewed as an entirely model-based approach.
The integration over the hidden noise variable in equation (4.1) may be performed indepen-
dently of the clean speech prior∫

RD

p
(
ot|st,nt

)
p
(
nt|θn

t

)
dnt ≈ p

(
ot|st;M̌

)
(4.46)

The form and parameters of the distribution on the left hand side are not defined since this
integration is completely approximated by the corrupted speech conditional distribution on
the right-hand side. This latter distribution has parameters M̌. To avoid 3-D decoding, it
may be assumed that the noise is stationary, obviating terms related to the noise state, and
implying M̌ only captures a single noise condition. This simplifies equation (4.1) as follows

p(O;M,Mn) ≈
∑

θ,θn∈Θ

P(θ;M) P(θn;Mn)
T∏

t=1

∫∫
2RD

p(ot|st,nt) p(st|θt) p(nt|θn
t )dstdnt

≈
∑
θ∈Θ

P(θ;M)
T∏

t=1

∫
RD

p
(
ot|st;M̌

)
p(st|θt) dst (4.47)

The solution to the integral in equation (4.47) is of course highly dependent on the form
of the two parts of the integrand. Ideally, the form of the corrupted speech conditional
distribution p

(
ot|st;M̌

)
should be independent of the acoustic model complexity and make

the marginalisation with the clean speech models tractable. If the conditional distribution
takes a Gaussian-distributed form, then the integral is also a Gaussian distribution with a
variance that is the sum of the variances of the two parts of the integrand. Hence uncertainty
decoding may be viewed as passing the corrupted conditional density function to the decoder
as shown in figure 4.5. Examining this distribution in more detail may yield insight into
what approximations are appropriate to best model it, with parameters that are efficient to
computer, yet minimise the cost of updating the acoustic model.

Figure 4.5: Uncertainty decoding.

There are several approaches to modeling the corrupted speech conditional distribution.
Using a joint distribution of the clean and corrupted speech to derive it leads to joint un-
certainty decoding [93], which is discussed in detail in the next chapter. Approximating it
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through an application of Bayes’ rule and using the SPLICE form of the clean speech posterior
gives the SPLICE with uncertainty form.

4.5.2.1 SPLICE with Uncertainty

SPLICE with uncertainty (SPLICEU) [26] computes the corrupted speech conditional in the
front-end, once per frame of speech for efficiency, representing it with a single Gaussian for
ease of marginalisation. The conditional corrupted speech distribution can be transformed to
the clean speech posterior, through the application of Bayes’ rule. This yields the following
form of the conditional corrupted speech posterior

p
(
ot|st;M̌

)
=
∑K

k=1 č(k) p(st|ot, k) p(ot|k)
p
(
st;M̌

) (4.48)

where the clean speech posterior and corrupted speech model are Gaussian mixture models
of K components, and weighted by č(k).

Modelling the denominator in equation (4.48) with a GMM makes the marginalisation
in equation (4.47) intractable, thus a simple, single Gaussian approximation is used instead.
This is a rather crude assumption as a single Gaussian does not represent the clean speech
distribution well. Nevertheless

p
(
st;M̌

)
≈ N

(
st; µ̄s, Σ̄s

)
(4.49)

where the parameters are estimated from the corrupted speech GMM, compensated using the
SPLICE parameters. The individual components are combined as follows

µ̄s =
K∑

k=1

č(k)
(
µ(k)

o + µ̌(k)
)

(4.50)

Σ̄s =
K∑

k=1

č(k)
(
µ(k)

o µ(k)T
o + µ̌(k)µ̌(k)T + Σ(k)

o + Σ̌(k)
)
− µ̄sµ̄

T
s (4.51)

The parameters µ̌
(k)
i , which is the standard SPLICE enhancement bias, and σ̌

(k)2
i are defined

in equations (4.14) and (4.15).
Given the SPLICE form of the clean speech posterior, a front-end GMM modelling the

corrupted speech and the simplified denominator, and diagonal covariance matrices as in [26],
the conditional takes the form

p
(
ot|st;M̌

)
=
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č(k) p(ot|k) |A(k)|N
(
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(k)
b

)
(4.52)
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The following are the elements of the diagonal matrix A(k) and vector b(k) and the associated
uncertainty variance Σ(k)

b

a
(k)
ii =

σ̄2
s,i

σ̄2
s,i − σ̌

(k)2
i

(4.53)
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)
(4.54)

σ
(k)2
b,i = a

(k)
ii σ̌

(k)2
i (4.55)

Since the corrupted speech conditional PDF and the clean speech PDF are both mixtures
of Gaussians, the integral from equation (4.47) can be simplified as follows
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(4.56)

See appendix A.2 for derivation.
To avoid a negative variance when the variance bias is added to the model variance in

equation (4.56), the denominator of the a
(k)
ii term in equation (4.55) should be forced to

remain positive. In [26] this is achieved by constraining the difference of the two denominator
terms to be greater than some factor

σ̄2
s,i − σ̌

(k)2
i ≥ ασ̄2

s,i (4.57)

where α is a fraction of the global speech variance σ̄2
s,i. This floor effectively places a maximum

value on a
(k)
ii where

a
(k)
ii = min

(
1
α

,
σ̄2

s,i

σ̄2
s,i − σ̌

(k)2
i

)
(4.58)

In the limit, when α is very large, the uncertainty aspect is ignored, returning processing to
the standard SPLICE enhancement scheme.

It is clear in equation (4.56) that the overall number of Gaussian evaluations is a product
of the number of components in the front-end GMM and the number of components in the
acoustic model state. This can be avoided by using the same hard approximation from the
standard SPLICE form, where only the most probable component k∗ is used as decided by
equation (4.17). The effective number of components per state in the acoustic model remains
unchanged with this approximation, resulting in a more computationally efficient form

p
(
ot|θt;M̌

)
∝
∑
m∈θt

c(m)|A(k∗)|N
(
A(k∗)ot+b(k∗);µ(m)

s ,Σ(m)
s + Σ(k∗)

b

)
(4.59)

The terms č(k), p
(
ot|k;M̌

)
and |A(k)| may be omitted since they are constant for a given

frame.
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4.5.3 Missing Feature Theory
Missing feature theory (MFT), treats heavily noise-corrupted elements of a spectral domain
feature vector as unreliable/missing and those less distorted as reliable/present [19, 119].
This is motivated from studies indicating humans can recognise speech from a “very small
proportion of clean frequency channels at any one point in time” [108]. Detecting missing
areas of speech is a key aspect of MFT. It is done using a variety of possible measures
including SNR-based ones [19, 108], “harmonicity”, a combination [8] or a Bayesian classifier
using a variety of features [120]. It is conducted at a spectral level because decorrelating
transforms such as the DCT spread single unreliable spectral channels to all dimensions in
the cepstral space. Once parameters have been labelled as missing or present, the missing
ones can be restored [120] or marginalised over [8, 19]. Thus missing feature techniques fall
under two approaches: imputation and marginalisation. Both identify regions of the noisy
spectral feature vector yl

t that are missing where the superscript l indicates a log-spectral
domain variable1. For example

yl
t =

[
yl

p,t

yl
m,t

]
(4.60)

where yl
p,t are the components that are considered present, and yl

m,t the missing values. The
total number of elements on both the left and right side of the equation are the same.

The two approaches differ in how to handle missing areas. Imputation replaces missing
values with estimated values. The reconstructed feature vector is then used as if it was a
clean speech vector, and is thus similar to enhancement schemes. Marginalisation classifies
solely on yl

p,t by marginalising out the missing components

p
(
Y l;M,Mn

)
≈
∑
θ∈Θ

P
(
θ;M

) T∏
t=1

p
(
yl

p,t|θt

) ∫
RDm

p
(
yl

m,t|θt

)
dyl

m,t (4.61)

where the integral becomes unity and Dm is the number of missing feature elements. This
is a rather poor approximation since the feature elements are highly correlated, especially in
the spectral domain. Nevertheless, decoding proceeds only with the present features

p
(
Y l;M,Mn

)
≈
∑
θ∈Θ

P
(
θ;M

) T∏
t=1

p
(
yl

p,t|θt

)
(4.62)

While this form of decoding with missing features is efficient, a form of bounded marginali-
sation gives much improved results by giving a bound on the integration. It was concluded
that marginalisation gave superior accuracy to imputation in the spectral domain [19, 120].
However, marginalisation requires changes to the recogniser and is limited to using only spec-
tral features whereas imputation can be used as a general front-end enhancement system by
transforming the restored features into the cepstral domain [120].

In the uncertainty decoding framework, MFT can be viewed as an approximation to the
corrupted speech conditional in the spectral domain for only the static features

p(yl
t,i|xl

t,i;M̌) =
{

δ(yl
t,i − xl

t,i), if yl
t,i is present

1, if yl
t,i is missing

(4.63)

1The cube root has also been used for energy compression in MFT [8].
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which when performing the integration in a spectral domain version of equation (4.47)

p
(
Y l;M,Mn

)
≈
∑
θ∈Θ

P(θ|M)
T∏

t=1

∫
RDs

p
(
yl

t|xl
t;M̌

)
p
(
xl

t|θt

)
dxl

t (4.64)

gives the same form as equation (4.62). Strictly in uncertainty decoding, for missing features
p(yl

t,i|xl
t,i;M̌) = p(yl

t,i|µl
z,i, σ

l2
z,i) since in areas where noise subsumes speech, the corrupted

speech conditional distribution becomes the noise distribution [94]. Either value does not
affect decoding since the same value is used for all output likelihood calculations at each frame.
The difficulty for marginalisation in MFT is that it is carried out in the spectral domain, while
most state-of-the-art systems operate in the cepstral domain. It also unnecessarily applies a
“hard” decision on the reliability of the features, whereas uncertainty decoding is domain-
agnostic avoiding this hard decision.

MFT imputation has been modified to use a “soft” mask [8, 108]. Instead of applying
a hard decision to each channel, the decision is a weighted sum of the present and missing
outcomes. It has also been extended by considered the features as “soft” data [108]. This
applies to unreliable, missing features and is similar to observation uncertainty methods
described here. An evidence pdf, s(yl

t;M̌), plays the same role as the posterior distribution
in observation uncertainty

p
(
yl

t|m;M̌
)
≈
∫
RDs

s
(
yl

t;M̌
)
p
(
yl

t|m
)
dyl

t (4.65)

However, delta, uniform and bounded Gaussian distributions are evaluated as forms for the
evidence pdf rather than a standard Gaussian. The delta form is equivalent to data imputa-
tion; the uniform distribution was found to be better than the bounded Gaussian.

Overall, this survey paper [119] has found that recognition with data imputation results
transformed to the cepstral domain are superior to spectral domain marginalisation. It also
concludes that marginalisation approaches in the cepstral domain are generally ineffective as
shown in Van hamme [142].

4.6 Noise Model Estimation
For many noise compensation techniques a model of the noise is necessary. Frequently, an
additive noise model is estimated from background, non-speech areas, such as the first and
last 10-30 frames of each utterance—this has worked well for Algonquin enhancement [35],
VTS feature compensation [127], MBFE [136], and Weiner filtering [10]. However, a robust
voice activity detector is required and generally detecting speech becomes more difficult as
the noise level increases. Furthermore, while this approach may provide a good model for
short utterances, however some sentences may be sufficiently long that the noise environment
changes while speech continues to be spoken. Even on the Aurora2 [68], which is a short
artificially corrupted digit string recognition task, some gains are obtained by updating the
model during the speech; for example, in Stouten et al. [138] the noise model is updated every
100 frames.

It is not straightforward to estimate a convolutional noise model using just the background
segments of an utterance. In conjunction with a background estimated additive noise model,
the channel noise may be estimated over the entire utterance using EM [135]. In contrast,
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Moreno [106] provides an EM-based framework to estimate both the means of the additive and
convolutional noise in a ML fashion in the log-spectral domain for only the static features.
This allows for unsupervised noise estimation of the full noise model whilst the speaker is
still speaking. The form of maximisation of the static additive and convolutional noise means
described here is based on the ML formulation introduced in Moreno [106], but in the cepstral
domain. The first-order Taylor series approximation in equation (4.27) may be used to express
the static corrupted speech mean as a function of initial and new additive and convolutional
noise means

µ̂(m)
y ≈ E

{
y
∣∣
µ

(m)
0

+J (m)
x

(
x−µ(m)

x

)
+ J (m)

z (z−µz) + J
(m)
h (h−µh)

}
= µ(m)

y + J (m)
z (µ̂z − µz) + J

(m)
h (µ̂h − µh) (4.66)

assuming that the speech and noise are independent. The terms with the Jacobian matrices
will vanish when the estimated value and the current values of the noise means converge. The
noise means are estimated in an ML fashion such that when they are combined with the clean
speech acoustic model, they maximise the likelihood of some corrupted speech data Y from
the mismatched test condition. The auxiliary function is as follows

Q(µz,µh; µ̂z, µ̂h) = EM̂
[
log p(Y ,M ;M,M̂n)

]
=

T∑
t=1

M∑
m=1

γ
(m)
y,t log p(yt|m; µ̂z,Σz, µ̂h)

=
T∑

t=1

M∑
m=1

γ
(m)
y,t

{
−1

2
log|Σ(m)

y | − 1
2
(
yt − µ̂(m)

y

)TΣ(m) -1
y

(
yt − µ̂(m)

y

)}
(4.67)

where Mn =
{
µz,Σz,µh

}
and only the terms dependent on the noise model are shown. The

clean acoustic model parameters and the static additive noise variance Σz are unchanged
throughout this noise mean estimation process. The component posterior γ

(m)
y,t = P(mt =

m|Y ,Wh;M,M̂n) is computed from the complete data set {Y ,M} which requires a hy-
pothesis Wh from an initial decoding run. The noisy speech acoustic model M̂ used to
compute γ

(m)
y,t is predicted by combining M and Mn using VTS compensation, but only for

the static cepstral dimensions and with the zero-order form of the corrupted speech mean
given in equation (4.32). The maximisation step differs by using the form given in equa-
tion (4.66). To find updated estimates of the additive and convolutional noise, the auxiliary
function is differentiated with respect to the parameters sought and equated to zero to solve.
A key simplifying factor is that the Jacobian matrices are considered constant although they
are functions of the noise. Thus, the partial derivative of the auxiliary w.r.t. the additive
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noise mean is

∂

∂µ̂z
Q(µz,µh; µ̂z, µ̂h) =
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∂
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{
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(
yt − µ̂(m)
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=
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M∑
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(m)
y,t J (m)T
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y +J (m)

z µz+J
(m)
h µh−J (m)

z µ̂z−J
(m)
h µ̂h

)
= d−Eµ̂z − F µ̂h (4.68)

where

d =
M∑

m=1

J (m)T
z Σ(m) -1

y

T∑
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(m)
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(
yt − µ(m)
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(4.69)

E =
M∑

m=1

γ(m)
y J (m)T

z Σ(m) -1
y J (m)

z F =
M∑
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γ(m)
y J (m)T

z Σ(m) -1
y J

(m)
h (4.70)

and γ
(m)
y =

∑T
t=1 γ

(m)
y,t . Similarly, for the convolutional noise the partial derivative is

∂
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= u− V µ̂z −Wµ̂h (4.71)

where

u =
M∑

m=1

J
(m)T
h Σ(m) -1
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(m)
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(4.72)

V =
M∑

m=1

γ(m)
y J

(m)T
h Σ(m) -1

y J (m)
z W =

M∑
m=1

γ(m)
y J

(m)T
h Σ(m) -1

y J
(m)
h (4.73)

These derivatives given in equations (4.68) and (4.71) can be equated with zero to find the
optimal points of the auxiliary function

d−Eµ̂z − F µ̂h = 0 (4.74)

u− V µ̂z −Wµ̂h = 0 (4.75)
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which can be written in matrix form as[
E F
V W

][
µ̂z

µ̂h

]
=
[
d
u

]
(4.76)

Note that V = F T. Solving the linear system in equation (4.76) gives the following formulae
for the parameters to be estimated

µ̂h = (W − V E -1F ) -1(u− V E -1d) (4.77)

µ̂z = (V −WF -1E) -1(u−WF -1d)

= (E − FW -1V ) -1(d− FW -1u) (4.78)

This provides ML estimates of the channel and additive noise means, for compensating static
parameters since the auxiliary function in equation (4.67) only includes the static elements
of the observations. Chapter 6 discusses methods of estimating an ML noise estimate for
systems that also include dynamic coefficients. An estimate of the additive noise variance is
discussed as well.

4.7 Summary
There has been much research on improving ASR performance in noisy environments. Front-
end feature-based techniques tend to be computationally efficient, and responsive to changing
conditions, but tend to fail in noisier conditions. Model compensation is more powerful, but
requires a considerable number of acoustic model component updates and hence comes with
a heavy computational cost. While adaptive forms such as MAP or CMLLR may be used to
compensate for noise, the predictive forms discussed in this chapter, such as PMC and VTS
compensation, have the advantage that only a noise model for an environment is necessary
to compensate the system. Adaptive forms need sufficient noise-corrupted speech data to
robustly estimate transforms for example. In contrast, predictive forms only require enough
test data, which does not need to contain speech, to estimate the noise model. Hence, although
noise may be inherently unpredictable, it may be characterised into additive and convolutional
components, and estimated, leading to noise compensation forms that can help ASR handle
unseen, adverse environments.

Recently, there has been interest in uncertainty-based noise compensation techniques.
Uncertainty forms may be considered a hybrid between feature compensation and model-based
approaches since the features are updated, but the model update is simply a bias added to the
model variances. There are important differences between observation uncertainty, which adds
the enhancement variance to the model variances, and uncertainty decoding, which is a form
that results when using the framework for noise robust speech recognition presented in this
chapter. The limitations and issues of observation uncertainty were discussed. Uncertainty
decoding, and in particular joint uncertainty decoding, is discussed in detail in the next
chapter.



CHAPTER 5
Joint Uncertainty

Decoding

Joint uncertainty decoding can be viewed as a set of model-based compensation approaches
that are characterised by a feature transformation and an “uncertainty” bias on the model

variances. This form of compensation is much more efficient than pure model-based forms like
VTS model compensation, but can be just as powerful—both these attributes are due to this
simple uncertainty bias. The transformation is derived from the joint distribution between
the clean and noisy speech, or more generally the training and test speech. While the joint
distribution may be estimated from so-called stereo data, it can also be predicted by using
noise mismatch functions and models of the clean speech and noise. This chapter presents
joint uncertainty decoding (JUD), which falls under this latter approach and has front-end
and model-based flavours. A comparison of these two forms of JUD gives important insights
into the limitations of all front-end uncertainty decoding approaches.

5.1 The Corrupted Speech Conditional Distribution
It can be seen, from the likelihood of the complete corrupted speech observation sequence
given in equation (4.47), that the likelihood of a corrupted speech observation ot may be
expressed as the following integral

p(ot|θt;M̌) =
∫
RD

p
(
ot|st;M̌

)
p
(
st|θt

)
dst (5.1)

60
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Figure 5.1: Joint distribution of clean xl
t and corrupted speech yl

t with an additive noise
source N (3, 1) in log spectral domain.

where the first distribution in the integrand is the corrupted speech conditional distribution
and the second is the prior distribution of the clean speech st. Recall that θt is the hidden
clean speech state of acoustic model set M, M̌ the front-end compensation parameter set and
D is the number of dimensions of the feature vector. Only the corrupted speech conditional
distribution is dependent on the noise; the prior is the state output distribution of the clean
speech acoustic model. Hence, an important issue in uncertainty decoding is finding an
efficient yet accurate representation of the corrupted speech conditional distribution that is
also amenable to marginalisation with a Gaussian distribution. The main difficulty is that
p(ot|st;M̌) is complex. This is demonstrated by a numerical simulation of the joint clean
and corrupted speech distribution in figure 5.1, again using equation (3.13) from section 3.2

yl
t = log(exp(xl

t) + exp(zl
t))

where recall yl
t is the corrupted speech and the subscript l indicates a log-spectral domain

variable1. The additive noise zl
t again is generated from a single Gaussian distribution. The

clean speech xl
t is uniform over the interval [0, 8] to demonstrate how the joint distribution

changes as the clean speech does with a fixed noise source. The joint distribution is highly
non-linear and difficult to characterise parametrically.

The corrupted speech conditional distribution varies greatly over the range of values
shown. When the speech value is much larger than the noise mean, i.e. when xl

t = 6 in
1The apparent change of variables occurs because in this simulation, a single static dimension is being

examined. The complete vectors ot, st and nt are the aggregation of static, delta and delta-delta coefficients,
i.e. ot = [yT

t ∆yT
t ∆2yT

t ]T, st = [xT
t ∆xT

t ∆2zT
t ]T and nt = [zT

t ∆zT
t ∆2zT

t ]T
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figure 5.1, the conditional distribution is relatively deterministic—the speech is unaffected by
the noise. However, when the SNR drops the variance of the conditional distribution increases
until the noise subsumes the speech. For example when xl

t = 1 in figure 5.1, the conditional
distribution becomes the additive noise distribution. Increasing the noise mean would shift
the distribution up and to the right such that when the SNR is low, the corrupted speech
conditional distribution continues to converge to the noise distribution. Thus the effective
form of the corrupted speech conditional distribution strongly depends on the difference be-
tween the clean speech and the noise and the noise variance. Approximating the conditional
distribution with a constant density function independent of the clean speech would be poor.

5.2 Gaussian Approximations
As most HMM-based recognisers use a GMM form of the clean speech state distribution, if
the corrupted speech conditional distribution is also Gaussian, then deriving an analytical
form is trivial since the Gaussian family of distributions are self-conjugate—the convolution
of two Gaussians also yields a Gaussian. This section discusses approaches to modelling
the corrupted speech conditional distribution such that each acoustic model component is
convolved with a single Gaussian distribution. The first form, front-end Joint, selects an
appropriate Gaussian conditional distribution at each time frame using a front-end GMM.
The second, chooses the representative Gaussian for the conditional distribution based on
which regression class the acoustic model component belongs to.

5.2.1 Front-end JUD
Similar to how the clean speech posterior was approximated by a front-end GMM in SPLICE
and SPLICEU, the corrupted speech conditional distribution in equation (5.1) may also be
represented by a GMM

p
(
ot|st;M̌

)
≈

K∑
k=1

P
(
k|st;M̌

)
N (ot; fµ(st, k), fΣ(st, k)) (5.2)

where the mean and variance of the kth component output distribution is dependent on
the clean speech st as denoted by fµ(st, k) and fΣ(st, k). With this approximation to the
corrupted speech conditional distribution, two issues to address are:

• the component posterior P(k|st;M̌) is conditioned on the clean speech;

• the number of components may influence the total number of effective components
evaluated.

The component posterior is conditional on the hidden “clean speech” variable which depends
on the state of the clean speech model. However for efficiency, the front-end compensation
should be as independent of the acoustic models as much as possible. Furthermore, directly
using a GMM requires the marginalisation of each Gaussian in the front-end with each in the
acoustic model. Effectively, this multiplies the number of components in the system by the
number in the GMM which greatly increases the computational cost. These issues can be
overcome by the following approximations.



CHAPTER 5. JOINT UNCERTAINTY DECODING 63

The first issue may be resolved by making the component posterior conditional on the
observed corrupted speech rather than the hidden clean speech

P(k|st) ≈ P(k|ot) (5.3)

This has a crude effect of passing the same component, and thus conditional distribution, to
the decoder, regardless of the state in the clean speech acoustic model. As seen from 5.1, the
conditional distribution should have a smaller variance in high SNR, and larger variance when
the SNR is low. However by using this approximation, the computation of the conditional
distribution is completely independent of the clean speech acoustic model state.

The component output distribution parameters need to be derived. By assuming the joint
distribution of the clean and corrupted for a front-end component k is Gaussian[

st

ot

]
∼ N

([
µ

(k)
s

µ
(k)
o

]
,

[
Σ(k)

s Σ(k)
so

Σ(k)
os Σ(k)

o

])
(5.4)

a Gaussian conditional distribution can be derived from the joint, as shown in appendix A.1

N
(
ot; fµ(st, k), fΣ(st, k)

)
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os Σ(k) -1

s
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s Σ(k)
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)
(5.5)

It is a property of multivariate Gaussian distributions, that if the joint distribution is Gaussian
distributed, then the conditional distribution is as well. In equation (5.5), the clean speech
variable st is transformed. However, by applying the transformation on the features rather
than on st, the resulting compensation of the acoustic model component will be simplified
later. Thus, first the feature space will be transformed by Σ(k)

s Σ(k) -1
os . This updates the

variance in equation (5.5), now defined as Σ(k)
b , as follows
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s (5.6)

Equation (5.5) may then be re-expressed in the following manner
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(5.7)

where

A(k) = Σ(k)
s Σ(k) -1

os (5.8)

b(k) = µ(k)
s −A(k)µ(k)

o (5.9)

Σ(k)
b = A(k)Σ(k)

o A(k)T −Σ(k)
s (5.10)
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With the approximations for the component posterior and this Gaussian form of the
component corrupted speech conditional distribution, equation (5.1) may be expressed as
follows

p
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∫
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(5.11)

where the notation m∈θt indicates all components in state θt of acoustic model M. The
integral with two Gaussian distributions may be treated as a convolution, which yields a
single Gaussian

p
(
ot|θt;M̌

)
≈

K∑
k=1

∑
m∈θt

c(m) P
(
k|ot

)
|A(k)|N

(
A(k)ot + b(k);µ(m)

s ,Σ(m)
s + Σ(k)

b

)
(5.12)

as shown in appendix A.2.
The second issue is now clear: directly decoding with equation (5.12) may be compu-

tationally expensive since the overall number of Gaussian evaluations is K × M . It would
be more efficient to pass a single Gaussian as in SPLICE. This entails selecting the most
appropriate front-end component k∗

k∗ = argmax
k

P(k|ot) (5.13)

where the component posterior was defined previously in equation (4.12). With this approx-
imation, equation (5.12) becomes

p
(
ot|θt;M̌

)
∝
∑
m∈θt

c(m)|A(k∗)|N
(
A(k∗)ot + b(k∗);µ(m)

s ,Σ(m)
s + Σ(k∗)

b

)
(5.14)

which is the same form of SPLICEU likelihood calculation given in equation (4.59), but with
the JUD transform parameters given by

A(k∗) = Σ(k∗)
s Σ(k∗) -1

os (5.15)

b(k∗) = µ(k∗)
s −A(k∗)µ(k∗)

o (5.16)

Σ(k∗)
b = A(k∗)Σ(k∗)

o A(k∗)T −Σ(k∗)
s (5.17)

This form of uncertainty decoding is called FE-Joint. Although the forms are similar, FE-
Joint and SPLICEU are derived in a different way with different approximations. Compared
to the SPLICEU parameters given in equations (4.53) to (4.55), no explicit flooring is required
and the matrix parameters A(k∗) and Σ(k∗)

b and may be full.
Figure 5.2 demonstrates the operation of the SPLICEU and FE-Joint. It shows how the

compensation parameters are selected in the front-end and then applied during decoding.
While similar to feature-based forms like POF [109], MBFE or front-end CMLLR [93], where
the affine feature transform is selected by a front-end GMM, in uncertainty decoding there is
the addition of a “uncertainty” variance bias added to the model variances.
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Figure 5.2: Front-end uncertainty decoding.

5.2.2 Issues with Front-end Uncertainty Decoding Schemes
One serious drawback of front-end uncertainty schemes is that the model variances must be
updated every time the variance bias changes. The variance bias changes as the front-end
component k∗ changes. Although, the update is simple compared to a technique such as
model-based VTS compensation, the update and re-computation of the normalisation term
must be executed for every acoustic model component. However, there is an even larger
concern for front-end uncertainty decoding forms that choose a single transform of the features
and model variances at each time frame.

Consider the joint distribution of the clean speech and noise shown previously in figure 5.1.
Two corrupted speech conditional distributions, p(ot|st), are marked. The upper one results
when the SNR is relatively high, with the clean speech xt = 6 compared to the additive
noise mean of 3. This yields a highly skewed distribution that peaks sharply and is highly
non-Gaussian, yet modelled with a Gaussian distribution. As the SNR increases this becomes
more pronounced until it becomes a delta function yielding the clean speech distribution when
substituted in equation (5.1). This is expected, since when the SNR is high, the noise should
have no influence on compensating the acoustic models.

The corrupted speech conditional distribution looks very different when the SNR is low.
For example, in figure 5.1 consider when xt = 1. At this point, the distribution is Gaussian,
matching the corrupting additive noise distribution, with a mean of 3 and variance of 1. Thus
in low SNR, the conditional distribution degenerates to the distribution of the additive noise

p(ot|st;M̌) ≈ N (ot;µn,Σn) (5.18)

where µn and Σn are the additive noise mean and variance respectively. Intuitively this makes
sense, since the noise masks the speech. This result has also been independently documented
in Beńıtez et al. [10], however the consequences for uncertainty decoding forms, such as
SPLICEU and JUD, were not examined. If equation (5.18) is substituted into equation (5.1),
the distribution of the corrupted speech becomes the additive noise distribution

p(ot|θt;M̌) ≈
∫
RD

N
(
ot;µn,Σn

)
p(st|θt)dst

= N
(
ot;µn,Σn

) ∫
RD

p(st|θt)dst

= N (ot;µn,Σn) (5.19)
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since the conditional distribution is no longer a function of the clean speech.
Thus regardless of the original recognition model component, the compensated distribu-

tion used during decoding will always be identical to the noise distribution. When a single
conditional distribution is estimated and used for all components, in low SNR conditions a
frame, or sequence of frames, will have no discriminatory power between classes: every dis-
tribution will look the same. If the recognition task has additional constraints beyond the
acoustic models, such as a language model, then it may be possible to distinguish between
different models during these non-discriminatory regions if these are applied. However, when
there is no language model or other restrictions, for example with a continuous digit recogni-
tion task such as Aurora2, then these areas where no discriminatory acoustic information is
available will be very susceptible to errors. These errors will probably be insertions since these
areas are likely to be background regions, although low-energy speech may be substituted by
other models if the noise is significant enough to mask the speech.

Insight into this aspect of the conditional distribution may be gained by examining the
nature of the joint distribution, as given in equation (5.4), in low energy speech regions. For
regions with low SNR, the corrupted speech distribution is dominated by the noise; in other
words, the noise masks the speech. The cross-covariance term Σ(k∗)

so for a front-end component
associated with these regions of low speech energy will be approximately zero since the clean
speech and noise are independent

Σ(k∗)
so ≈ 0 (5.20)

This lack of correlation drives A(k∗), defined in equation (5.15), to infinity along with the
uncertainty bias. In front-end uncertainty decoding, this is the expected behaviour because
the front-end has determined that in these areas, the uncertainty is high, since the SNR is
low. The relationship to equation (5.19) becomes clearer by examining equation (5.14) for a
single model component m

p
(
ot|m;M̌

)
= |A(k∗)|N

(
A(k∗)ot+b(k∗);µ(m)

s ,Σ(m)
s + Σ(k∗)

b

)
= N

(
ot+ A(k∗) -1b(k∗);A(k∗) -1µ(m)

s ,A(k∗) -1(Σ(m)
s + Σ(k∗)

b )A(k∗) -T
)

= N
(
ot;A(k∗) -1(µ(m)

s − b(k∗)),A(k∗) -1(Σ(m)
s + Σ(k∗)

b )A(k∗) -T
)

(5.21)

simplifying the mean and variance, given A(k∗) -1 = Σ(k∗)
os Σ(k∗) -1

s ≈ 0 from equation (5.20)

A(k∗) -1(µ(m)
s − b(k∗)) = A(k∗) -1(µ(m)

s − µ(k∗)
s −A(k∗)µ(k∗)

o )

= A(k∗) -1(µ(m)
s − µ(k∗)

s ) + µ(k∗)
o

≈ µ(k∗)
o (5.22)

A(k∗) -1(Σ(m)
s + Σ(k∗)

b

)
A(k∗) -T

= A(k∗) -1Σ(m)
s A(k∗) -T + A(k∗) -1(A(k∗)Σ(k∗)

o A(k∗)T −Σ(k∗)
s

)
A(k∗) -T

= A(k∗) -1Σ(m)
s A(k∗) -T + Σ(k∗)

o −A(k∗) -1Σ(k∗)
s A(k∗) -T

≈ Σ(k∗)
o (5.23)

hence

p
(
ot|m;M̌

)
≈ N

(
ot;µ(k∗)

o ,Σ(k∗)
o

)
(5.24)
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which is simply the noise distribution when component k∗ represents a background acoustic
region. This occurs regardless of what component m or state θt is. If all acoustic model
components are mapped to the noise distribution for several frames, then search errors may
result in these regions. These will likely be insertions because the uncertainty will be highest
in low energy, non-speech regions.

Figure 5.3: Plot of log energy dimension from Aurora2 digit string 8-6-zero-1-1-6-2, showing
16-component GMM FE-Joint estimate a(k∗)ot + b(k∗), uncertainty bias σ

(k∗)
b , and a(k∗).

A clear illustration of this issue with FE-Joint is presented in figure 5.3. This figure
shows the clean speech, corrupted speech, FE-Joint estimate, given by a(k∗)ot + b(k∗), and
the uncertainty bias σ

(k∗)
b for a simple system with a 16-component front-end GMM. For

those regions of higher energy speech, for example frames 210 to 220 where the vowel ‘i’ is
articulated, the variance bias is small. On the other hand, in the lower energy regions around
this vowel, for example frames 225 to 230, the variance becomes too large to be measured
on this scale, as is the FE-Joint estimate of the value. These large variances are associated
with large values of the scale factor a(k∗) as shown in figure 5.3 due to very small correlations
between the clean and corrupted speech as discussed earlier. In this example, from frames
225 to 230 the value of a(k∗) is around 100. With greater numbers of front-end components,
these effects are amplified as parameters are no longer smoothed.

5.2.3 Front-end JUD with Flooring
The behaviour of FE-Joint compensation in low SNR, where the feature scaling and uncer-
tainty variance bias both become very large, is a straightforward result of the assumptions
used to make this form of compensation efficient. However, as discussed in the previous sec-
tion, the approximations applied may lead to excess insertions in noisier areas. Consequently,
the compensation parameters may be limited such that all the acoustic model components
are not transformed to the noise model. An obvious approach is to manipulate the correlation
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coefficients for each of the dimensions, defined as

ρ
(k∗)
so,i =

σ
(k∗)
so,i√

σ
(k∗)2
s,i σ

(k∗)2
o,i

(5.25)

where σ
(k∗)
so,i is defined as the covariance of dimension i between the clean speech and noisy

speech for component k∗.
The compensation parameter estimates given in equations (5.15) to (5.17) can then be

re-expressed in terms of the correlation coefficient as

a
(k∗)
ii =

σ
(k∗)
s,i

ρ
(k∗)
so,i σ

(k∗)
o,i

(5.26)

b
(k∗)
i = µ

(k∗)
s,i − a

(k∗)
ii µ

(k∗)
o,i (5.27)

σ
(k∗)2
b,i =

σ
(k∗)2
s,i

ρ
(k∗)2
so,i

− σ
(k∗)2
s,i (5.28)

for the diagonal form of FE-Joint. To restrict extreme values of a
(k∗)
ii and σ

(k∗)2
b,i , a minimum

value on the correlation coefficient can be enforced. Accordingly, the correlation ρ
(k∗)
so,i in

equations (5.26) to (5.28) is set to

ρ̂
(k∗)
so,i = max

(
ρ
(k∗)
so,i , ρ

)
(5.29)

where ρ is an empirically determined constant. Increasing the value of ρ raises the minimum
acceptable correlation, decreasing the maximum variance bias. This can be viewed as en-
forcing a SNR floor; although the actual local SNR fall below this, the compensation scheme
acts as though the floor is the actual level. The effects of this flooring on the same snippet
of artificially corrupted speech from figure 5.3 is shown in figure 5.4. As anticipated, the
extremes in the variance bias observed before have been reduced.

In the limit, it is possible to set ρ = 1, which can be interpreted as assuming there is
no noise in the environment, resulting in σ

(k∗)2
b,i = 0, from equation (5.28); this leads to an

enhancement form with this estimate of the clean speech

ŝt,i = µ
(k∗)
s,i +

σ
(k∗)
s,i

σ
(k∗)
o,i

(
ot,i − µ

(k∗)
o,i

)
(5.30)

This can be compared to the MBFE clean speech estimate, given in equation (4.21), with
diagonal covariances

ŝt,i = µ
(k∗)
s,i +

σ
(k∗)
os,i

σ
(k∗)2
o,i

(
ot,i − µ

(k∗)
o,i

)
(5.31)

where a single max front-end component chosen at each time frame. If the clean and noisy
speech are fully correlated, then σ

(k∗)
os,i = σ

(k∗)
o,i σ

(k∗)
s,i and equations (5.30) and (5.31) simplify

to the same form.
Returning to the fundamental issue with front-end uncertainty forms, it was shown that

FE-Joint suffers from a problem where all output distributions become the same in low SNR.
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Figure 5.4: Plot of log energy dimension from Aurora2 digit string 8-6-zero-1-1-6-2, show-
ing 16-component GMM FE-Joint estimate a(k∗)ot + b(k∗), and uncertainty bias σ

(k∗)
b , with

correlation flooring ρ = 0.1.

Since this is a problem for all front-end uncertainty forms then SPLICEU should also suffer
from it. However this issue has not been observed, for example, on the Aurora2 results
presented in [26]. This is because SPLICEU applies a limit on the maximum value of the
variance bias scaling factor a

(k∗)
ii to 1/α in equation (4.58). Here α is also an empirically

determined parameter. In addition to this explicit flooring, there is also an under-estimate
of the value of a

(k∗)
ii . In order to make the calculation of the SPLICEU uncertainty efficient,

a global variance is used in the denominator of equation (4.55). Since this will be larger
than any of the individual front-end components that should be used, the scaling estimate
will be lower than expected as can be discerned from this equation. This under-estimation
will become larger as the number of front-end components increases, therefore the variance
of the individual model components will become smaller and smaller compared to the global
variance and exactly the situation when a component might expected to be associated only
with a noise region.

5.2.4 Model-based JUD Transforms
As opposed to associating a corrupted speech conditional distribution with a region of the
feature space, the conditional distribution may be linked with group of acoustic model com-
ponents. Model components may be clustered using a regression tree as described in sec-
tion 2.5.1. For each class, a joint distribution of the clean and corrupted speech can be
estimated, and therefore a corrupted speech conditional distribution determined. Hence, the
conditional distribution is a function of which regression class, r, the acoustic model compo-
nent, m, belongs to and may again be approximated by a Gaussian distribution

p(ot|st;M̌) ≈ N (ot; fµ(st, r), fΣ(st, r)) (5.32)

The mean and variance of the distribution are now a function of the class and the clean speech
as denoted by fµ(st, r) and fΣ(st, r). This conditional distribution can be derived from a joint
distribution of the clean and corrupted speech for the class r much like in the front-end case[

st

ot

]
∼ N

([
µ

(r)
s

µ
(r)
o

]
,

[
Σ(r)

s Σ(r)
so

Σ(r)
os Σ(r)

o

])
(5.33)

where a Gaussian approximation of the joint distribution also gives a Gaussian form for the
corrupted speech conditional distribution. When this form of the corrupted speech conditional
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distribution is substituted into equation (5.1), the corrupted speech observation likelihood for
a state θt becomes

p(ot|θt;M̌) ≈
∑
m∈θt

c(m)|A(rm)|N
(
A(rm)ot + b(rm);µ(m)

s ,Σ(m)
s + Σ(rm)

b

)
(5.34)

where M̌ =
{

A(1), b(1),Σ(1)
b , . . . ,A(R), b(R),Σ(R)

b

}
, rm denotes the regression class r that

component m belongs to, and R the total number of regression classes. As in FE-Joint, the
transform parameters are a function of the joint distribution parameters

A(rm) = Σ(rm)
s Σ(rm) -1

os (5.35)

b(rm) = µ(rm)
s −A(rm)µ(rm)

o (5.36)

Σ(rm)
b = A(rm)Σ(rm)

o A(rm)T −Σ(rm)
s (5.37)

Figure 5.5: Model-based joint uncertainty decoding.

The operation of this model-based JUD form, which will be referred to as M-Joint com-
pensation, is shown in figure 5.5. Compared to the FE-Joint form depicted in figure 5.2, the
observation is transformed by multiple transforms, much like in CMLLR, such that there are
R parallel versions of the observation passed to the decoder. Also each class has a different
variance bias associated with it. However, compared to FE-Joint, this variance does not
change over time and may be cached; it need only be updated if the noise condition itself
changes. Since for any given time frame, model components are being compensated by differ-
ent transforms, M-Joint compensation will not be affected by the issues discussed previously
in section 5.2.2. Moreover, for FE-Joint, the cost of selecting a single maximum component
from K components in the front-end, is of similar order to applying R transforms for multiple
features in M-Joint. Thus for equivalent numbers of K and R, FE-Joint and M-Joint are of
similar computational complexity.
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5.3 Approximating the Joint Distribution
The structure of the covariance matrices of the joint distribution in equation (5.4) or (5.33)
will affect the overall computational cost. For example, a block-diagonal form may be used

N

([
µ

(r)
s

µ
(r)
o

]
,

[
Σ(r)

s Σ(r)
so

Σ(r)
os Σ(r)

o

])
≈

N





µ
(r)
x

µ
(r)
∆x

µ
(r)
∆2x

µ
(r)
y

µ
(r)
∆y

µ
(r)
∆2y


,



Σ
(r)
x 0 0
0 Σ(r)

∆x 0
0 0 Σ(r)

∆2x


Σ

(r)
xy 0 0
0 Σ(r)

∆x∆y 0

0 0 Σ(r)
∆2x∆2y


Σ

(r)
xy 0 0
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∆x∆y 0
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∆2x∆2y


T Σ

(r)
y 0 0
0 Σ(r)

∆y 0

0 0 Σ(r)
∆2y






(5.38)

where it may be assumed that the covariance between the static, delta and acceleration
dimensions is zero. Furthermore, if each static, delta and acceleration covariance matrix
is diagonal, then Σ(rm)

b will also be diagonal. This diagonal approximation was shown to
provide good robustness, and yields transforms that may each be applied in linear time to
the feature vector and a model component. However, as discussed in section 3.3, noise may
introduce changes in intra-frame correlations hence block-diagonal and full covariance forms
may give improved results. Using these more precise covariance matrices though will require
block-diagonal or full covariance decoding though since Σ(rm)

b will become block-diagonal or
full. Adding this term to the model variances, i.e. Σ(m)

s +Σ(rm)
b , results in an acoustic model

covariance of that is no longer diagonal which makes the Gaussian likelihood calculation
rather inefficient. Keeping the linear feature transform full, and diagonalising the variance
bias term produced poor results [93]1.

5.4 Estimating JUD Compensation Parameters
Estimation of the JUD compensation parameters has so far not been discussed. The param-
eters are derived from the joint distribution of the clean and corrupted speech as given by
equations (5.15) to (5.17) for FE-Joint or equations (5.35) to (5.37) for M-Joint. The joint
distribution may be estimated with stereo data, although in practice stereo data are not typ-
ically available. The joint distribution may also be predicted using a clean speech model, a
noise model, and a mismatch function describing how the two combine to form noisy speech.
Figure 5.6 shows the general method for estimating the compensation parameters for a regres-
sion class. The term “predicted” is used since the joint distribution is not directly estimated
from adaptation data from the test environment. Instead only a low-dimensional set of noise
model parameters are estimated from the adaptation data, unlike MLLR transforms that are
directly estimated from such data. In predictive forms of compensation, the noise model is
then combined with a priori speech models to derive compensated parameters [47]. This is
achieved through so-called mismatch function approximations that relate noise, clean speech

1This may be overcome by training a semi-tied transform, in effect a feature-space transform, that maintains
the diagonal uncertainty bias term, but provides a rotation of the feature space [48].
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Figure 5.6: Estimating model-based joint uncertainty decoding transforms.

and noisy speech, such as log-normal or log-add as discussed in section 4.4.2, or the VTS
approximation given in equation (4.27). These give direct, analytic means of predicting the
joint distribution; alternatively, DPMC, as discussed in section 4.4.2, can be used to itera-
tively predict the joint distribution. The noise model necessary for these schemes may include
estimates of the static additive noise mean µn, static channel mean µh and additive noise
covariance

Σn =

Σz 0 0
0 Σ∆z 0
0 0 Σ∆2z

 (5.39)

The additive noise variance need not be block-diagonal; it may be full or diagonal with the
latter being the actual form examined in this work. Methods to estimate a noise model are
discussed in the next chapter. In addition, a single Gaussian N (µ(r)

s ,Σ(r)
s ) models each clean

speech regression class; this is discussed further in section 5.4.1. Once the joint distribution
is estimated, the FE-Joint or M-Joint transform parameters are easily computed. The same
approach is used in Xu et al. [149] for front-end joint uncertainty decoding comparing VTS and
DPMC techniques to generate the joint distribution and in the MBFE technique, discussed
in section 4.3.3, to derive a joint distribution for each front-end state [135].

In section 4.4.3 it was shown how given a distribution of the clean speech and a noise model,
the corrupted speech distribution can be estimated using a first-order VTS approximation of
the acoustic environment model. For joint uncertainty decoding, the cross-covariance Σ(r)

os

is also necessary. Similar to the derivation of the corrupted speech covariance, the cross-
covariance will be broken down into three blocks on the main diagonal as in equation (5.38).
The static cross-covariance is derived by first determining the covariance between the static
clean speech and the first-order VTS approximation of the static corrupted speech

Σ(r)
yx = E

{
yxT

∣∣r}− µ(r)
y µ(r)T

x

≈ E
{
yvtsx

T
∣∣r}− µ(r)

y µ(r)T
x (5.40)

The first-order VTS approximation was given by equation (4.27), and repeated here

yvts = y|µ(r)
0

+ J (r)
x

(
x− µ(r)

x

)
+ J (r)

z

(
z − µz

)
+ J

(r)
h

(
h− µh

)
Recall that |µ(r)

0
indicates evaluation at the VTS expansion point µ

(r)
0 ; however, now the clean

speech mean for a regression class r, µ
(r)
x , is used rather than the component mean µ

(m)
x . The

Jacobian matrix J
(r)
x is also evaluated at the same expansion point. Each row of the Jacobian

matrices gives the gradient of a dimension of the corrupted speech with respect to the clean
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speech, additive noise or convolutional noise vectors; the Jacobian matrices were defined in
equations (4.28) to (4.30).

Assuming independence between the clean speech and noise allows only the terms from
the truncated VTS approximation of the corrupted speech that affect the cross-covariance,
i.e. are a function of the clean speech, to be considered

Σ(r)
yx ≈ E

{[
J (r)

x (x− µ(r)
x )
]
xT
∣∣r}− E{J (r)

x (x− µ(r)
x )
∣∣r}µ(r)T

x

= J (r)
x Σ(r)

x (5.41)

since the covariance between a random vector and its transformed version is simply a linear
transform of the random vector covariance as shown in appendix A.3. Thus the static cross-
covariance for a regression class is given by

Σ(r)
yx ≈ J (r)

x Σ(r)
x (5.42)

To derive the delta and delta-delta cross-covariances, the Continuous-Time approximation is
applied as it was in section 4.4.3. This gives

Σ(r)
∆y∆x ≈ J (r)

x Σ(r)
∆x (5.43)

Σ(r)
∆2y∆2x

≈ J (r)
x Σ(r)

∆2x
(5.44)

A full derivation may be found in appendix section B.3. This approach does not consider
the static–delta, delta–delta-delta and static–delta-delta cross covariances; a matrix approach
to deriving dynamic feature coefficients [39] may give analytic forms of these terms. Equa-
tions (5.42) to (5.44) provide the cross-covariance terms for the joint distribution in equa-
tion (5.38). Hence an approximation to the joint distribution may be predicted from the clean
speech parameters µ

(r)
s and Σ(r)

s and a noise model, using the derivations for the corrupted
speech parameters from equations (4.40) and (4.41), and these cross-covariance terms. For
example, the transform matrix in equation (5.35), using this approximate joint distribution,
is given by

A(r) = Σ(r)
s Σ(r) -1

os

=

Σ
(r)
x 0 0
0 Σ(r)

∆x 0
0 0 Σ(r)
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≈
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[
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[
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x Σ(r)
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] -1
 (5.45)

Noting that (AB) -1 = B -1A -1, this simplifies to

A(r) ≈

J
(r)
x 0 0
0 J

(r)
x 0

0 0 J
(r)
x


-1

(5.46)

For this work, when using noise models to predict the joint distribution, the joint distribution
terms Σ(r)

s , Σ(r)
o and Σ(r)

so are diagonalised—this actually results in a diagonal A(r) to also
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give a diagonal uncertainty variance bias. Recall that J
(r)
x → I when the noise level is low;

in this case, the transform is also identity indicating that no compensation is required. When
the noise subsumes the speech J

(r)
x → 0, which causes A(r) → ∞. The implications of this

were discussed in section 5.2.2. For M-Joint compensation, this is not an issue so long as only
a subset of the transforms are affected in this manner, since different model regression classes
are transformed by different transforms. If they are all affected, then the noise is strong
enough to mask all speech, and no speech information is available in the signal to transcribe.
In this work, when predicting the joint distribution blocks—Σ(r)

o , Σ(r)
os , and Σ(r)

s —are all
diagonalised resulting in a diagonal A(r) and variance bias Σ(r)

b . Diagonalising these matrices
is not optimal though since it has been shown that full matrix forms are superior [93].

The feature bias from equation (5.36) may also be simplified
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 (5.47)

The uncertainty variance bias, from equation (5.37), has a block diagonal form

Σ(r)
b = A(r)Σ(r)
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 (5.48)

The static block may be simplified as follows[
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Similarly, the delta and delta-delta blocks are[
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x

]-T (5.51)

Notice that if the noise level is high, then J
(r)
x → 0, which causes the uncertainty bias to

become very large since the Jacobian matrix for clean speech is inverted. If the noise level is
low then J

(r)
x → 0 causes the bias to become small.

The quality of using a VTS-based approximation for the corrupted speech may be inves-
tigated through a simulation in the log-spectral domain. Figure 5.7 shows how the first-order
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Figure 5.7: Comparing Monte Carlo and VTS generated corrupted speech yl
t distributions

and cross-covariance between and clean and corrupted speech in log-spectral domain.

VTS approximation of the compensated mean and variances compare to ML estimates trained
on the actual Monte Carlo corrupted speech data where yl

t was given in equation (3.13). The
mean and standard deviation of the clean speech were 10 and 6 respectively, the variance of
the noise 1, and the mean of the noise adjusted to achieve the SNR indicated. The cross
covariance between the clean and corrupted speech is also shown along with the first-order
VTS estimated values. The VTS compensated mean appears quite accurate compared to
the numerical result. The variance however is not as well approximated; this is similar to
previous results [2, 106]. The cross-covariance between the clean and corrupted speech is also
only roughly approximated especially in the lower SNRs. This demonstrates the limitations
of the VTS approximation of the corrupted speech especially in lower SNR.

5.4.1 The Clean Speech Class Model
The previous section demonstrated how the complete joint distribution for a model class r
may be derived given a noise model and clean speech model; this clean speech model has not
been discussed in detail. For the joint distribution given in equation (5.33), a model of the
clean speech N

(
µ

(r)
s ,Σ(r)

s

)
is necessary to compute the rest of the distribution parameters.

There are three different approaches to deriving this Gaussian model of the clean speech.
As shown in equation (5.45), Σ(r)

s may take a block-diagonal form. Alternatively, it may be
assumed to be diagonal, however this may be a poor approximation because

diag
{

J (r)
x Σ(r)

x,diagJ
(r)T
x

}
6= diag

{
J (r)

x Σ(r)
x,fullJ

(r)T
x

}
(5.52)
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where Σ(r)
x,diag is the diagonal variance of the static clean speech and Σ(r)

x,full the full covariance
version. Since the Jacobian matrix Jx is full, it may be helpful to use a full covariance matrix
for each block Σ(r)

x , Σ(r)
∆x and Σ(r)

∆2x
that form Σ(r)

s . There are two ways to estimate these
matrices. The first is to estimate a full covariance version of the acoustic model using the
same alignments as the diagonal, e.g. through SPR, so that each component has a full Σ(m)

s,full
(although only block-diagonal matrices are needed). The mean µ

(r)
s and full covariance matrix

Σ(r)
s for class r may then be given by

µ(r)
s =

1

γ
(r)
s

∑
m∈r

γ(m)
s µ(m)

s (5.53)

Σ(r)
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γ(m)
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s,full + µ(m)
s µ(m)T

s

)
− µ(r)

s µ(r)T
s (5.54)

γ(m)
s =

T∑
t=1

γ
(m)
s,t (5.55)

γ(r)
s =

∑
m∈r

γ(m)
s (5.56)

where the component posterior γ
(m)
s,t may be computed from the state γ

(j)
s,t , γ

(m)
s,t = γ

(j)
s,t c(m),

and c(m) denotes the component prior. Since most HMM-based recognisers use diagonal model
covariances, it is cumbersome to require a full covariance model. An approximation is to use
the standard diagonal model variances, i.e. replace Σ(m)

s,full with Σ(m)
s in equation (5.54). For low

numbers of classes R compared to the number of model components M in the acoustic model,
such that there are many model components per class, this should be a good approximation
since the between component variance should dominate over the component variance—this
is approach taken in this work. Hence a full matrix clean speech class variance Σ(r)

s may
be estimated from a standard diagonal variance clean speech acoustic model, provided the
frame/state alignments are available.

5.5 Comparing JUD with VTS compensation
Increasing the number of classes R to equal the number of model components M , using a
diagonal acoustic model variance approximation, is equivalent to VTS model compensation
of each individual acoustic model component. This is clear when the component corrupted
speech likelihood in equation (5.34) is re-expressed as

p(ot|m;M̌) = |A(rm)|N
(
A(rm)ot + b(rm);µ(m)

s ,Σ(m)
s + Σ(rm)

b

)
= N

(
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s −µ(rm)
s

)
+ µ(rm)

o ,A(rm) -1(Σ(m)
s −Σ(rm)

s

)
A(rm) -T+Σ(rm)

o

)
(5.57)

If M = R then there is a one-to-one mapping of rm to m, hence µ
(m)
s = µ

(rm)
s , and Σ(m)

s =
Σ(rm)

s , making the differences between these terms zero. Therefore from equation (5.57)

p(ot|m;M̌) = N
(
ot;µ(rm)

o ,Σ(rm)
o

)
= N

(
ot;µ(m)

o ,Σ(m)
o

)
(5.58)

where µ
(rm)
o and Σ(rm)

o are from the joint distribution derived using VTS model compensation.
In general, when R = M , M-Joint converges to whatever model compensation technique was
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used to derive the joint distribution needed to the compute the transformation parameters.
For example if SPR was used to derive the joint distribution for each M-Joint tranform, then
when R = M M-Joint is equivalent to directly using SPR to estimate each compensated model
component mean and variance; the same applies if instead VTS or PMC are used to predict
the joint distribution. In comparison, front-end uncertainty decoding forms like SPLICEU
and FE-Joint do not have this characteristic since all model components are affected by the
same uncertainty bias chosen by the front-end.

This convergence of M-Joint, when R = M , to the form of model-based compensation that
was used to derive the joint distribtuion is a very useful property. It allows a flexibility in
controlling the computational cost of the M-Joint scheme by adjusting the number of model
classes R. Using a VTS approximation to compensate each acoustic model component, is
equivalent to deriving a corrupted speech conditional distribution for each acoustic model
component of the clean speech models in equation (4.47); this involves computing and applying
two Jacobian matrices, J

(m)
x and J

(m)
z , for each component, with both operations costing

O(MD2
s) where Ds is the number of static features. In contrast, M-Joint transforms are

estimated per class r such that that J
(r)
x and J

(r)
z are shared over similar components. This

sharing of the cost of computing the joint distribution is far cheaper at O(RD2
s) if the number

of classes R is much smaller than the number of components M . The compensation itself
is also more efficient where only R feature updates are computed rather than updating all
M component means. The model variance update is simpler, with a single vector addition,
rather than several matrix multiplications and an add necessary for VTS compensation.

By using a VTS approximation to generate the joint distribution from models of the clean
speech and noise, the associated JUD transform compensates precisely for noise. However, the
joint distribution may thought of as a general statistical model of the relationship between the
speech seen in training S and the observed speech O in testing. Hence, the joint distribution
can model other factors in addition to noise if this is taken into account during its generation.
For example, vocal tract length or a feature decorrelating transform could be incorporated
in the mismatch function. Furthermore, M-Joint transforms may also compensate multistyle
systems for environmental mismatch. In this case, the noise model no longer represents
additive and convolutional noise but are simply parameters that generate transforms which
reduce the mismatch between the multistyle-trained models and the test conditions.

5.6 Comparing JUD with CMLLR
Like CMLLR, JUD transforms compensate trained systems to more closely match the test
environment. The M-Joint likelihood in equation (5.34)

p(ot|θt;M̌) =
∑
m∈θt

c(m)|A(rm)|N
(
A(rm)ot + b(rm);µ(m)

s ,Σ(m)
s + Σ(rm)

b

)
(5.59)

is similar to CMLLR, the likelihood of which may be expressed as

p(ot|θt;M̌) =
∑
m∈θt

c(m)|A(rm)|N
(
A(rm)ot + b(rm);µ(m)

s ,Σ(m)
s

)
(5.60)

as given previously in equation (2.62). Both have an affine transform of the features, however
with M-Joint compensation there is an additional variance bias Σ(rm)

b . An efficient implemen-
tation of CMLLR uses multiple parallel features for each regression class to avoid changing
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the model parameters; however with M-Joint, the model variances and cached normalisation
terms must be updated. This makes M-Joint less efficient than CMLLR. The key differences
between standard CMLLR and model-based JUD schemes may be summarised as

• in the Gaussian evaluation, the M-Joint has a variance offset, the “uncertainty”, that
CMLLR does not have,

• M-Joint is highly restricted to only compensating for what the mismatch function allows,
e.g. environmental noise, whereas CMLLR transforms have a much larger number of free
parameters, hence,

• CMLLR specifically requires corrupted speech adaptation data, whilst M-Joint only
needs a noise model which may be estimated from the background.

The noise model itself has relatively few parameters and may be estimated on very little
data; in Kim et al. [80] only a few frames of noisy data are necessary to train an accurate
model. With CMLLR the amount of training data required scales with the number and
complexity of transforms used. In comparison, the number of M-Joint transforms that may
be used is independent of the amount of adaptation data available and is more of a function of
available computational resources. Furthermore, if the noise is stationary it may be estimated
in advance, in the background before the onset of speech, whereas CMLLR requires actual
corrupted speech data.

Scheme Type # Free Parameters

CMLLR Adaptive
R( D︸︷︷︸

A(r)

+ D︸︷︷︸
b(r)

)

SPLICE
Feature-based

K(2D + 1︸ ︷︷ ︸
p(ot|M̌)

+ D︸︷︷︸
µ̌(k∗)

)

SPLICEU
K(2D + 1︸ ︷︷ ︸

p(ot|M̌)

+ D︸︷︷︸
µ̌(k∗)

+ D︸︷︷︸
Σ̌(k∗)

)

M-Joint Predictive, Ds︸︷︷︸
µz

+ D︸︷︷︸
Σn

+ Ds︸︷︷︸
µhVTS Model-based

Table 5.1: Number of free parameters to estimate for diagonal forms of various noise com-
pensation schemes.

Table 5.1 compares the number of free parameters that need to be estimated for a variety of
noise compensation schemes. The advantage of predictive schemes is clear: the number of free
parameters is low and fixed to the model of the noise, while for adaptive schemes it typically
varies with the number of transforms R. Hence predictive compensation can be more effective
with less training data than adaptive forms. The SPLICE schemes described in sections 4.3.2
and 4.5.2.1 are estimated using stereo data1, hence the number of free parameters varies
according to the number of front-end components K. The model-based JUD form, being a
predictive technique, has a low number of free parameters like VTS compensation and PMC.
While this restricts the modelling power of M-Joint transforms compared to CMLLR, M-Joint
transforms may be estimated on less data than adaptive forms.

1This is not an inherent limitation of SPLICE; a predictive form can be devised where a joint distribution
may be predicted in the same manner as JUD to derive the clean speech posterior distribution necessary to
obtain the SPLICE parameters.
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5.7 Computational Cost
An important consideration for noise robustness techniques is the computational cost in terms
of parameter storage and additional operations during front-end processing or decoding. The
cost of storing parameters may simply be the number of free parameters shown in table 5.1,
although in practice M-Joint transforms may be pre-computed and stored. The additional
processing overhead incurred by various noise robustness techniques is summarised in ta-
ble 5.2. Front-end enhancement schemes like SPLICE only incur a front-end processing cost

Front-end Compensation
Compensation Scheme Cost Cost
Feature Enhancement O(DTK) None
Front-end Uncertainty O(DTK) O(MDT )
Model-based Uncertainty O(DTR) O(MD)
Model-based Forms None O(MD3

s)

D–# of feature dimensions R–# of acoustic model classes
T–# of frames M–# of acoustic model components
K–# of front-end GMM components

Table 5.2: Computational cost for diagonal forms of different noise compensation schemes.

that scales with the complexity of the front-end model. Front-end uncertainty schemes, like
observation uncertainty forms, SPLICEU or FE-Joint, in addition to the front-end process-
ing cost, expand the model variances with the uncertainty variance bias. Furthermore, this
requires re-computation of the Gaussian normalisation term that is normally cached. Thus
each Gaussian evaluation now requires O{5D} operations compared to O{3D} for standard
decoding. Assuming that likelihood calculations typically account for 50% of the processing
load, this corresponds to an overall system load increase of 33% to apply an uncertainty bias
on the model variances—this was confirmed experimentally [4].

Since using M-Joint transforms has the same form as the other uncertainty schemes, it
also has the same cost. Unlike the front-end forms however, the uncertainty variance may be
cached if the noise environment is stationary, greatly improving speed since now only front-
end processing is required. This makes it similar to pure model-based forms like PMC and
VTS compensation, although the acoustic model update cost is much cheaper. For example,
VTS compensation has a cost of O{MD3

s} due to the block matrix-block matrix multipli-
cation necessary for the variance update. In contrast, M-Joint, with diagonal transforms,
has a processing cost linear with the number of dimensions. Therefore M-Joint transforms
are effective for changing environments when the acoustic models need frequent updating
compared to PMC or VTS compensation; moreover, M-Joint can be executed without model
update caching at a similar cost to some front-end uncertainty schemes compared to pure
model-based schemes where it would be prohibitively expensive to do so.

5.8 Predictive CMLLR
A significant cost in M-Joint compensation is applying this uncertainty variance bias; when
the joint distribution is full, this results in full transforms, and expensive full covariance
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decoding is required. A “predictive” form of CMLLR (PCMLLR) can be derived such that
an affine transform of the features may be computed from models of the clean speech and
noise, without large amounts of adaptation data [48]. This gives an approximate uncertainty
decoding form where no model variance bias is applied during decoding and hence a more
complex structure to the joint distribution may be used with the only additional cost of being
in the front-end.

PCMLLR transforms are estimated using “predicted” statistics gathered in a feature-space
transformed by the M-Joint feature transform

õt = A(r)ot + b(r) (5.61)

such that

E{õt|m∈r} = µ(m)
s (5.62)

E
{
õtõ

T
t |m∈r

}
= Σ(m)

s +Σ(rm)
b +µ(m)

s µ(m)T
s (5.63)

from equation (5.34). In equations (2.65) and (2.66), which are necessary for estimating the
CMLLR transform, the statistics can then be replaced with their predicted values
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(5.65)

Estimating a PCMLLR transform, A
(r)
pcmllr and b

(r)
pcmllr, can be made very efficient since
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s,i︸ ︷︷ ︸
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(5.66)

The first summation in the right-hand side of this equation is comprised entirely of clean
speech statistics and can be cached as well as the mean update. Also, since the uncertainty
variance bias is fixed for a class, it may be taken out of the second summation over all
components; this summation can also be cached. Hence only the uncertainty variance bias
term is dependent on the noise environment whilst the rest of the statistics may be pre-
computed and stored per regression class as noted in equation (5.66). Because it is out of
the summation, matrix G

(r)
i can be rapidly computed for changing noise since the number of

classes, R, is usually small compared to number of components, M .
The overall decoding likelihood for PCMLLR decoding is then given by

p(ot|θt;M̌) =
∑
m∈θt

|A(rm)
pcmllr||A

(rm)|N
(
A

(rm)
pcmllrõt + b

(rm)
pcmllr;µ

(m)
s ,Σ(m)

s

)
(5.67)
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where rm gives the regression class r that component m belongs to and õt is defined by
equation (5.61). The two affine transformations may be combined into a single one. The
structure of the transformation depends on the form of the uncertainty variance bias Σ(r)

b , e.g.
if it is block-diagonal then the PCMLLR transform will also be block-diagonal. In contrast to
standard CMLLR, PCMLLR is a predictive form where the affine transformation is efficiently
derived from combining models of the speech and noise through a M-Joint transform. Thus
like M-Joint, the PCMLLR transform may be estimated with little data, but unlike M-Joint
there is no variance bias offset. Although decoding is more efficient with PCMLLR, without
the variance bias term it is less effective. Hence PCMLLR combines the efficient compensation
of CMLLR, due to a simple affine transformation of the features, with the predictive nature
of M-Joint compensation. The extra computation efficiency is gained at the expense of the
effectiveness of the uncertainty variance bias.

5.9 Non-Gaussian Approximations
Using a single Gaussian, due to equation (5.13) or (5.32), to model the corrupted speech
conditional distribution may not be optimal. Alternate forms such as the Weibull or gamma
distribution appear more representative than the Gaussian distribution—the mode is more
accurate and the asymmetry better models the long right tail of the conditional distribution.

The formula for the gamma distribution is

p(yl
t|xl

t) =

(yl
t−xl

t
b

)(a−1)
e

(
-

yl
t−xl

t
b

)
bΓ(a)

(5.68)

where
Γ(a) =

∫ ∞

0
t(a−1)e-tdt (5.69)

and a and b are parameters of the distribution and yl
t and xl

t are log-spectral domain noisy
and clean speech variables.

The formula for the Weibull distribution is

p(yl
t|xl

t) = cd(yl
t − xl

t)
(d−1)e(-c(yl

t−xl
t)

d) (5.70)

where c and d are parameters of the distribution. Figure 5.8 compares different parametric
distributions for the corrupted speech conditional distribution generated for different values
of the clean speech mean and a fixed Gaussian noise source. This uses the same log-spectral
model of the environment given in equation (3.13). When the speech energy is high compared
to the noise, the corrupted speech conditional distribution is deterministic, and when the
energy is low relative to the noise, it is Gaussian. When the speech is not completely subsumed
by the noise, as in sub-figures b, c and d, the conditional distribution is distinctly non-
Gaussian. It is clear the skewed, non-symmetrical Weibull and Gamma distributions are
better forms for representing the corrupted speech conditional distribution than the Gaussian.

Although maximum likelihood estimates of the parameters of these skewed distributions
can be obtained and mixtures of skewed distributions may be a more accurate representa-
tion of the corrupted speech conditional distribution, analytic solutions of the integral in
equation (4.47) are difficult to derive if the conditional distribution takes these forms. This
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Figure 5.8: Corrupted speech conditional distribution with additive noise zl
t ∼ N (4, 1) in

log-spectral domain. Various distributions are fitted to the simulated data.

marginalisation is similar to what is required in Bayesian parameter estimation, where a vari-
able has a distribution to be parameterised, and the parameter to be estimated also has a
prior distribution. The natural conjugate distribution for a Gaussian is another Gaussian.

Instead of using only a single Gaussian to represent the corrupted speech conditional
distribution, a GMM may be used. For example, to improve the model-based JUD form from
equation (5.32) such that each class r now has Kr components instead of just one

p(ot|st, r;M̌) ≈
Kr∑
k=1

c(k)N (ot; fµ(st, r, k), fΣ(st, r, k)) (5.71)

This however would multiply the overall number of recognition Gaussians by Kr. Nevertheless,
a small number of components may sufficiently improve upon a single Gaussian. Figure 5.9
compares a 2-component GMM to a single Gaussian model of the corrupted speech condition
in sub-plot ‘d’ from figure 5.8—clearly, the GMM is a better fit than a single Gaussian in
this situation. For acoustic model components that represent low energy speech and are more
affected by additive noise, a single Gaussian should be sufficient, so long that the noise is well
modelled by a single Gaussian. Alternatively, lower weighted components of the mixture may
be pruned; in figure 5.9 the left component represents the majority of the probability mass.
Hence modelling the conditional distribution for each class using a GMM, with a variable
number of Gaussians, could possibly give improved modelling accuracy with a limited increase
in the overall number of recognition components.
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Figure 5.9: Corrupted speech conditional distribution with clean speech xt = 7, additive noise
zl
t ∼ N (4, 1). Single Gaussian and 2-component GMM fitted (components dotted).

5.10 Summary
In this chapter, uncertainty decoding was formally introduced in the context of the noise
robust ASR framework described in section 4.1. Given that the form of the speech prior in
recognition systems is typically Gaussian, the main research focus for uncertainty decoding is
to find tractable and accurate forms of the corrupted speech conditional distribution. Joint
uncertainty decoding (JUD) approximates the joint distribution between the clean training
conditions and the noisy test conditions with a Gaussian leading to a Gaussian corrupted
speech conditional distribution. While this latter distribution can be highly skewed, modelling
it with a Gaussian provides a Gaussian result when convolved with the Gaussian speech
prior. Two forms of JUD were presented: front-end and model-based. The front-end JUD
form has less restrictive approximations than SPLICEU that naturally allow JUD to have
more powerful block-diagonal or full matrix transforms. It was demonstrated that front-end
uncertainty decoding forms can potentially have problems in low SNR, since all acoustic
model components may be transformed to the noise model. Model-based forms, like model-
based JUD (M-Joint) and VTS, avoid this since different transforms for different components
reflect that noise affects each recognition component differently. The M-Joint form is similar
to CMLLR, but with the addition of a model variance bias term. Another difference is that the
JUD transform may be predicted using a low number of parameters representing the speech
and noise models. M-Joint transforms, for any number of classes, may be estimated on a
limited amount of adaptation data, which need not include speech, sufficient to estimate the
noise model; in contrast, CMLLR requires adaptation data, containing corrupted speech, in
amounts proportional to the number and form, e.g. diagonal or full, of the transformations, to
provide robust estimates. Thus the number of M-Joint transforms may be chosen to achieve
the desired computational profile; at the limit, when the number of transforms equals the
number of model components, it is the equivalent of model-based VTS compensation. The
M-Joint transform though is more efficient to apply at run-time than the VTS form. These
aspects make JUD an attractive, noise robustness technique.



CHAPTER 6
Noise Model Estimation

Predictive forms of noise compensation, such as M-Joint transforms and VTS acoustic
model compensation, require a model of the corrupting noise. Often, an acoustic model

of the additive noise is estimated from audio segments of the test environment that do not
contain speech. However, combining this model with a ML-trained acoustic speech model
does not give a corrupted speech model that maximises the likelihood of the test data. Nor
is the model appropriate for multistyle-trained acoustic models. Hence this chapter discusses
ML methods for jointly estimating a model of the additive and convolutional noise. Different
methods are outlined, tailored for either VTS or M-Joint compensation. While some gains
were obtained with multi-component noise models for both feature compensation [36, 135]
and acoustic model compensation [86], here only a single Gaussian model of the additive noise
is considered.

6.1 Maximum Likelihood Noise Model Estimation
An ML form of noise model estimation seeks to find a noise model, which when used to com-
pensate the acoustic model, gives a noisy speech model that maximises the likelihood of data
from the noise-corrupted environment. The noise model is denoted by Mn = {µn,µh,Σn},
where µh represents the channel noise and µn and Σn the additive noise mean and variance.
The noise model should maximise the likelihood of observed noisy data

M̂n = argmax
Mn

p(O|Wh;M,Mn) (6.1)

given a hypothesis Wh and the acoustic model M, which is compensated using VTS or M-
Joint compensation using Mn. Directly finding the noise model that optimises equation (6.1)

84
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is difficult for either VTS or M-Joint compensation because of the hidden state sequence.
Hence an iterative EM approach is used. The auxiliary function is

Q(Mn;M̂n) = EM̂
[
log p(O,M ;M,M̂n)

]
=

T∑
t=1

M∑
m=1

γ
(m)
o,t log p(ot|m;M,M̂n) (6.2)

where γ
(m)
o,t is the posterior probability of component m at time t given the complete data

set, i.e. P(mt = m|O,Wh;M,M̂n). Recall that m uniquely indexes any component in the
HMM for all states, thus the state index is unnecessary. The set of all possible hidden com-
ponent/state sequences M for the complete data set may be computed from a hypothesised
transcription Wh produced from a decoding run using a compensated model M with the
initial noise estimate Mn.

Figure 6.1 depicts the general ML noise model estimation procedure. An initial noise
model is necessary to begin: this may be a “quiet” noise model, where the convolutional
noise and additive noise are effectively zero; or, it may be estimated from the first few frames
of speech. In the expectation step, this model is used to compensate the acoustic model to
align the noisy observation data and compute the complete data set. From the complete data
set, statistics necessary to perform the maximisation step are gathered. The required statistics
and maximisation steps 4 and 5 will differ depending on whether an ML VTS or M-Joint noise

Figure 6.1: EM-based ML noise model estimation procedure.
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model is being estimated. There are many points in the process where iterations may take
place. The statistics gathered may require an expansion point for VTS approximation and
thus benefit from an updated noise model shown in loop 7; this may be repeated without
conducting addition passes over the observation data. Loop 8 begins another EM iteration
where the updated noise model is used to recompute the complete data set for the initial
transcription hypothesis. Compared to loop 7, loop 8 requires a pass over the observation
data. Alternatively, as indicated by loop 9, this hypothesis may be improved by performing
another decoding pass over the test data using acoustic models compensated with the updated
noise model; this may be important in noisier environments where the initial hypothesis is
poor. Convergence occurs when the auxiliary function fails to increase by a certain threshold.

There are many aspects that make ML noise model estimation an attractive method to
specify the noise environment. Apart from the consistency of producing ML-compensated
models from ML-trained clean models, a noise model can also be estimated for multistyle-
trained acoustic models. In this case, the estimated noise model is especially no longer a
model of acoustic noise, but rather a low-dimensional set of parameters that best reduce
the mismatch between the acoustic models and test conditions in a ML sense. Moreover,
any deficiencies in the mismatch function, for example with the VTS approximation as was
shown in figure 5.7, may be partially alleviated by the noise estimation process. Another
benefit is that the noise model may be re-estimated while speech is spoken, not only during
non-speech regions. This allows for noise model adaptation during long speech segments
where the environment may evolve. In this scenario, JUD is particularly relevant since it can
rapidly compensate models compared to other techniques such as VTS. Also the system does
not require a robust speech detector, whereas one is necessary if the noise model is estimated
from background regions. Furthermore, separating speech from noise becomes more difficult
as the SNR decreases. For these reasons, the extra complexity of an ML noise estimation
procedure is explored for both VTS and M-Joint compensation forms.

6.2 VTS Noise Model Estimation
An iterative solution for updating the static means of the additive and convolutional noise was
given in Moreno [106]—this is modified to operate in the same domain many speech recognisers
operate: the cepstral domain, as described in section 4.6. This form of noise estimation
scheme is designed to give an ML noise model for a system involving only static feature
coefficients. The majority of recognisers will use delta and acceleration coefficients. Hence,
the component posteriors should be computed using these coefficients and a complete speech
acoustic model compensated using VTS. The complete auxiliary function should always be
checked for improvement at every iteration of the noise model, as opposed to only optimising
with the static auxiliary function given in equation (4.67). From equation (6.2), the auxiliary
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function for noise model estimation with VTS compensation is

Qvts(Mn;M̂n)=
T∑

t=1

M∑
m=1

γ
(m)
o,t log p(ot|m;M,M̂n)

= −1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t

[
log|Σ(m)

y |+
(
yt − µ(m)

y

)TΣ(m) -1
y

(
yt − µ(m)

y

)
log|Σ(m)

∆y |+
(
∆yt − µ

(m)
∆y

)TΣ(m) -1
∆y

(
∆yt − µ

(m)
∆y

)
log|Σ(m)

∆2y
|+
(
∆2yt − µ

(m)
∆2y

)TΣ(m) -1
∆2y

(
∆2yt − µ

(m)
∆2y

)] (6.3)

where terms independent of the noise are ignored and D is the dimensionality of the feature
vector and here equal to 3Ds—the sum of the number of static, delta and acceleration coeffi-
cients. Terms independent of the noise model parameters are omitted. The corrupted speech
model parameters are predicted from the clean using VTS compensation outlined previously
in section 4.4.3.

Hence, the goal is to estimate the set of noise parameters Mn that maximise the auxiliary
function

Mi+1
n = argmax

M̂n

Qvts

(
Mi

n;M̂n

)
(6.4)

The noise means, µ̂n and µ̂h, affect all the terms in the square brackets of equation (6.3) since
they are part of the evaluation point of the Jacobian matrices used to derive the corrupted
speech parameters. As the noise means and the additive noise variance affect the same
terms, these should be maximised serially. However, because the static, delta, and delta-
delta additive noise variance parameters affect different terms in equation (6.3), they may be
maximised in parallel. Hence, for the maximisation step, first re-estimate the noise model
means then use these updated noise means to re-estimate the variances. The means can then
be updated again, and so on.

6.2.1 Estimating the Static Noise Means
The static additive noise and channel means may be estimated using the statics fixed point
techniques as described in section 4.6. However, this procedure needs to be updated for use
with dynamic features. First, the component posteriors are computed using the complete
features rather than just the statics. Thus the auxiliary function for estimating the static
noise means is

Q(µn,µh; µ̂z, µ̂h) = EM̂
[
log p(O,M ;M,M̂n)

]
=

T∑
t=1

M∑
m=1

γ
(m)
o,t log p(yt|m; µ̂z,Σz, µ̂h)

=
T∑

t=1

M∑
m=1

γ
(m)
o,t

{
−1

2
log|Σ(m)

y | − 1
2
(
yt − µ̂(m)

y

)TΣ(m) -1
y

(
yt − µ̂(m)

y

)}
(6.5)

where recall that µ̂
(m)
y is derived using a first-order VTS approximation. Other than the

component posterior, the statistics and noise mean updates are otherwise unchanged for this
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Initialise η̂ = 1, µ̄n = µi+1
n , µ̄h = µi+1

h

Do
η = η̂α
µi+1

n = ηµ̄n + (1− η)µi
n

µi+1
h = ηµ̄h + (1− η)µi

h

η̂ = η

While Qvts(Mn;µi
n,µi

h) > Qvts(Mn;µi+1
n ,µi+1

h )

Figure 6.2: Noise model estimation back-off procedure.

process compared to the statics fixed point estimation form. The auxiliary function is different
from Qvts, which uses a zero-order VTS approximation during maximisation. Maximising the
auxiliary in equation (6.5) does not account for dynamic coefficients and therefore while it
may improve Qvts, may not give the best ML estimates. Nevertheless, this is the procedure
that will be used to estimate the noise model means. Also since maximising equation (6.5)
only accounts for the static features, the estimated noise means must be checked that they
improve the complete auxiliary given by equation (6.3). That is ensure

Qvts(Mn;µi
n,µi

h) < Qvts(Mn;µi+1
n ,µi+1

h ) (6.6)

for every iteration i.
If for an iteration i the auxiliary function Qvts does not increase, then the back-off strategy

shown in figure 6.2 is applied. This interpolates the update {µi+1
n ,µi+1

n } from the overshoot-
ing estimate {µ̄n, µ̄h} and the previous estimate {µh,µh}. As η̂ becomes smaller, the update
becomes closer to the previous estimate until there is no difference, which for this strategy
indicates convergence. Setting α to a half produced reasonable results. An example of this
back-off process is depicted in figure 6.3 where only a scalar additive noise mean is consid-
ered. The first derivative step decreases the auxiliary function value—only after two back-off
iterations does the step improve the auxiliary function value. This is where the process
terminates.

Figure 6.3: Noise model estimation back-off example. The estimate µ̄n overshoots the max-
imum value (1), and thus is backed off twice (2,3). The final update is µi+1

n = η2µ̄n which
improves the auxiliary function by ∆.
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6.2.2 Estimating the Additive Noise Variance
It is difficult to obtain a closed form solution for the static additive noise variance that
maximises the auxiliary function since the additive noise variance affects all model variances.
Hence a simple, iterative, first-order gradient-based optimisation scheme is used to estimate
the full complete additive noise variance

Σ̂n =

 Σ̂z 0 0
0 Σ̂∆z 0
0 0 Σ̂∆2z

 =

 Σz 0 0
0 Σ∆z 0
0 0 Σ∆2z

+ ν


∂Qvts
∂Σz

0 0
0 ∂Qvts

∂Σ∆z
0

0 0 ∂Qvts
∂Σ∆2z

 (6.7)

where the additive noise covariance matrix is approximated by a diagonal structure and ν is
a scalar learning rate and in this work set to unity. There is no guarantee that the step taken
will improve the auxiliary—the step may be too large and significantly overshoot it. Hence,
it is important to also back-off the new variance estimate towards the old, as with the means
in figure 6.2. The optimisation may end when the auxiliary function fails to increase beyond
a threshold or until a certain number of iterations has passed. It was found that a maximum
number of iterations, set at 10, was effective. Compared to the statics fixed point estimation
of the noise means where iteration occurs by successively improving the VTS expansion point,
the first-order approach slowly steps toward the maximum.

The derivative of the auxiliary function, given in equation (6.3), w.r.t. the static additive
noise variance is required. This may be expressed as

∂Qvts

∂Σz
=

T∑
t=1

M∑
m=1

γ
(m)
o,t

∂

∂Σz

[
log p

(
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)]
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M∑
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γ
(m)
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∂
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[
−1

2
log|Σ(m)

y | − 1
2
(
yt−µ(m)

y

)TΣ(m) -1
y

(
yt−µ(m)

y

)]
(6.8)

where terms independent of the static additive noise variance are ignored. As shown in
appendix C, by ignoring cross-terms between dimensions, equation (6.8), for dimension i,
may be approximated by

∂Qvts

∂σ2
z,i

≈ −1
2

M∑
m=1

Ds∑
d=1

[
J (m)

z

]2
di

1

σ
(m)2
y,d


1−

µ
(m)2
y,d

σ
(m)2
y,d

γ(m)
o −

p
(m)
d −2q

(m)
d µ

(m)
y,d

σ
(m)2
y,d

 (6.9)

where
[
J

(m)
z

]2
di

gives the square of the element in row d, column i, of the Jacobian matrix
and the sufficient statistics p(m) and q(m) are defined as

p
(m)
d =

T∑
t=1

γ
(m)
o,t y2

t,d q
(m)
d =

T∑
t=1

γ
(m)
o,t yt,d (6.10)

Since the derivatives of the corrupted speech variances w.r.t. the additive noise variance
are all the same for the different blocks, i.e.

∂Σ(m)
y

∂σ2
z,i

=
∂Σ(m)

∆y

∂σ2
∆z,i

=
∂Σ(m)

∆2y

∂σ2
∆2z,i

≈
[
J (m)

z

]
i

[
J (m)

z

]T
i

(6.11)
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the derivatives of the dynamic corrupted speech variances may be computed in the same
manner as the static dimensions. This can be plainly seen in the derivation of equation (C.5)
found in appendix C. Thus the auxiliary derivatives for dynamic coefficients of the additive
noise variance are given by

∂Qvts
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6.3 M-Joint Noise Model Estimation
The previous section described a noise estimation procedure directed at obtaining an ML
noise model presuming a VTS compensation scheme. While the M-Joint form may perform
sufficiently well with such noise parameters, they are not optimal in an ML sense. Although
M-Joint converges to VTS compensation when the number of classes equals the number of
model components, if this is not the case, then the auxiliary functions are different. Hence,
for noise models to be used for M-Joint compensation, an alternate auxiliary function during
estimation should be used. This section outlines differences between the VTS compensation
described previously, and noise model estimation for the generation of M-Joint transforms.

The same form of auxiliary from equation (6.2) is used for ML M-Joint noise model
estimation

Qjnt(Mn;M̂n) =
T∑

t=1

M∑
m=1

γ
(m)
o,t log p(ot|m;M,M̂n)

=
T∑
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(m)
o,t log

[
|A(rm)|N

(
A(rm)ot + b(rm);µ(m)

s ,Σ(m)
s + Σ(rm)

b

)]
(6.14)

where the component posteriors γ
(m)
o,t and the log Gaussian probability are now computed

using an M-Joint compensated system. Terms independent of the noise model parameters are
omitted. The predicted linear transform matrix in this work is block-diagonal

A(rm) ≈

J
(rm)
x 0 0
0 J

(rm)
x 0

0 0 J
(rm)
x


-1

(6.15)
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as was given previously in by equation (5.46). Equation (5.47) expressed the feature bias as

b(rm) ≈

µ
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0

0
0

 (6.16)

This allows equation (6.14) to be re-expressed as
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ỹ +([

J (rm)
x

]-1∆yt − µ
(m)
∆x

)T(Σ(m)
∆x +

[
Σ(rm)

b

]
22

)-1([
J (rm)

x

]-1∆yt − µ
(m)
∆x

)
+([

J (rm)
x

]-1∆2yt − µ
(m)
∆2x

)T(Σ(m)
∆2x

+
[
Σ(rm)

b

]
33

)-1([
J (rm)

x

]-1∆2yt − µ
(m)
∆2x

)]
(6.17)

where only the terms that depend on the noise model are shown and

ỹ =
([

J (rm)
x
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x + µ(rm)
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(6.18)

Each M-Joint transform T (r) =
{
A(r), b(r),Σ(r)

b

}
, is computed from the joint distribution

predicted from the clean speech class model, derived from M as described in section 5.4,
and the estimated noise parameters M̂n. Thus for noise model estimation, the M-Joint
compensation matrices in equation (6.14) are diagonal, but may be easily extended to be
block-diagonal by not diagonalising the result from the clean speech covariance and Jacobian
matrix multiplications when computing the joint distribution.

The ML M-Joint noise model may be iteratively updated using this second-order gradient-
based optimisation scheme

µ̂z,i = µz,i − ζ

∂Qjnt

∂µz,i

∂2Qjnt

∂µ2
z,i

(6.19)

σ̂2
z,i = σ2

z,i − ζ

∂Qjnt

∂σ2
z,i
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∂(σ2
z,i)

2

(6.20)

µ̂h,i = µh,i − ζ

∂Qjnt

∂µh,i

∂2Qjnt

∂µ2
h,i

(6.21)

where ζ is the learning rate. This should be faster than the first-order approach taken to
estimate the VTS static additive noise variance.

The second-order derivatives need to be conditioned such that they remain negative to
ensure the updates converge to a local maximum. In case they are not negative, a simple
back-off strategy is to use a fixed step size with only the first-order gradient. It would
be advantageous to optimise the log of the noise variance instead, however this was not
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implemented. It is also important to ensure that each step in the iteration improves the
auxiliary function and hence a multi-tiered back-off of the estimates generated is used similar
to the VTS noise model mean back-off strategy given in figure 6.2. The M-Joint auxiliary
function can be expressed as

Qjnt = Qjnt,y +Qjnt,∆y +Qjnt,∆2y (6.22)

where
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The back-off then proceeds as follows for the noise mean estimates. First ensure the static
M-Joint auxiliary function improves

Qjnt,y(Mn;µi
n,µi

h) < Qjnt,y(Mn;µi+1
n ,µi+1

h ) (6.26)

then the static and the deltas
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and finally the complete auxiliary function
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which is the same as ensuring

Qjnt(Mn;µi
n,µi

h) < Qjnt,y(Mn;µi+1
n ,µi+1

h ) (6.29)

The static coefficients are interpolated between the new and old until the auxiliary function
has increased, then this is conducted with the delta coefficients and finally delta-deltas. Here
the noise means have been checked; the estimation and checking of the additive noise variances
should follow with these updated noise mean estimates. Although analytical gradients would
be much faster, in this work numerically computed derivatives of Qjnt were used for all the
M-Joint noise model results.
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6.4 Initialising the Noise Model
Before the noise estimation process may begin, the noise model must be initialised. Estimates
for the initial additive and convolutional noise means may be the minimum energy frame of a
noisy utterance observation sequence Y and the expected difference between the noisy speech
and the clean

µz = min {Y } (6.30)

µh = E {Y } − µ̄x (6.31)

as used by Moreno [106], where µ̄x is the static global speech mean. For this work, the
convolutional noise is instead initialised to zero so that a full pass over the data is not required.

The additive noise variance can be estimated from using the background noise frames [35,
136]. The initial value here of Σn is set to the variance of the first five frames of the observed
speech. This is similar to the noise initialisation scheme in Kim et al. [79], where the first 3–4
frames are considered silence and used to initialise the noise model parameters. This should
provide a much better estimate than using the global clean speech variance, which should be
considered an upper bound, but may be worse than initialising it to a small value if there
is little environmental noise. In this work, if this first initialisation fails to provide a noise
estimate that improves the auxiliary function, then the additive noise is set to Cf0 and a
small initial variance, where f0 is the log zero vector, to represent a “quiet” noise condition.

6.5 Improving Estimation Speed
If the speech acoustic models are HMMs, then a hypothesis of the test data is required to
compute the component posteriors. The hypothesis may be obtained by running an initial
decoding pass over the test data. It may be quite poor though if the initial noise model
is inaccurate. Alternatively, a GMM speech model may be used, which does not require a
hypothesis, but is a weaker model of speech. A GMM speech model will also generally be
faster than an HMM if there are fewer components; in either form, efficiency is improved by
only including components with a minimum occupancy, i.e. number of associated observations.
Once the noise model is updated, it may be used again to compensate the speech model, to
begin another EM iteration. The hypothesis at this point may also be updated by conducting
another pass over the test data with speech models compensated by an improved noise model.

The first iteration to estimate the noise models may be slightly modified to improve the
speed of estimating ML M-Joint noise models and provide a general approach to estimating
models for both clean- and multistyle-trained models. First, for the expectation stage, when
computing the complete data set and auxiliary function, the acoustic models are not com-
pensated. This prevents poor initial noise estimates from degrading noise model estimation
for multistyle acoustic models, which already represent varying levels of noise and speech.
However, noise estimation may suffer for clean acoustic models since the state alignments
may be quite poor when the SNR is low. For the maximisation step, first the ML VTS noise
model estimation process outlined in section 6.2 is followed. The initial noise model used
is described in the previous section 6.4. For a M-Joint noise model, this VTS-tuned noise
model will be further refined, in the same maximisation step, using the M-Joint noise model
estimation procedure given in section 6.3. This provides a well-trained ML M-Joint noise
model with only one pass over the test data, not including obtaining the hypothesis, in the
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same manner for both clean and multistyle acoustic models. This approach was taken since
M-Joint noise models needed to be initialised with VTS noise models to obtain good results.
Experiments show that this procedure yielded reasonable results for compensating both clean
and multistyle acoustic models.

6.6 Noise Model Estimation with a Transformed
Feature-Space

Many state-of-the-art speech recognition techniques to improve performance use a transforma-
tion of the features making them efficient. Examples of these included CMLLR for adaptation
and STC for covariance modelling. In contrast to the description of STC in section 2.3.4,
here a D ×D matrix transforms the noisy feature space

õ = Ao = A

 y
∆y
∆2y

 (6.32)

where õ are the noisy features in the transformed space and the time subscript omitted for
simplicity. The inverse of the STC matrix, which will be defined as Ã = A -1, may be used
to derive the original cepstra from the transformed features

o = Ãõ y
∆y
∆2y

 =

Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

Ã31 Ã32 Ã33

 ỹ
∆ỹ
∆2ỹ

 (6.33)

where the subscript indices denote the blocks in the matrix rather than specific elements.
Hence the following static cepstral vectors may be obtained from their decorrelated versions
in the following manner

y = Ã11ỹ + Ã12∆ỹ + Ã13∆2ỹ (6.34)

x = Ã11x̃ + Ã12∆x̃ + Ã13∆2x̃ (6.35)

h = Ã11h̃ + Ã12∆h̃ + Ã13∆2h̃ (6.36)

z = Ã11z̃ + Ã12∆z̃ + Ã13∆2z̃ (6.37)

Again, ignoring the time subscripts, the cepstral model of the noisy acoustic environment was
previously given as

y = x + h + Clog
(
1 + exp

(
C -1(z − x− h)

))
by equation (3.12). Substituting in equations (6.34) to (6.37) gives

Ã11ỹ + Ã12∆ỹ + Ã13∆2ỹ = Ã11x̃ + Ã12∆x̃ + Ã13∆2x̃+

Ã11h̃ + Ã12∆h̃ + Ã13∆2h̃+

Clog
{
1 + exp

(
C -1{Ã11z̃ + Ã12∆z̃ + Ã13∆2z̃−

Ã11x̃− Ã12∆x̃− Ã13∆2x̃−

Ã11h̃− Ã12∆h̃− Ã13∆2h̃
})}

(6.38)
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The expected value of the static transformed features, ỹ, will also be a function of the dynamic
features ∆ỹ and ∆2ỹ. This complicates the derivation of the compensated acoustic model
parameters for the transformed corrupted speech parameters.

6.6.1 Block-diagonal Feature Transformation
To simplify equation (6.38), only the main diagonal blocks of Ã may be considered non-zero.
Thus if Ã12 = Ã13 = 0 then this reduces equation (6.38) to

Ã11ỹ = Ã11x̃ + Ã11h̃ + Clog
(
1 + exp(C -1Ã11(z̃ − x̃− h̃))

)
ỹ = x̃ + h̃ + A11Clog(1 + exp(C -1Ã11(z̃ − x̃− h̃))) (6.39)

where the inverse of Ã11 is now simply the block A11 from a block-diagonal A. The first-
order VTS approximation of equation (6.39) is very similar to the form without the feature
transformation

ỹvts = ỹ
∣∣
µ̃0

+ J̃x(x̃− µx̃) + J̃z(z̃ − µz̃) + J̃h(h̃− µh̃) (6.40)

with the Jacobian matrices now given by

J̃x =
[
∇x̃ ỹ1

∣∣
µ̃0

· · · ∇x̃ ỹDs

∣∣
µ̃0

]T
= I −A11CF̃C -1Ã11 (6.41)

J̃h = J̃x, J̃z = A11CF̃C -1Ã11 (6.42)

and Ds denoting the number of static coefficients. The expansion point µ̃0 is about the
mean of the transformed additive noise µz̃, speech µx̃, and channel µh̃. The elements of the
diagonal matrix F̃ are

f̃ii =
exp
(
c -1

ī
Ã11

(
µz̃ − µx̃ − µh̃

))
1 + exp

(
c -1

ī
Ã11

(
µz̃ − µx̃ − µh̃

)) (6.43)

where recall the term c -1
ī

gives a row vector that is the ith row of the inverse DCT matrix
C -1. The expected values and dynamic feature compensation are similar to the untransformed
features

µỹ = E{ỹ} ≈ E{ỹvts} = ỹ
∣∣
µ̃0

= µx̃ + µh̃ + A11Clog
(
1 + exp

(
C -1Ã11

(
µz̃ − µx̃ − µh̃

)))
(6.44)

and the variance, after assuming no channel variation, is

Σỹ = Var{ỹ} ≈ Var{ỹvts}
= J̃xΣx̃J̃T

x + J̃zΣz̃J̃
T
z (6.45)

which is typically diagonalised. The derivations for the dynamic coefficients, using the
Continuous-Time approximation, remain unchanged by the feature transformation other than
the modified Jacobian matrices

µ∆ỹ ≈ J̃xµ∆x̃ (6.46)

Σ∆ỹ ≈ J̃xΣ∆x̃J̃T
x + J̃zΣ∆z̃J̃

T
z (6.47)



CHAPTER 6. NOISE MODEL ESTIMATION 96

Note that this block form of feature transformation may be easily implemented in an existing
system by applying the feature transform to the DCT and IDCT matrices

C̃ = A11C and C̃ -1 = C -1Ã11 (6.48)

The VTS and M-Joint noise estimation and compensation processes can then operate without
any further regard to the feature transform with these updated matrices.

6.7 Summary
This chapter discussed the maximum likelihood estimation of noise models consisting of the
channel noise mean and additive noise mean and variance. The noise estimation procedure
should be consistent with the target noise compensation scheme: both VTS and M-Joint
ML noise model estimation procedures were presented. Although the additive noise may be
estimated from the background, non-speech audio segments, this requires a voice activity
detector which has its own issues when the noise level rises. A benefit of this ML noise model
estimation procedure it it allows noise to be estimated during speech. Thus if there are long
speech segments where the noise changes, then the noise model may be updated within the
utterance. For a frequently changing environment, a fast compensation form like JUD is
particularly important. Also, a noise model may be estimated for with multistyle acoustic
models. In this case, the model is no longer an acoustic noise model, but a set of parameters
that maximise the test data likelihood when the multistyle models are compensated with
predictive forms that assume a certain model of the acoustic environment. Hence an EM-
based approach to noise model estimation gives a consistent and comprehensive method of
generating noise models for model-based noise compensation.



CHAPTER 7
Joint Adaptive Training

Adaptation has been shown to be a powerful technique to reduce the acoustic mismatch
between training and test conditions [46, 89, 110]. When there is insufficient data to

re-train models to match the testing condition, adaptation provides an efficient way to include
data from the test condition. Adaptative training extends this by removing testing condition
variablity from the acoustic model itself. It was first shown to be succesful for speaker
normalisation [3]. However it can be more generally applied to reduce the acoustic mismatch
from many factors such as the speaker, channel and environmental variability [43]. Using
adaptive training yields a “purer” acoustic model than multistyle techniques that need to
incorporate all the extraneous variability due to non-speech factors in the models. Moreover,
the resulting canonical model may be a better “clean” acoustic model for transformation that
all predictive noise compensation techniques require.

Linear transforms like MLLR [3] and CMLLR [46] have been successfully used in adaptive
training. In this work, the use of JUD transforms for adaptive training framework is explored
as a method of handling training data with varying noise levels. This form of noise adaptive
training is referred to as joint adaptive training (JAT). Rather than separately modelling the
speaker and noise condition with a MLLR transform and cluster adaptive training respectively
as in Gales [43], an M-Joint transform will model both for each speaker/noise condition.

In CMLLR and feature normalisation techniques, observations are compensated and
treated as if they were done so exactly and perfectly when canonical model parameters are
estimated. As this chapter shows, the uncertainty variance bias term de-weights noisy obser-
vations. When the noise is high, the uncertainty is large, and these observations contribute
less to estimating the canonical model parameters. This allows JAT to train a “cleaner”
acoustic model of speech.

97
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Figure 7.1: Joint adaptive training.

7.1 An Adaptive Training Framework
JAT follows the adaptive training framework outlined in section 2.5.5. The canonical acoustic
model parameters M and set of transforms T are estimated such that they maximise the
likelihood of the heterogeneous training data comprised of H homogeneous blocks. From
equation (2.70), this may be expressed as

p(S|Wr;M, T ) =
H∏

h=1

p(S(h)|W(h)
r ;M, T (h)) (7.1)

=
H∏

h=1

∑
m∈M (h)

P(m;M, T (h))
T (h)∏
t=1

p(st|mt;M, T (h)) (7.2)

To review the notation, the heterogeneous training data S has a transcription Wr and is
comprised of H blocks of homogeneous data denoted by S(h) which is of length T (h) and has
transcription W(h). The complete data for a homogeneous block h is

{
M (h),S(h)

}
where

M (h) represents all possible hidden component/state sequences for S(h) and a given tran-
scription. A component sequence m is of length T (h). While the entire training data set
S may have many speakers and come from many different noise environments with varying
SNR the homogeneous block of data should be from a single speaker in a stationary noise
environment. Again, EM is used to iteratively find suitable canonical model parameters and
the noise model parameters to generate the JUD transforms. The M-Joint auxiliary function,
from equation (6.14) and used to give ML estimates of the noise for M-Joint compensation,
may be extended to

Qjnt

(
M, T ;M̂, T̂

)
= EM,T

[
log p(S,M ;M̂, T̂ )

]
=

H∑
h=1

T (h)∑
t=1

M∑
m=1

γ
(mh)
s,t log

[
|Â(rmh)|N

(
Â(rmh)st+b̂(rmh); µ̂(m)

s , Σ̂(m)
s +Σ̂(rmh)

b

)]
(7.3)

where γ
(mh)
s,t is the posterior probability of component m given the observation sequence S(h),

transform set T (h), and model set M. The subscript s indicates parameters are associated
with the training data rather than clean conditions. The term rm, which gives the class r,
and thus transform T (rmh) =

{
A(rmh), b(rmh),Σ(rmh)

b

}
, associated with component m, was

described previously in section 5.2.4.
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The overall training regime is as the standard adaptive training algorithm given in fig-
ure 2.14 where transforms are model parameters are iteratively estimated. However, direct
maximisation of the canonical model parameters is difficult, hence a gradient based approach
will be taken in a generalised EM fashion; this is discussed in section 7.3. Figure 7.1 illustrates
one and a half iterations of interleaved JAT. The symbol Mn, for example, represents the
noise parameters for iteration 1 that are associated with transform T . First, given the current
acoustic models M a new set of transform T is estimated. Subsequently, the canonical model
parameters are updated to M̂ given this new set of transforms. Multiple iterations of this
interleaved training may be performed to optimise the auxiliary function.

7.2 Estimating M-Joint Transforms
Section 6.3 discussed noise model estimation using a M-Joint auxiliary function. In JAT,
transforms are generated from a noise model, estimated using the same procedures outlined
in the previous chapter, and the clean speech model. This clean speech class model, described
in section 5.4.1, needs to be re-computed every time the canonical model is updated. A
disconnect may arise when during the estimation of a new set of transforms, the initial ML
noise parameters may have been estimated using a different clean speech class model. This
problem can be clearly understood by following the adaptive training process in figure 7.1.
In step 1, the set of transforms T̂ is generated from M̂n and the clean speech class model
derived from M and then used in step 2, where a new set of canonical model parameters M̂
are estimated. But when step 3 starts, during the expectation step, the set of transforms
generated from M̂n and clean speech class model from M̂ is not the same as T̂ , which is the
set of transforms that EM requires to be the initial starting point.

Nevertheless, it may be possible to begin with the M-Joint transform produced from
M̂n and M̂. However, not only is it now necessary to verify the newly estimated M-Joint
transform yields a higher auxiliary function value than the initial input parameters, but that
it also exceeds the auxiliary function value using the input joint transforms, in this example
T̂ , which were computed from the previous clean speech class model and the initial noise
parameters. It may be the case that due to the change in clean speech class model, that the
newly estimated parameters may not improve the auxiliary function over the input transform,
which was computed from a different clean speech class model. If this is the case, the transform
is not updated and the input transform remains the current “best transform”.

7.3 Estimating Canonical Model Parameters
After a new set of transforms is estimated, the model parameters must be re-trained. The
auxiliary function where only terms dependent on the model parameters are shown is

Qjnt

(
M,T ;M̂, T

)
=

− 1
2

H∑
h=1

T (h)∑
t=1

M∑
m=1

γ
(mh)
s,t

D∑
i=1

(
log
(
σ

(m)2
s,i +σ

(rmh)2
b,i

)
+

(
a

(rmh)

ī
st+b

(rmh)
i −µ

(m)
s,i

)2
σ

(m)2
s,i + σ

(rmh)2
b,i

)
(7.4)
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where diagonal covariance matrices assumed and a
(rmh)

ī
gives the ith row of A(rmh). Because

the M-Joint transform parameters affect the model parameters and are shared over many
homogeneous blocks, there is no closed form solution for the model parameters that maximise
this auxiliary function. Hence a generalised EM approach is taken, where Newton’s method
is applied to optimise the model parameters in the maximisation step

[
µ̂

(m)
s,i

σ̂
(m)2
s,i

]
=

[
µ

(m)
s,i

σ
(m)2
s,i

]
− ζ


∂2Qjnt

∂
(
µ

(m)
s,i

)2 ∂2Qjnt

∂µ
(m)
s,i ∂σ

(m)2
s,i

∂2Qjnt

∂σ
(m)2
s,i ∂µ

(m)
s,i

∂2Qjnt

∂
(
σ

(m)2
s,i

)2

-1  ∂Qjnt

∂µ
(m)
s,i

∂Qjnt

∂σ
(m)2
s,i

 (7.5)

This requires both first- and second-order derivatives of the auxiliary function with respect
to the model mean and variance. Using a second-order Newton approach allows faster con-
vergence than the first-order gradient method used to estimate the additive noise variance in
section 6.2.2 of the previous chapter.

The first derivative of the auxiliary in equation (7.4) w.r.t. the mean of component m,
dimension i is

∂Qjnt

∂µ
(m)
s,i

=
H∑

h=1

T (h)∑
t=1

γ
(mh)
s,t

σ
(m)2
s,i + σ

(rmh)2
b,i

(
a

(rmh)

ī
st + b

(rmh)
i − µ

(m)
s,i

)
(7.6)

and with respect to the model variance

∂Qjnt

∂σ
(m)2
s,i

=
H∑

h=1

T (h)∑
t=1

γ
(mh)
s,t

2
(
σ

(m)2
s,i + σ

(rmh)2
b,i

) ((a(rmh)

ī
st + b

(rmh)
i − µ

(m)
s,i )2

σ
(m)2
s,i + σ

(rmh)2
b,i

− 1

)
(7.7)

The uncertainty bias σ
(rmh)2
b,i adjusts the component posterior γ

(mh)
s,t for both these derivatives.

If the SNR is high, then there is no uncertainty and the posterior is not affected. When the
SNR is low, the uncertainty will be large, reducing the contribution of noisy observations
by de-weighting the component posterior. In areas where the noise completely subsumes the
speech, the uncertainty will ensure that these observations do not contribute to the estimate
of the model parameters at all—the model parameters will not be updated since the first
derivatives of the auxiliary function w.r.t. the model means and variance will be naught.
This allows the model parameters to be a better representation of “clean” speech. With
normalisation schemes or MLLR-based adaptation, once observations are compensated for
noise, they are all treated equally. In contrast, with the uncertainty term, JAT will give
greater importance to observations that are less “noisy”.

The Hessian matrix is also required and is comprised of the following terms

∂2Qjnt

∂
(
µ

(m)
s,i

)2 =
H∑

h=1

−1

σ
(m)2
s,i +σ

(rmh)2
b,i

T (h)∑
t=1

γ
(mh)
s,t (7.8)

∂2Qjnt

∂
(
σ

(m)2
s,i

)2 =
H∑

h=1

1

σ
(m)2
s,i +σ

(rmh)2
b,i

T (h)∑
t=1

γ
(mh)
s,t

(
1
2
−
(
a

(rmh)

ī
st+b

(rmh)
i −µ

(m)
s,i

)2
σ

(m)2
s,i + σ

(rmh)2
b,i

)
(7.9)

∂2Qjnt

∂µ
(m)
s,i ∂σ

(m)2
s,i

=
∂2Qjnt

∂σ
(m)2
s,i ∂µ

(m)
s,i

=
H∑

h=1

−1

σ
(m)2
s,i +σ

(rmh)2
b,i

T (h)∑
t=1

γ
(mh)
s,t

a
(rmh)

ī
st + b

(rmh)
i − µ

(m)
s,i

σ
(m)2
s,i + σ

(rmh)2
b,i

(7.10)
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To compute the terms of the Hessian matrix, the following statistics may be gathered per
recognition component

w
(m)
1,i =

∂2Qjnt

∂
(
µ

(m)
s,i

)2 (7.11)

w
(m)
2,i =

H∑
h=1

T (h)∑
t=1

γ
(mh)
s,t

1(
σ

(m)2
s,i + σ

(rmh)2
b,i

)2 (7.12)

w
(m)
3,i =

∂2Qjnt

∂σ
(m)2
s,i ∂µ

(m)
i

(7.13)

w
(m)
4,i = −

H∑
h=1

T (h)∑
t=1

γ
(mh)
s,t

(
a

(rmh)

ī
st + b

(rmh)
i − µ

(m)
s,i

)2(
σ

(m)2
s,i + σ

(rmh)2
b,i

)3 (7.14)

while the first-order partial derivatives may be directly accumulated. The accumulates given
by equations (7.11) and (7.13) yield equations (7.8) and equations (7.10) respectively. The
remaining equation (7.9), the second-order derivative w.r.t. the model variance, may then be
re-expressed as

∂2Qjnt

∂
(
σ

(m)2
s,i

)2 = w
(m)
4,i +

1
2
w

(m)
2,i (7.15)

7.3.1 Stabilising the Estimation Process
When using this form of optimisation for maximising the auxiliary function, it is important
to ensure that the iterations are approaching a global maximum rather than the minimum.
This implies that the Hessian matrix must be negative-definite and necessitates checking the
second derivatives are negative. Upon inspection, equation (7.8) is guaranteed to be always
negative, while equation (7.15) is not. Hence to ensure ∂2Qjnt

∂(σ
(m)2
s,i )2

is negative, equation (7.15)
may be re-written as

∂2Qjnt

∂
(
σ

(m)2
s,i

)2 = w
(m)
2,i

(
w

(m)
4,i

w
(m)
2,i

+
1
2

)

≈ w
(m)
2,i

(
−ϑ̂ +

1
2

)
(7.16)

where

ϑ̂ = max

(
ϑ,−

w
(m)
4,i

w
(m)
2,i

)
(7.17)

This parameter ϑ should remain greater than a half to ensure stability of the optimisation.
As the model parameters become better trained, the updated variance should be equal to the
expected square of the deviation of the transformed speech from the mean, hence

H∑
h=1

T (h)∑
t=1

γ
(mh)
s,t

(
a

(rmh)

ī
st + b

(rmh)
i − µ

(m)
s,i

)2
σ

(m)2
s,i + σ

(rmh)2
b,i

→ 1 (7.18)
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Thus by referring back to equations (7.12) and (7.14), it may be observed that the ratio
of w

(m)
4,i to w

(m)
2,i should converge to unity as the model parameters better approximate the

training data. That is
w

(m)
4,i

w
(m)
2,i

→ 1 (7.19)

Hence following how this ratio changes during the training process is useful for gaging con-
vergence. Note from equation (7.16) it follows that if this thresholding is applied, the second
derivative becomes a scaling of w

(m)
2,i by ϑ. Hence to improve estimation speed, ϑ should be

large, however as the parameters become better trained, ϑ should diminish.
Also, instead of directly optimising the variance, the log of the variance is estimated to

ensure that the converged value remains positive in this work. Thus, make the change of
variable

ς(m)
s = logΣ(m)

s (7.20)

where log is an element-wise log function. Thus the parameter update formula, stated in
equation (7.5), becomes

[
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(m)
s,i
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(m)
s,i

]
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The partial derivatives w.r.t. ς
(m)
s,i may be expressed as a function of the previously given

partial derivatives
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since
∂σ
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s,i
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= exp ς
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s,i , and lastly differentiating equation (7.22)
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Finally, the stabilising learning rate ζ in equation (7.5) may be less than one, but in this
work a value of unity is used. It was found that during this optimisation process, the variance
is sometimes driven to infinity. Hence a measure was introduced to stabilise the variance
estimation—the variance was limited to only increase or decrease by a factor υ. Specifically
the conditioned model variance is given by
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s,i = min

(
max

(
σ̂
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s,i ,

1
υ

σ
(m)2
s,i

)
, υσ

(m)2
s,i

)
(7.25)

In this work υ was set at 2.

7.4 Summary
This chapter has described how model-based JUD transforms can be used in an adaptive
training framework. Compared to speaker adaptive training, this form of noise compensation
may be referred to as noise adaptive training. The end result of using JUD transforms to
represent environmental noise during acoustic model training is a “purer” acoustic model of
speech. A closed form solution for updating the acoustic model parameters was unavailable,
thus a gradient descent approach was taken. Various methods were described to improve the
stability of the parameter estimation. A key difference between JAT and SAT using MLLR-
type transforms is that during acoustic model training the uncertainty variance bias term
proportionally de-weights noisier observations. In normalisation and MLLR-based adaptive
training techniques, although the noise may be removed from observations or the model
variances updated, the uncertainty due to the noise on observations is not accounted for, but
is automatically in JAT. This gives a powerful method to factor out the effects of noise from
the acoustic models.



CHAPTER 8
Experimental Results on

Artificially Corrupted
Speech

This chapter presents results from experiments designed to examine the effectiveness of
uncertainty decoding. Evaluation is based on the small vocabulary Aurora2 corpus and

noise-corrupted medium vocabulary Resource Management (RM) task. Noise is artificially
added in these corpora to carefuly control the experiments and the level of noise in tests.
Techniques can be assessed without considering complications arising from noise model esti-
mation, appoximations in the mismatch function or the Lombard effect. Various other noise
robustness algorithms are evaluated to provide a contrast with uncertainty decoding. Two
forms of front-end uncertainty decoding are presented: SPLICEU and FE-Joint distribution
uncertainty decoding. These are compared to a fast feature enhancement form, SPLICE, and
the efficient and effective model adaptation scheme CMLLR. Single-pass re-training (SPR)
was used to generate matched systems to represent idealised model compensation when stereo
data are available. Unless noted, recognition parameters such as grammar scale factor, prun-
ing threshold and model insertion penalty were tuned once for the clean system on clean data
and kept constant for the other experiments.

104
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8.1 The Aurora2 Corpus
The Aurora2 [68] small vocabulary digit string recognition task is an artificially noise-corrupted
TIDigits corpus. The task involves transcribing utterances that are one to seven digits long.
The standard Aurora2 system uses a 39-dimensional feature vector consisting of 12 MFCC ap-
pended with unnormalised log energy, delta and delta-delta coefficients. The acoustic models
are comprised of 11 whole-word digit models, each with 16 emitting states, 3 Gaussians per
state; a 3-state silence model with 6 Gaussians per state; and single-state inter-word pause
model tied to the middle state of the silence model. This gives a total of 546 acoustic model
components. In this work, an internal version of HTK 3.3 along with its native front-end
processing code, as opposed to the reference 2.2 version was used; only very minor differences
occurred in the baseline performance.

To train the acoustic models, there are 8440 training utterances available, about 4 hours
total, from 110 speakers, evenly split between gender. For matched training, 422 sentences,
or about 720 seconds of audio, are provided for each of the 16 conditions: 4 different SNRs
ranging from 20 to 5 dB, and with the 4 different additive noise sources N1 to N4: subway,
babble, car and exhibition hall. This provides sufficient data to use SPR, reviewed in sec-
tion 4.4.1, to generate matched models for this small acoustic model of 546 diagonal variance
Gaussians. Each of the 16 matched conditions also has a test set of a 1001 sentences with 52
male and 52 female speakers—this is test set A. Test set B is another set of additive noise
conditions for conducting unseen noise tests, and test set C for convolutional noise robustness
experiments. Since for these Aurora2 experiments only clean acoustic models were tested,
test set B was not used. Due to the extremely high error rates at SNRs below 5 dB, these
conditions were also not tested. A convention on Aurora2 has been to average WER over the
different SNRs. The large difference in magnitudes between error rates means large gains in
noisier data can mask losses in cleaner conditions, hence results are reported for each SNR
level and only averaged across the four different additive noise conditions in test set A. Lastly
no results were reported on test set C since there is no degradation from the channel difference
on the clean baseline tests.

Since the task is well defined, comparisons can be made against other compensation al-
gorithms evaluated on this corpus. One criticism of Aurora2 is the average clean on clean
baseline word error rate of 0.98% is not close to state-of-the-art performance. To address
this, in 2002 a more complex Aurora2 recogniser back-end was specified [59], which increased
the number of components per GMM to 20 from the standard 3; this improved what was a
considered a weak baseline by 67.8% relative on clean-trained models and 19.2% on multistyle-
trained models. However despite these gains, most results are still reported on the standard
back-end models, thus this is also the case for this work.

8.1.1 Compensation Parameter Estimation
Compensation parameters were estimated using stereo data. The front-end uncertainty
schemes all used diagonal transformations. The front-end GMM parameters required for
some forms of noise estimation and decoding were trained using iterative mixture splitting
on either the clean data or artificially corrupted data. At each step the number of com-
ponents was doubled and then four iterations of Baum-Welch estimation performed. The
corresponding corrupted or clean GMM was then trained using SPR with stereo data. For
the model-based forms, regression classes were produced using the HTK tool HHEd to perform



CHAPTER 8. EXPERIMENTAL RESULTS ON ARTIFICIALLY CORRUPTED SPEECH 106

top-down clustering of model components with a Euclidean distance measure. Either SPR or
the noise model estimation described in section 6 was used to estimate M-Joint transforms
based on these classes.

8.1.2 Front-end Compensation
In 2001, it was found that SPLICE had the best noise removal performance at a special
Aurora2 session in Eurospeech [26]; SPLICEU improved on this result. Given the similarity
of FE-Joint to SPLICEU, these two algorithms are compared along with standard SPLICE.
The original SPLICE and SPLICEU forms trained a noisy speech GMM to partition the
acoustic space for each condition. However, it is unrealistic to assume that such a model is
available a priori for any environment. An alternative, is to start with a clean speech GMM,
and compensate it, for example using SPR, to each test condition given an estimate of the
noise. These two forms of deriving the front-end GMM for partitioning the acoustic space are
also explored.

SNR(dB)
System 20 15 10 5
Clean 4.6 12.2 31.1 59.2
Matched 1.8 2.8 5.0 11.4

Noisy Speech GMM
SPLICE 2.0 3.1 6.1 16.5
+Uncertainty, α = 0.1 2.2 3.2 6.0 14.5
FE-Joint, ρ = 0.9 1.8 2.9 5.7 14.6

Clean Speech GMM
SPLICE 2.0 3.0 6.2 15.7
+Uncertainty, α = 0.1 2.5 4.1 8.9 23.1
FE-Joint, ρ = 0.9 1.9 3.0 6.1 16.4

Table 8.1: WER (%) for 256-component front-end GMM schemes compensating clean models
on Aurora2 test set A averaged across N1-N4.

Results are presented in table 8.1. As expected, the clean models show significant degrada-
tion as the noise level increases. Matched training, using SPR, gave substantial improvements
by more than halving the error rate for all SNR levels evaluated. The results for SPLICE and
SPLICEU using the directly estimated noisy speech GMM are comparable to those reported
in the literature. While the SPLICEU only gives gains in higher noise, the FE-Joint tech-
nique exceeds standard SPLICE over all the SNRs evaluated. When the front-end GMM is
derived from a clean speech GMM, the standard SPLICE scheme performance changes little,
whereas SPLICEU in contrast is quite sensitive to the front-end GMM. There is significant
degradation when using SPLICEU with clean speech derived GMM compared to the noisy.
It is unclear why this is the case. Adjusting the α parameter failed to improve results. The
FE-Joint form demonstrated less sensitivity but still some degradation.
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8.1.3 Issue with Front-end Uncertainty Decoding
In section 5.2.2, a fundamental issue for all front-end uncertainty decoding schemes was
discussed. If several frames have high uncertainty, the decoder may not have any acoustic
information to discriminate between models. In table 8.2, this is clearly shown in the FE-

SNR(dB)
System 20 15 10 5
Clean 4.6 12.2 31.1 59.2
Matched 1.8 2.8 5.0 11.4

SPLICEU
α = 0.1 2.2 3.2 6.0 14.5
α = 0.95 2.0 3.2 5.6 12.3

FE-Joint
— 22.7 25.8 28.4 34.4
ρ = 0.9 1.8 2.9 5.7 14.6

Table 8.2: WER (%) for 256-component front-end UD schemes using noisy GMM and com-
pensating clean models, varying parameter flooring, on Aurora2 test set A averaged across
N1-N4.

Joint form results when no correlation flooring is applied—the error rates are all greatly
increased, with the majority being insertions. Flooring the correlation to a minimum of 0.9
was effective in addressing this problem. The SPLICEU form also benefited from adjusting
the α parameter which affects the magnitude of the uncertainty propagated to the decoder
as discussed in section 5.2.2. With α = 0.95 the SPLICE form still exhibited slightly more
insertion errors than the floored FE-Joint form. Table 8.3 gives a more detailed view of
how the flooring in FE-Joint compensation affects the errors generated. Without flooring,
insertions make up the majority of the errors. With the correlations floored, they are reduced
to a minority and below the number of substitution errors.

SNR(dB)
System 20 5

FE-Joint
— 420 (80%) 971 (70%)
ρ = 0.9 19 (20%) 136 (30%)

Table 8.3: Number of insertions, % of total errors in parentheses, for 256-component FE-Joint
compensation, varying ρ flooring, on Aurora2 N1 subway noise.

8.1.4 Model-based Compensation
Although front-end uncertainty decoding forms can give good performance, as the previous
section demonstrated, the flooring parameters α and ρ conceal a fundamental problem: the
uncertainty should be dependent on the clean speech model rather than solely on the feature
vector. In contrast, the M-Joint form discussed in section 5.2.4 closely ties the corrupted
speech conditional distribution to clean speech model component classes. The classes are
generated as discussed in section 2.5.1. The first split is between speech and non-speech
components and no minimum split threshold was applied.

Table 8.4 shows how the model-based JUD form compares to the front-end form. Here,
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Number of SNR(dB)
System Transforms 20 15 10 5
Clean — 4.6 12.2 31.1 59.2
Matched — 1.8 2.8 5.0 11.4
FE-Joint, ρ = 0.9 256 1.9 3.0 6.1 16.4

Diagonal Transformations
1 3.3 5.9 13.4 32.0

M-Joint 16 2.5 3.8 7.2 16.6
256 1.9 2.7 5.2 12.0

Full Transformations

M-Joint
1 2.4 3.8 7.0 17.1
16 2.0 2.8 4.2 9.9

Table 8.4: WER (%) for diagonal and full matrix JUD compensation of clean models on
Aurora2 test set A averaged across N1-N4.

transforms are either associated with regions of the clean acoustic space, for FE-Joint using
the “clean GMM”, or clusters of similar acoustic components in M-Joint. With only 16
transforms, the model-based form performs almost as well as the 256-transform front-end
version. With the same number of transforms, and therefore compensation parameters, the M-
Joint form is superior across all SNR to the FE-Joint form, as well as SPLICE and SPLICEU.
Moreover, it is very close to the matched baseline theoretical upper limit illustrating the
effectiveness of this technique.

As discussed in section 5.3, the M-Joint transform need not be diagonal—for example,
block-diagonal and full matrix transforms are also possible. By modelling the correlations
between features, results are greatly improved. A single, full transform performs as well as 16
diagonal ones, and 16 full transforms gives results that exceed matched system performance in
higher noise, for example 9.9% WER compared to matched at 11.4% at 5 dB. A full M-Joint
transform allows the system to model correlations between features introduced by the noise,
which is more pronounced as the noise is greater. The full covariance decoding required to
use such transforms is unfortunately computationally rather expensive. However, there are
some approaches that are effective in addressing this [48].

8.1.5 Comparison with Other Techniques
Aurora2 allows some comparisons between techniques to be made although there are usually
differences in the parameterisations. Still it is useful to get a rough idea how the forms
investigated in this thesis compare to others in the literature. Unless noted, recognition is on
MFCC parameters with delta and acceleration coefficients.

Table 8.5 compares a variety of different compensation schemes in the literature. The
first set are the baselines previously given. The second set represent techniques that make
few assumptions of the interfering noise. Histogram equalisation (HE) [139] demonstrates the
performance of a normalisation scheme. It performs better than the data imputation with
soft missing data approach [108], but does not do as well as the data imputation [142] scheme
where the restored spectral features are transformed to the cepstral domain for recognition.As
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SNR(dB)
System 20 15 10 5
Clean 4.6 12.2 31.1 59.2
Matched 1.8 2.8 5.0 11.4
Histogram equalisation 3.7 6.4 12.8 25.3
SMD, Imputation 3.9 8.2 12.5 43.5
SMD, Soft data marginalisation 3.0 7.3 11.5 26.5
Wiener filtering 2.1 3.7 8.3 20.4
Wiener filtering with obs. unc. 4.5 3.6 7.0 15.2
FE-Joint, ρ = 0.9 1.9 3.0 6.1 16.4
M-Joint 1.9 2.7 5.2 12.0

Table 8.5: WER (%) for various noise robustness techniques compensating clean models on
Aurora2 test set A averaged across N1-N4. Non-JUD compensation forms quoted from various
sources. Soft missing data (SMD) operated in spectral domain only.

expected the soft data marginalisation scheme [108], using a uniform evidence pdf, performed
better than the imputation version, but not as well as the imputation scheme in the cepstral
domain. This supports the findings in Raj and Stern [119]. Wiener filtering [10] assumes
that the noise is additive. Strangely, using the Wiener filter in an observation uncertainty
form reduced performance in higher SNR, but gave gains in lower SNR; this indicates a
fundamental problem with observation uncertainty. Obviously, the JUD forms gave the best
results—a large part of this is because the parameters are trained on stereo data. The HE,
SMD and Wiener filtering techniques do not make the use of such data. A fairer comparison
would be with M-Joint transforms estimated using a noise model estimated in an unsupervised
manner from test data. Such a noise estimation technique will be discussed in the next section.

8.2 The Resource Management Corpus
Due to the simple acoustic models and task, it is questionable whether conclusions drawn
from Aurora2 will carry over to more difficult tasks and systems with advanced acoustic
modelling. Hence, more extensive exploration of these robustness techniques was conducted
on the 1000-word naval ARPA Resource Management (RM) command and control task [117].
For this work, noise is artificially added at the waveform level from the NATO NOISEX-
92 database [144]. The clean RM data was recorded in a sound-isolated room using a head
mounted Sennheiser HMD414 noise-cancelling microphone yielding a high signal-to-noise ratio
of 49 dB1. The speech was recorded with 16-bit resolution at 20 kHz and down-sampled
subsequently to 16 kHz. The speaker independent training data for this task consists of 109
speakers reading 3990 sentences of prompted script. The utterances vary in length from about
3 to 5 seconds totalling 3.8 hours of data.

The NOISEX-92 database provides recording samples of various artificial, pedestrian and
military noise environments recorded at 20 kHz with 16-bit resolution. The Destroyer Op-
erations Room noise was sampled at random intervals and added to the clean speech data
at the waveform level prior to parameterisation. A range of environments is simulated from

1The wavmd tool from the NIST Speech Quality Assurance Package v2.3 was used to determine the SNR.
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Figure 8.1: Clean spectrum (left) compared with corrupting Operations Room noise at 8 dB
SNR (right) for the utterance“Clear all windows”.

32 dB to 8 dB SNR. Figure 8.1 shows the how the noise affects one of the RM sentences,
“Clear all windows”. The noise itself has a dominant low frequency background hum, an
unknown repetitive 6 Hz broadband noise of a machine, and intermittent speech. For unseen
noise conditions, car noise was used from the interior of a Volvo 340 recorded while driving at
120 km/h, in 4th gear, on an asphalt road, in rainy conditions. The car noise is much more
stationary than the Operations Room noise.

The baseline continuous speech recogniser was built using the RM recipe distributed with
HTK [152]. The cross-word, gender-independent, acoustic models have 1582 decision tree
clustered states, with six components per state totalling 9492 Gaussians. A simple bigram
language model was used. All results are quoted as an average of three of the four available
test sets, Feb’89, Oct’89 and Feb’91; the Sep’92 test data was not used. This gave a total
of 30 test speakers and 900 utterances. A 39-dimensional MFCC feature vector was appended
with delta and delta-delta coefficients. Unless otherwise noted all experiments were conducted
with a pruning threshold of 300, grammar scale factor of 7 and inter-model transition penalty
of 0. For initial experiments where SPR was used to obtain compensation parameters, a
normalised log energy feature replaced C0 (EDA parameterisation); this allows comparisons
with SPLICE and to remove noise estimation from being a factor under consideration. The
next set of experiments then examine systems where noise estimation was used to generate
compensation parameters; instead of normalised log energy, these necessarily used C0 (0DA
parameterisation). The clean-trained acoustic model used the original RM training data base.

For multistyle training, a multi-condition database was artificially created by adding Op-
erations Room noise on a per speaker level to the clean database at 8, 14, 20, 26 and 32 dB
in equal proportion. Rather than creating the acoustic model using the full RM recipe with
the multistyle data set, an initial multistyle model was obtained from the clean using SPR
and stereo data. Four iterations of BW re-estimation were conducted from this initial model
using the multi-condition training data to produce the final multistyle model. It should be
noted that when matched SPR baselines are reported, these are always using acoustic models
derived from the clean and never the multistyle.

8.2.1 Stereo Data Parameter Estimation
It is useful to compare the performance of uncertainty decoding with other compensation
techniques. In table 8.6 a variety of compensation forms were evaluated against Operations
Room noise at 20 dB on clean-trained acoustic models. A single set of parameters were
estimated for this noise level using SPR—not at the speaker level; hence with about an
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Compensation 20 dB SNR
None 33.2

Normalisation
CMN 26.6
CMN+CVN 18.5
Gaussianisation, 4 comp. 14.6

Feature-based
SPLICE 12.3
SPLICEU 9.9
FE-Joint 8.2

Model-based
CMLLR, full transforms 8.9
M-Joint, diagonal transforms 8.2
M-Joint, full transforms 7.4

Matched 7.2

Table 8.6: WER (%) for a variety of techniques compensating clean models on Operations
Room corrupted RM task at 20 dB SNR (EDA). Compensation parameters at a global level.
SPLICE and FE-Joint use “clean”, 256-component front-end GMMs. Model-based forms use
16 transforms.

hour of adaptation data to train one set of transforms, parameters for these compensation
schemes should be robustly estimated. A simple cepstral bias will reduce the error rate by
about a quarter, while also normalising the cepstral variance slightly less than halves the
error rate from 33.2% to 18.5%. With SPLICE, applying a cepstral bias based on one of 256
feature regions is better than cepstral normalisation or Gaussianisation. The two uncertainty
forms, SPLICEU and FE-Joint using a “clean” front-end GMM, gave results better than the
strictly feature compensating SPLICE form by 20% and 33% relative. The difference between
SPLICEU and FE-Joint may be attributed to the different approaches in approximating the
corrupted speech conditional distribution. Also, while correlation flooring for FE-Joint was
necessary on the Aurora2 task, it was not for RM; although the same large feature scaling
and uncertainty variance bias effects were observed, the bigram language model limited the
number of insertion errors.

The FE-Joint compensation surpassed model-based CMLLR compensation. With 256
diagonal transforms the FE-Joint system had more free parameters available to estimate, at
(39 × 3) × 256 = 29952 for 256 diagonal joint distributions, compared to 16 full CMLLR
transforms with (39×39+39)×16 = 24960 parameters. Each joint distribution has the noise
speech mean, variance and the cross-covariance to estimate which is 39×3 = 117 parameters.
However, the 16-diagonal transform M-Joint system has far less than either, at (39×3)×16 =
1872, yet gave comparable performance to the more complex FE-Joint system and was better
than CMLLR. This demonstrates the effectiveness of having an uncertainty bias on the model
variances at this level of noise. Increasing the number of M-Joint transforms only gave a small
improvement to 8.0% WER, whilst decreasing the number of GMM components in the FE-
Joint system to 16 increased the error rate to 9.8%. The divide between FE-Joint and M-Joint
performance is greater at 14 dB SNR; for 256 transforms, their error rates are 19.0% and 15.4%
respectively and 17.1% for 16 diagonal M-Joint transforms. 16 full M-Joint transforms gave
the best results, reaching matched performance although with the high cost of full covariance
decoding. Unlike on Aurora2, a full transform M-Joint system did not exceed the matched
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baseline. Clearly though, model-based uncertainty decoding is superior in terms of accuracy
than the other techniques evaluated on this system at this level of noise.

8.2.1.1 Varying the Number of Front-end Components

Table 8.7 presents more detailed SPLICE, SPLICEU and FE-Joint compensation results
where a each set of compensation parameters are trained using SPR for this specific noise
level. SPLICE and SPLICEU provide an obvious comparison of enhancement with and with-
out adding uncertainty to the model variances. Similar to SPLICE, FE-CMLLR choose a
transform of the features in the front-end. However it has a more powerful ML affine trans-
form rather than the simple bias used in SPLICE. Moreover, this makes it similar in form to
the SPLICEU and FE-Joint schemes, but without the uncertainty bias. As expected, for all
the schemes, with an increase in the number components in the front-end GMM, the error rate
is reduced. Unlike with the Aurora2 results, results are only presented on these techniques
while using a clean speech based front-end GMM. This is a more reasonable configuration
than using the noisy-based front-end GMM since it is unlikely in reality that data will be
available to directly estimate one for unseen test conditions.

With # GMM Components
System Uncertainty 1 4 16 256
Clean — 33.2
SPLICE

No
24.6 20.7 17.0 12.3

FE-CMLLR 16.3 15.3 12.8 13.5
SPLICE

Yes
11.4 12.4 12.2 9.9

FE-Joint 10.7 9.2 9.8 8.2
Matched — 7.2

Table 8.7: WER (%) for feature-based techniques compensating clean models on Operations
Room corrupted RM task at 20 dB SNR (EDA).

The single component front-end GMM with SPLICE should be equivalent to CMN applied
at a global level, as reported in table 8.6. Both are static biases applied to the feature
vector. There is a slight difference between the two results here, 24.6% compared to 26.6%,
which is attributable to their different implementations. The hard, max approximation, given
in equation (4.17), was found to be effective; in unreported experiments, a soft weighting
improved results only slightly for low numbers of components and provided negligible gains
at higher numbers of components. Overall, SPLICE provides good robustness, substantially
better at 12.3% than global-level CMN plus CVN at 18.5%, but still far from the matched
performance of 7.2%.

For all noise conditions tested from 32 to 8 dB, SPLICEU performs better than SPLICE [90],
although only the 20 dB results are reported here. The uncertainty forms worked surprisingly
well with few components in the front-end. Only a small gain is obtained from one component
at 11.4%, to 9.9% with 256, for SPLICEU. With a single component, a constant global vari-
ance is propagated to the decoding process and the features updated with a fixed transform.
This out-performed all the other normalisation techniques and also 256-component SPLICE,
for example the single component FE-Joint had a WER of 10.7% compared to 12.3% for the
best SPLICE form. Notice the large gain of 7.8% absolute by using a global affine transform
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and fixed variance bias over a simple global CMN transform. The FE-Joint distribution un-
certainty decoding algorithm generally gave better than the SPLICEU form across all tested
noise conditions. Here at 20 dB, for the best configurations this was 9.9 % compared to 8.2%.
These are still worse than the matched result of 7.2%. Overall the addition “uncertainty” to
the decoding process proves beneficial.

8.2.1.2 Varying the Model-based System Complexity

Two forms of model adaptation were compared: CMLLR and M-Joint transforms. As FE-
CMLLR and FE-Joint compensation provide a good contrast for transforms selected in the
front-end, CMLLR and M-Joint compensation are a good contrast for transforms associated
with model regression classes. CMLLR provides a useful baseline as an affine transformation of
the features without the model variance bias. With only a single regression class, it represents
a global linear transform of the feature vector trained for the noise condition and is equivalent
to compensation with a single FE-CMLLR transform. With multiple regression classes, it
functions conceptually as parallel front-ends, one for each regression class and associated
transform. The M-Joint transforms derived are similar in form to CMLLR with diagonal
matrices, but has an added variance offset to the models. While each CMLLR transform
computes an ML affine transform between training and test for each model class, in M-Joint
compensation a single ML Gaussian joint distribution between the clean and noisy speech is
estimated from stereo data. It is from this joint distribution that the M-Joint transform is
generated. The effect of the number of classes on accuracy is explored. M-Joint transforms
also provide an interesting contrast to the FE-Joint scheme as it does not have this front-
end component selection problem. Table 8.8 presents the M-Joint and CMLLR transform
performance as a function of the number of transforms and their complexity at 20 dB SNR.
Similar to the previous section, transforms are estimated using SPR on all data available for
the noise condition.

System
Transform # of Transforms
Structure 1 4 16

Clean — 33.2

CMLLR
Diagonal 16.3 14.6 10.3

Full 17.8 14.9 9.2

M-Joint
Diagonal 10.7 9.6 8.2

Full 10.1 8.0 7.4
Matched — 7.2

Table 8.8: WER (%) for model-based techniques compensating clean models on Operations
Room corrupted RM task at 20 dB SNR (EDA).

It is clear that for both CMLLR and M-Joint, performance increases proportionally with
the number of transforms used. Diagonal M-Joint forms exceed either diagonal or full CMLLR
transforms for the same number of transforms. This reflects the benefit of the variance bias in
the M-Joint form for noise compensation. Simpler model-based CMLLR and M-Joint forms
at 16 transforms perform better or as well as their respective, more complex, 256-component
front-end forms, FE-CMLLR and FE-Joint indicating the benefits of a model-based approach.
Comparing the results in table 8.7 with table 8.8, global diagonal CMLLR and FE-CMLLR
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versions give the same WER of 16.3% which are equivalent just as a global diagonal M-
Joint transform is equivalent to FE-Joint with one front-end GMM component, sharing the
same unexpectedly robust performance of 10.7%. From there, there is a small incremental
improvement, with 128 transforms giving a WER of 8.1%; with CMLLR, at 128 transforms the
WER is 8.9%. In either case, when the number of transforms equals the number of acoustic
model components, the performance should be the same as SPR matched baseline—this is
not the case for their front-end forms as discussed in section 5.5. Despite the same upper
limit, with low numbers of diagonal transforms M-Joint compensation is superior to CMLLR
indicating the benefit of the model variance bias. The full M-Joint transform yields the best
results in almost reaching the matched SPR baseline with a WER of 7.4%. As discussed
in the Aurora2 results, this requires computationally expensive full covariance decoding to
operate; in contrast, full matrix CMLLR transforms do not.

8.2.1.3 Computational Load

For a fixed beam width, the increase in model variances with uncertainty decoding may
cause the number of active models during search to rise. This may reduce the number of
search errors, but will increase the computational load. Hence, it is worth investigating the
sensitivity of the results to the number of active models.

With Pruning Feb’89 # Active
System Uncertainty? Threshold WER Models

Clean —
300 37.6 10153
150 33.9∗ 1632

SPLICE, 256 transforms No 300 14.4 4306

FE-Joint, 1 transform
300 11.3 19680

Yes 150 11.4 4096
100 11.7 1144

FE-Joint, 256 transforms
300 8.0 16417

Yes 150 8.1 3320
100 9.3 1005

M-Joint, 256 transforms
300 7.6 8938

Yes 150 7.7 1447
100 10.7 447

Matched —
300 6.5 5535
150 7.1 865

Table 8.9: WER (%) and average number of active models when compensating clean acoustic
models on Operations Room corrupted RM Feb’89 test set only at 20 dB SNR (EDA). ∗Not
all sentences yielded a hypothesis.

Table 8.9 shows the average number of active models during decoding at different pruning
thresholds, for a variety of schemes, and the associated %WER, for reference, on the Feb’89
test set. The SPLICE baseline is for a 256-component front-end GMM and shows how the
refined clean speech estimate allows the recogniser to more efficiently perform model pruning
during the search. The single component FE-Joint configuration was of interest because of
its unexpectedly robust performance. At the standard pruning threshold of 300, FE-Joint
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compensation causes a large increase in the number of models active in the recogniser. This
is attributable to the selection of the corrupted speech conditional distribution in the front-
end causing transformations of the acoustic model components to become similar to each
other. But it can be seen that despite a two fold reduction in the pruning threshold and a
sizable drop in the number of models evaluated, the WER is only slightly affected. The same
behaviour is exhibited by the 256-diagonal transform M-Joint system. However the M-Joint
system performs better, in terms of WER, than FE-Joint with fewer active models for the
same pruning threshold. The gains found using joint uncertainty decoding are genuine and
not due to the increase in models evaluated with the expanded model variances.

8.2.2 Noise Model Estimation
In chapter 6, unsupervised ML noise model estimation schemes were discussed for VTS and
M-Joint compensation. These could be applied to both clean- and multistyle-trained acoustic
models. It is expected that these ML models should perform better than acoustic models
estimated from the additive background noise. Furthermore a noise model estimated from the
background is only applicable for compensating clean models; on multistyle-trained models,
noise is already present in the training and thus using an acoustic noise model not sensible.
As discussed, it is also important to tailor the noise model estimation to the compensation
scheme, e.g. VTS or M-Joint compensation. The specific procedure for estimating the noise
models was discussed in section 6.5. These aspects of the noise model estimation process,
along with varying the number iterations, supervision hypothesis, estimation data and the
complexity of speech model used will be reviewed in this section. Necessarily, these results use
a different form of feature vector where normalised log energy is replaced by C0. Normalising
the log energy can aid in robustness since the energy level will grow with increased additive
noise. Hence this 0DA parameterisation will give a weaker baseline than EDA. However
0DA allows for compensation using the predictive techniques discussed in this work. Unless
otherwise noted, the noise model will consist of single vectors of static coefficients for the
channel and additive noise means and a diagonal additive noise variance. The dynamic
coefficients for the noise means are set to zero. Thus a noise model has a total of 65 parameters.

8.2.2.1 ML Noise Model Estimation

The additive noise mean and variance may be estimated from the entire NOISEX-92 Operat-
ing Room noise waveform used to create the noise-corrupted speech test sets. In table 8.10,
this approach is compared to the ML VTS noise model estimation process discussed in sec-
tion 6.2, where a single global VTS noise model, without a convolutional noise estimate, is
estimated for the entire test using the reference transcription in a supervised fashion. Clearly,
the estimation scheme performs as well as using the “known” acoustic noise. The estimated
additive noise mean is similar to the known value. For the known noise, there is little improve-
ment from updating the delta-delta coefficients in addition to the static and delta coefficients.
While the ML estimates of the static and delta noise variances are poorer than the known
noise model, with the delta-delta variances compensated the ML approach appears better
producing fewer substitutions and insertions. This would indicate that the ML estimate is
countering some of the effects of the VTS approximation to the mismatch function especially
for computing the delta-delta variances. The log-likelihood of the test data, using the refer-
ence hypothesis, for the known and ML noise model only differs slightly. Nevertheless, there
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WER Log-likelihood
Coefficients Compensated VTS SPR VTS SPR

Means Variances Known ML Est Known ML Est
— 38.0 -74.4

y 15.2 15.1 14.7 -67.6 -67.6 -67.5
y+∆y 12.6 12.2 11.8 -66.7 -66.7 -66.5
y+∆y+∆2y 9.8 10.2 9.0 -66.0 -66.0 -65.4
y y 11.9 13.7 12.0 -67.3 -67.6 -66.8
y+∆y y+∆y 8.7 10.8 8.3 -66.6 -66.9 -65.2
y+∆y+∆2y y+∆y+∆2y 8.6 8.0 7.4 -66.4 -66.3 -63.6

Table 8.10: WER (%) and log-likelihood for VTS compensation of clean models on Operations
Room corrupted RM task at 20 dB SNR (0DA) varying dimensions compensated and noise
model estimation. Reference hypothesis used for global-level ML noise model estimation. No
convolutional noise estimated.

is a 0.6% absolute WER difference between VTS compensation of all dimensions using the
ML model and the matched baseline. This indicates some deficiency in VTS compensation
such that it is unable to capture all the effects of the corrupting noise.

The results in table 8.10 obtained ML noise models in a supervised manner. In practice
the reference supervision hypothesis is not available. For unsupervised ML noise model es-
timation, a recognition hypothesis is produced from an initial decoding pass over the test
data. In addition the noise model may be estimated at a speaker level for a more precise
estimate. Table 8.11 shows how the ML noise estimation procedure performs when using
the recognition hypothesis to align the test data. With a 38% uncompensated error rate,
the hypothesis degrades VTS compensation with the ML noise model by 1.6% absolute to
9.6%. There is little gain from estimating a purely additive noise model at the speaker level,
indicating that the corrupting noise is relatively stationary. Although including a channel
estimate does not give improvements at a global level, at a speaker-level it performs some
basic speaker adaptation and improves VTS compensation with this model to 8.4% for noise
estimation with a recognition hypothesis.

It was discussed in section 6.3 that the compensation used during the ML noise estimation
procedure should be consistent with the compensation used during decoding. Table 8.12
compares ML VTS noise models with ML M-Joint noise models for M-Joint compensation.

Noise Est. Estimation Level
Noise Model Hypothesis Global Speaker
None — 38.0

µn, Σn
Reference 8.0 8.0
Recognised 9.6 9.5

µn, Σn, µh
Reference 7.9 6.8
Recognised 9.6 8.4

Matched — 7.4

Table 8.11: WER (%) for VTS compensation of clean models on Operations Room corrupted
RM task at 20 dB SNR (0DA) varying estimation level, noise model and hypothesis.
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Acoustic Noise Est. Test Set SNR
Model Compensation Type Clean 20 dB 14 dB

Clean
— 3.1 38.0 83.7

M-Joint
VTS 3.1 10.1 35.3
M-Joint 3.1 9.2 22.6

Multistyle
— 11.7 7.0 15.5

M-Joint
VTS 9.0 8.6 15.9
M-Joint 8.6 6.7 12.3

Matched — 3.1 7.4 14.3

Table 8.12: WER (%) for 16-diagonal M-Joint compensation of clean and multistyle models,
comparing noise estimation type, on Operations Room corrupted RM task at 20 dB SNR
(0DA). Recognition hypothesis used for speaker-level ML noise model estimation.

As one would expect, there is no degradation in applying M-Joint compensation for clean
conditions on clean acoustic models. Using either VTS or M-Joint noise models give large
improvements on the noisy test sets. This difference is far more pronounced at 14 dB: there
is a 50% relative increase in WER from 22.6 to 35.3%. Also note that despite a recognition
hypothesis WER of 83.7%, the noise estimation procedure was able to produce effective models
for compensation.

As discussed earlier, estimating a noise model from the background is not suitable for
multistyle acoustic models. However, using this ML noise model estimation procedure can
generate a model that allow predictive techniques to compensate multistyle acoustic models.
This model no longer represents acoustic noise, but rather is a set of parameters that reduce
the mismatch between training and test conditions for a given compensation form. As shown
in table 8.12, on multistyle acoustic models there is substantial degradation from 7.0% to
8.6% by using the VTS noise model over no compensation. This highlights the need to match
the noise model estimation procedure to the compensation that will be used in testing. The
multistyle model seems to perform best at 20 dB, which is the average SNR of the multistyle
training data; moreover, VTS and M-Joint compensation, with appropriate ML noise models,
only provide modest gains of 0.5% (not shown in table 8.12) and 0.3% respectively over the
uncompensated multistyle system. This indicates that there is minimal mismatch between
the multistyle training and 20 dB test condition. Also at this noise level, the uncompensated
multistyle acoustic model slightly outperforms the matched baseline of 7.4%, which is not
the case for the other SNR levels. This may be due to increased variances of the background
models since the multistyle acoustic models are trained using data with SNR in the range of
8 to 32 dB. For all conditions though, and either clean or multistyle acoustic models, M-Joint
compensation performed better with an M-Joint noise model rather than a VTS noise model.

Overall, compensating multistyle acoustic models gave better results than compensating
the clean models. This may be due to a more accurate recognition hypothesis—the WER
of uncompensated clean models is over five times that of uncompensated multistyle. In sec-
tion 6.1 it was discussed how the hypothesis, or the noise model, used for generating the
complete data set may be updated in further iterations of the noise model estimation process.
Table 8.13 shows how increasing the number of EM iterations or improving the recognition
hypothesis affects performance. It shows that the estimation procedure described in sec-
tion 6.5 was reasonable since the difference in WER between the first and second iterations is
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WER Log-likelihood
Acoustic Noise Est. Iteration Iteration
Model Compensation Hypothesis 1 2 1 2

Clean

— 38.0 -74.4

M-Joint
Reference 8.9 8.5 -66.3 -66.0
Recog. 1 9.2 8.6 -67.0 -66.3
Recog. 2 8.4 8.5 -66.2 -66.2

VTS
Reference 6.8 6.6 -64.8 -64.4
Recog. 1 8.4 7.7 -65.9 -65.3
Recog. 2 7.4 7.2 -65.2 -64.7

Matched — 7.4 -63.6

Table 8.13: WER (%) and log-likelihood for 16-diagonal M-Joint and VTS compensation
of clean models, varying number of EM iterations and updating hypothesis, on Operations
Room corrupted RM task at 20 dB SNR (0DA). Speaker-level ML noise model estimation.

small for both M-Joint and VTS compensation. Reducing the hypothesis error rate from 38%
to less than 10% gives an improvement for both M-Joint and VTS noise model estimation.
However, the VTS noise model estimation is more sensitive to errors in the hypothesis than
M-Joint noise model estimation. This is indicated by the small difference in WER between
results using the reference and recognition hypotheses. With M-Joint, the WER is similar
between supervised and unsupervised training after two iterations of EM, whereas with VTS
there is still a 0.6% difference after updating the hypothesis and a 2nd iteration of EM. This
is expected since in M-Joint compensation a transform and estimation statistics are shared
amongst similar components. Recognition errors mostly occur between similar components
so do not substantially affect M-Joint noise model training.

Figure 8.2: Graph of auxiliary function value during ML VTS noise model estimation.

To give more insight into the noise estimation procedure for the results shown in table 8.13,
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the change in the auxiliary function value during VTS noise model estimation, with each step
in the maximisation stage, is shown in figure 8.2. This is for a single speaker. In the first
EM iteration, maximisation ends after seven steps. Each step involves the re-estimation of
the noise means and variances as discussed in section 6.2. As illustrated in figure 6.1 of
section 6.1, another iteration of EM may follow with the same hypothesis or an updated
hypothesis produced using the updated noise model. The difference in auxiliary function
values between at step seven is from the update of the complete data set. For either the same
initial or an updated hypothesis, the maximisation stage fails to generate a large increase
in the auxiliary function. Following the first EM iteration with the updated hypothesis, the
maximisation step in the second iteration with the same updated hypothesis does not increase
the auxiliary function much.

8.2.2.2 Noise Model Estimation Speed

The results conducted so far have used the full HMM speech model during noise model
estimation. Alternatively a GMM may be used. If the GMM has far fewer components than
the HMM, it may greatly increase the speed of all stages of noise model estimation as discussed
in section 6.5. It also removes the need for a hypothesis for alignment and the associated initial
decoding pass. However a GMM is less powerful than an HMM in capturing the temporal
aspects of speech. Also using less adaptation data can improve estimation speed if fewer
model components have data associated with them. Table 8.14 shows results using a GMM of

Recognition Noise Est. Noise Est. Noise Est. Data
Acoustic Model Acoustic Model Hypothesis 30 Utt. 1 Utt.

Clean

— 38.0

HMM
Reference 6.8 9.1
Recognised 8.4 9.9

GMM
256 comp. — 7.9 8.6
16 comp. — 8.6 10.0

Matched — 7.4

Table 8.14: WER (%) for VTS compensation of clean models, varying noise estimation speech
models, on Operations Room corrupted RM task at 20 dB SNR (0DA). Speaker-level ML noise
model estimation.

varying complexity compared to the full HMM acoustic model during noise model estimation.
The amount of adaptation data is also changed from all 30 utterances per speaker to just the
first utterance per speaker. Estimation with a GMM is unexpectedly good considering that
the noise model is optimised for VTS compensation of a GMM rather than the full HMM
acoustic model. As was also shown in table 8.13 there is a difference of 1.6% absolute WER
between using the reference hypothesis and the recognition for estimating the noise model
with all 30 test utterances. Estimation with a 256-component GMM gives a WER of 7.9%,
which is better than using an HMM with the recognition hypothesis, but not as good when
the reference hypothesis is used. With only one utterance to estimate the noise model, the
256-component GMM surprisingly was more effective than estimation with a HMM regardless
of the hypothesis used. This is perhaps to due to over-fitting the noise model for compensating
the single utterance when using an HMM, whereas a GMM gives a more general model. The
16-component GMM was too simple and gave the worst results. Increasing the number of
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components in the GMM to 1024 gave no improvements. These results indicate that when
estimating noise models for compensating clean-trained acoustic models, the 256-component
GMM is better than using the full HMM with a recognition hypothesis.

Noise Est. # of Noise Est. Data
Compensation Model Params 30 Utt. 1 Utt.
None — 15.5
CMLLR HMM 0-1248 13.1 14.7

M-Joint
HMM

65

12.3 13.3
GMM 12.7 12.8

VTS
HMM 12.0 13.3
GMM 12.8 13.0

Matched — 14.3

Table 8.15: WER (%) for model-based compensation of multistyle models, comparing noise
estimation speech model and amount of adaptation data, on Operations Room corrupted RM
task at 14 dB SNR (0DA). Speaker-level parameter estimation. 16 diagonal transforms for
M-Joint and CMLLR.

Table 8.15 shows how the amount of data available for noise estimation affects recognition
performance for a multistyle trained acoustic model on 14 dB data. As in table 8.14, where
in contrast a clean acoustic model is compensated, results are poorer when only a single
utterance is available. However, on the multistyle the difference is negligible when using
a GMM compared to an HMM for noise estimation. The predictive forms, i.e. M-Joint
and VTS, are clearly less affected by having less data than the adaptive, i.e. CMLLR. For
noise estimation with full HMM models, M-Joint suffers a 1% absolute loss, whereas the 16-
diagonal transform CMLLR degrades by 1.6%. Since the average utterance is 3.4 seconds,
or 340 frames, in length, a single full CMLLR transform, with 1560 free parameters, cannot
be robustly estimated from one utterance. For diagonal CMLLR transforms systems using
a regression tree, since the number of transforms varies with the amount of adaptation data
available, the number of free parameters varies between 0 and 1248 (78 free parameters × 16
transforms). Typically only a single global transform is estimated since the minimum required
number of training frames per transform, i.e. the split threshold, is set at 200. This explains
the degradation in CMLLR performance such that there is only a 0.8% improvement over
the uncompensated multistyle system. In contrast, the M-Joint system, even with a single
utterance for noise model estimation was able to reduce the error rate by 2.2% absolute.

8.2.3 Joint Adaptive Training
It has been shown that compensating multistyle-trained acoustic models is more effective
than compensating models trained on clean speech. Performance using multistyle models was
close to the matched training. As an alternative to multistyle-training, chapter 7 presented
adaptive training using M-Joint transforms. M-Joint transforms may be used to represent
environmental noise during acoustic model training. The resulting JAT acoustic models may
be purer representations of speech as they do not incorporate variability due to such noise.
The initial model for JAT is the multistyle acoustic model. From this model four iterations
of transform estimation and four iterations of model parameter re-estimation follow using
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the interleaved training process shown in figure 7.1. For each successive model parameter
iteration, the stabilising parameter ϑ, discussed in section 7.3.1, was reduced by increments
of 0.5 starting from 2.5.

Acoustic Clean Operations Room Car
Model Compensation 47 dB 32 dB 20 dB 14 dB 20 dB

Clean
— 3.1 5.4 38.0 83.7 49.7
M-Joint 3.1 4.4 9.2 22.6 8.0

Multistyle
— 11.7 5.3 7.0 15.5 43.5
M-Joint 8.6 5.0 6.7 12.3 7.6

JAT M-Joint 5.7 4.0 6.2 11.4 6.2
Matched — 3.1 4.0 7.4 14.3 —

Table 8.16: WER (%) for 16-diagonal M-Joint compensation of clean, multistyle and JAT
acoustic models, on clean and corrupted RM task (0DA). Recognition hypothesis used for
speaker-level ML noise model estimation.

Table 8.16 presents the results of M-Joint compensation on clean, multistyle and adap-
tively trained acoustic models. Uncompensated multistyle models perform almost as well as
matched models when tested on Operations Room noise since this is also what is used to
corrupt the training data. However, these same multistyle models perform badly for unseen
noise such as the clean test and car noise. It is clear that compensating multistyle models
is superior to compensating clean models, on noisier data, but not the case at 32 dB SNR.
This is not too far from the clean-training SNR of 47 dB, while M-Joint transforms are not
actually appropriate for compensating multistyle models trained on data averaging 20 dB
SNR to conditions less noisy at 32 dB. However, for all the noisier conditions the JAT system
exceeds matched or compensated multistyle systems. While the gains over the compensated
multistyle are small on Operations Room noise, there are larger gains on the unseen clean
and car noise conditions not present in the multistyle training database. This demonstrates
that JAT acoustic models are more amenable to being transformed to other noise conditions
than multistyle models. Still, in a sense the models are not truly “clean” since adaptation
to the clean condition gives a WER of 5.7%. This represents a substantial degradation com-
pared to 3.1% WER with a matched clean system. However, such high SNR clean data is not
normally available and data with some noise is more realistic. At 32 dB, JAT gives equiva-
lent performance to matched at 4.0%. Hence JAT gives an effective method for training on
heterogeneous data with varying noise levels.

JAT may be compared to other adaptive training techniques such as SAT with CMLLR.
Two forms of SAT-CMLLR systems were built: the first used 16 diagonal CMLLR transforms
and the second a pair of full matrix CMLLR transforms. A third NAT-CMLLR system used
diagonal CMLLR transforms at a noise level rather than at a speaker level. Hence for each
of the 5 main different SNR levels in the multistyle training database, only a single set of 16
diagonal transforms was estimated for each training iteration. Similar to JAT, these three
systems were all trained using four iterations of interleaved transform and model parameter
estimation steps as outlined in figure 2.14.

A comparison between JAT, SAT-CMLLR and NAT-CMLLR systems is presented in ta-
ble 8.17. Clearly, the JAT system performs better than NAT-CMLLR demonstrating the
effectiveness of the uncertainty variance bias term for noise adaptive training. However,
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Transform Operations Car
System Structure 20 dB 14 dB 20 dB
JAT 16 Diagonal 5.7 11.4 6.2
NAT-CMLLR 16 Diagonal 7.2 19.5 7.7

SAT-CMLLR
16 Diagonal 5.4 12.2 5.6
2 Full 4.7 11.2 4.9

Table 8.17: WER (%) for JAT, NAT-CMLLR and SAT-CMLLR systems on Operations
Room corrupted RM task (0DA). Recognition hypothesis used for speaker-level ML transform
estimation.

compared to more standard SAT, at 20 dB JAT was worse than either transform structure
for SAT-CMLLR. At 14 dB JAT was better than diagonal SAT, but marginally worse than
SAT-CMLLR with full transforms. This again shows that the variance bias becomes more im-
portant as the SNR decreases. Since CMLLR transforms are effective for speaker adaptation,
much of the gain of SAT-CMLLR over JAT may be due to the degree of speaker normalisa-
tion. For M-Joint transforms, the mismatch function used to predict the joint distribution
does not address speaker differences, hence JAT cannot account for this factor very well.
The NAT-CMLLR system compared to SAT-CMLLR, with diagonal transforms, shows the
significant effect of accounting for the speaker for adaptive training. It was also expected that
JAT would perform better than SAT-CMLLR on the car condition, but did not, indicating
that CMLLR transforms may also train a relatively “clean” acoustic model.

8.2.4 Combined Systems
An important aspect for noise compensation schemes is how they interact with other tech-
niques used in state-of-the-art ASR systems. This section presents experiments which combine
M-Joint transforms with two such techniques: semi-tied and CMLLR transforms. Section 6.6
discussed how noise models may be estimated with a block-diagonal feature transform. Ta-
ble 8.18 provides results when using a global, block-diagonal semi-tied transform for covariance

Compensation Clean Operations Room Car
Acoustic Model STC M-Joint 47 dB 32 dB 20 dB 14 dB 20 dB

Clean

3.1 5.4 38.0 83.7 49.7
X 3.1 4.4 9.2 22.6 8.0

X 2.8 5.2 41.9 84.0 74.1
X X 2.8 3.5 9.7 22.3 12.9

Multistyle

11.7 5.3 7.0 15.5 43.5
X 8.6 5.0 6.7 12.3 7.6

X 11.5 4.6 6.3 14.5 48.3
X X 7.6 4.5 6.1 11.7 9.7

Matched 3.1 4.0 7.4 14.3 —

Table 8.18: WER (%) for block-diagonal semi-tied transform combined with 16 diagonal M-
Joint transforms with clean and multistyle acoustic models on Operations Room corrupted
RM task (0DA). Recognition hypothesis used for speaker-level ML noise model estimation.
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modelling in conjunction with M-Joint compensation.
First the interaction between M-Joint compensation and STC for clean acoustic models

may be examined. The effectiveness of M-Joint compensation is more pronounced for the
lower SNRs. While STC improves the matched clean baseline by 10% relative, there is no
appreciable improvement on noisy tests. Combining M-Joint compensation with the clean-
trained semi-tied system gave gains, although the results do not show a clear improvement
over a non-STC clean acoustic model compensated with M-Joint transforms—e.g. at 20 dB,
there is a loss from 9.2% for M-Joint compensation without STC, from figure 8.16 to 9.7%
for M-Joint with STC on clean models. Hence for clean-trained acoustic models, using STC
degrades the performance of M-Joint compensation.

For multistyle acoustic models, the addition of STC modelling improves performance by
0.7–1.0% for Operations Room noise. The semi-tied transform is capturing some of the
correlations in the noise condition that are helpful when the test condition has the same
noise characteristics. Moreover, this explains the 4.8% increase in WER on car noise over
the non-STC system due to difference in the intra-frame correlations of the Operations Room
noise in the multistyle training database. Adapting the multistyle STC system further with
M-Joint transforms gives additional gains, which unlike what was seen on the clean models,
are also better than the non-STC system with M-Joint transforms—e.g. at 14 dB, 11.7% to
12.3%. Nevertheless on the unseen car condition, M-Joint compensation performs worse due
to the mismatched covariance modelling than compensating models without STC—i.e. 9.7%
to 7.6%. The semi-tied transform embeds the training correlations in the acoustic models
degrading recognition in unseen noise environments. Although combining a multistyle STC
system with M-Joint compensation is effective, it does not perform as well as the diagonal
variance JAT system; this is most clear for the unseen car condition when comparing between
results given in tables 8.16 and 8.18. Alternatively, optimal feature space schemes may be a
better approach to capture intra-frame correlations in changing, noisy environments [48].

Acoustic Compensation Clean Operations
Model M-Joint CMLLR 47 dB 20 dB 14 dB

Multistyle

11.7 7.0 15.5
X 5.0 5.8 13.1

X 8.6 6.7 12.3
X X 5.4 5.8 11.7

JAT
X 5.7 6.2 11.4
X X 4.7 5.7 10.9

Matched 3.1 7.4 14.3

Table 8.19: WER (%) for 16-diagonal M-Joint with 2-full CMLLR compensation of multistyle
and JAT models on Operations Room corrupted RM task (0DA). Recognition hypothesis used
for speaker-level ML noise model estimation.

M-Joint compensated systems can be improved by further reducing mismatch between
training and test conditions with CMLLR transforms. First, 16 diagonal M-Joint transforms
are estimated for a noise condition. Subsequently, 2 full CMLLR transforms are estimated,
using the M-Joint transformed feature space, to further adapt the system to a particular
condition. Table 8.19 provides results for multistyle and JAT acoustic models, compensated
with M-Joint and CMLLR transforms combined in such a manner. On the multistyle models,
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although CMLLR transforms were more effective for the higher SNR conditions than M-Joint,
at 14 dB M-Joint compensation proved better; in combination though they gave better results
at low SNR. For example, adding the 2 CMLLR transforms improved M-Joint from 12.3%
to 11.7% at 14 dB for multistyle model compensation. On the JAT models, the gains from
combining M-Joint compensation with CMLLR are clearer: across all the conditions, there is
gain in using CMLLR with JAT. The JAT models with CMLLR performed best across all the
noisy test sets; although there was degradation on the clean test set over matched training,
this is likely due to the lack of clean data in the multistyle training set.

8.3 Summary
The results in this chapter demonstrate that uncertainty decoding is an effective form of noise
compensation on artificially corrupted small and medium vocabulary tasks. Two different
forms of the conditional corrupted speech distribution selected in the front-end were examined:
one modelled directly using the joint distribution, the other based on the Bayes equivalent,
with the clean posterior using the SPLICE form. Both yielded positive results compared to
normalisation schemes and a state-of-the-art enhancement technique such as SPLICE. The
simple uncertainty variance bias provides measurable gains, especially in low SNR, over forms
that only affect the observations such as FE-CMLLR and standard SPLICE. While feature-
based uncertainty techniques such as SPLICEU and FE-Joint are effective, the model-based
form of JUD, M-Joint, provides even better accuracy. It performs well with few transforms,
and typically outperforms CMLLR when the mismatch is high such as when clean acoustic
models are used or multistyle models on high noise. It was shown that front-end forms can
exhibit problems in low SNR, especially if the language constraints on the search are weak. M-
Joint, by having different variances biases for different regression classes, intrinsically avoids
transforming all the models to the same noise model in low SNR.

An ML noise model estimation procedure was introduced that allows the simultaneous
estimation of both the additive noise mean and variance and channel mean for both clean-
and multistyle-trained acoustic models. This gives a powerful method to derive noise models
for a specific speaker and noise condition even when there may be no background non-speech
areas. On tests with VTS compensation, the noise models that were generated using this
method were superior to the “known” noise estimated from the additive noise sample used
to corrupt the test sets. Given a model of the noise, the complete joint distribution between
the training and test conditions from a prior training speech class model can be predicted.
M-Joint compensation particularly benefited from using an ML approach to estimating the
noise model. Compensating acoustic models with these M-Joint transforms is much faster
than VTS, yet gives almost the same level of accuracy. It was shown how M-Joint transforms
may be integrated with other ASR techniques such as CMLLR and semi-tied transforms.
Though multistyle systems were considerably more robust to noise than clean-trained models,
adaptive training with M-Joint transforms called JAT provided superior results especially on
unseen noise environments. While full CMLLR transforms may compensate for multiple
factors such as noise and speaker, JAT specifically compensates for noise. Compared to noise
adaptive training with CMLLR transforms, JAT was more effective.



CHAPTER 9
Experimental Results on
Recorded Noisy Speech

This chapter presents results from experiments conducted on speech that is not artificially
corrupted, but collected from environments where noise is already present in background.

The Broadcast News task involves transcribing mostly prompted speech with a large, open
vocabulary from actual aired news broadcasts. Another corpus was provide by Toshiba Re-
search Europe Limited (TREL). This contains speech recorded in the office and in vehicles
driving at various speeds. Users say phone numbers, city names and command and con-
trol requests. No stereo data was used to estimate any compensation parameters for these
experiments. The noise models are estimated in the same manner as for the RM experiments.

9.1 Broadcast News Transcription
The system used here is a simplified version of the CU-HTK RT-03 BN-E system [81]. Acoustic
models are trained in an ML fashion on approximately 143 hours of found data from recorded
English broadcast news released by the LDC in 1997 and 1998. State-tied, cross-word tri-
phone models were defined using decision tree clustering. This gave approximately 7000
distinct states, with each state modelled by 16 Gaussians, yielding about 110k acoustic model
components. MFCC parameters were chosen over PLP, without CMN. While MFCC perfor-
mance is comparable to PLP, the baseline system is slightly weaker without CMN. However
cepstral normalisation makes it difficult to apply the predictive compensation forms. The
same segmentation and clustering routines from the RT-03 system were used to provide ho-
mogeneous blocks of training and test data. Testing was conducted on the bndev03 test set
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Focus Condition SNR(dB) # Utts
Overall 26 32443
F0 – baseline broadcast speech 31 9948
F1 – spontaneous broadcast speech 23 6247
F2 – speech over telephone channels 28 1095
F3 – speech in the presence of background music 21 1385
F4 – speech under degraded acoustic conditions 26 9145
F5 – speech from non-native speakers 40 235
Fx – all other speech 22 4388

Table 9.1: SNR and number of utterances for focus conditions in test set bneval98.

totalling 2.5 hours of broadcast audio from news sources aired in January, 2001, and the
bneval98 test set comprised of 2.9 hours of usable audio from June, 1998. The bneval98
test set is partitioned into different focus conditions such as read speech, spontaneous speech,
acoustically degraded speech and non-native speech—this is useful to examine the effective-
ness of predictive compensation in different conditions. The different focus conditions are
described in table 9.1. There are large numbers of utterances in the F0, F1 and F4 condi-
tions; these constitute over two thirds of the total number of utterances. The overall SNR of
26 is also fairly high compared to the testing conducted on AURORA and RM.

Figure 9.1: Broadcast News transcription system architecture.

The processing of BN audio to produce a transcription is shown in figure 9.1. An initial
decoding pass over the test data was conducted to produce a 1-best hypothesised transcription.
Another pass over the data is necessary to estimate transforms using this hypothesis. These
transforms were used to perform decoding with a 59k-word dictionary and a bigram language
model to generate lattices. A trigram language model then re-scores the lattices to find
the final 1-best transcription. Only recognition on wide-band data was compensated using
the techniques discussed; the same narrow-band results, from an uncompensated system, were
used during scoring for all the systems described. A more complex system would typically use
some form of feature projection scheme such as HLDA [87] or fMPE [116], advanced covariance
modelling such as STC [41], and MMI [141] or MPE [115] training of model parameters—the
use of such techniques were not investigated in these experiments.
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9.1.1 Predictive Model Compensation
Table 9.2 shows results comparing 256 diagonal M-Joint transforms with VTS compensation.
This number of transforms was used due to the significant difference in the number of acoustic
model components in this system compared to the smaller ones in the previous chapter.
With 16 transforms, M-Joint performance was about a half percentage point worse, yet 1024
transforms did not give gains over 256. On bndev03, M-Joint performed as well as VTS
compensation. When the ML VTS noise model is used for M-Joint compensation, the WER
increases by 0.3% to 19.1%. However, on the bneval98 set, M-Joint is less effective than VTS
compensation.

Compensation bneval98 bndev03

— 21.2 20.8
M-Joint 19.0 18.8
VTS 18.5 18.8

Table 9.2: WER (%) for 256 diagonal M-Joint transform and VTS compensation of multistyle
models on bneval98 and bndev03.

Table 9.3 gives results for the bneval98 test set broken down by the different focus condi-
tions. On the cleaner broadcast news data (F0) there was only a modest reduction in WER
of less than 1% absolute by using these predictive schemes. Despite the lower SNR of the F1
condition, the gain using the compensation forms was small. Much larger gains of more than
3% absolute WER were obtained on the noisier degraded acoustic condition F4. Nevertheless,
the range in SNR is not large, and the difference between the training and test conditions
minimal, which limits the gains possible by using predictive compensation. This explains why
using 2 full CMLLR transforms is more effective, for example given error rates of 18.1% on
bndev03 and 18.3% on bneval98. This perhaps mirrors the performance of 2 full CMLLR
transforms in compensating multistyle models on RM data corrupted at 20 dB, as was shown
in table 8.19 of the previous chapter.

bneval98
Compensation Overall F0 F1 F2 F3 F4 F5 Fx
— 21.2 10.6 21.8 42.3 23.5 20.8 29.4 38.8
M-Joint 19.0 9.9 21.0 33.7 22.9 17.5 28.5 34.2
VTS 18.5 10.0 20.9 31.1 21.4 17.2 28.1 32.3

F0 – baseline broadcast speech F4 – speech under degraded acoustic conditions
F1 – spontaneous broadcast speech F5 – speech from non-native speakers
F2 – speech over telephone channels Fx – all other speech
F3 – speech in the presence of background music

Table 9.3: WER (%) for 256 diagonal M-Joint transform and VTS compensation of multistyle
models on bneval98 broken down by focus condition.
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9.1.2 Joint Adaptive Training
Table 9.4 compares using 256 diagonal M-Joint transforms to compensate multistyle-trained
BN acoustic model against a JAT acoustic model estimated using the same number and type
of M-Joint transforms. There was no gain in accuracy by using JAT. Unexpectedly, there was
a slight degradation from 17.5% to 17.8% on the F4 “degraded acoustics” condition. Overall,
the results using JAT on the BN task were disappointing, but this is due to the minimal
difference in the conditions between the training and test data. Existing techniques such as
CMLLR are sufficiently effective in reducing the mismatch.

Acoustic Model Compensation bneval98 bndev03

Multistyle
— 21.2 20.8
M-Joint 19.0 18.8

JAT M-Joint 18.9 18.9

Table 9.4: WER (%) for 256 diagonal M-Joint transform compensation of multistyle and JAT
models on bneval98 and bndev03.

9.2 Toshiba In-car Task
In 2004, Toshiba Research Europe Limited’s Cambridge Research Laboratory (TREL-CRL)
collected an internal corpus for noise robustness research. This corpus will be referred to as
TREL-CRL04. It is a small/medium sized task with noisy speech collected in the office and in
vehicles driving at various conditions. Three test sets that were available for use in this work
are phone number, city name, and command and control recognition. The phone numbers
are comprised of 80% in-country numbers and 20% international. The city name test consists
of speakers saying one of 550 city names. The command and control task has speakers saying
simple commands to operate various in-car functions.

SNR(dB)
Condition Sub-condition µ σ

Office — 34 3.5
Idle 35 5.7

In-car City 25 8.3
Highway 18 5.2

Table 9.5: Average SNR level of TREL-CRL04 test set conditions.

Each task has a test set for four different conditions: office, idle, city driving and highway
driving; the latter three are recorded in a vehicle. Results on these car conditions were
reported on data collected from a rear-view mirror mounted microphone. The average SNR
for each of the tests is shown in table 9.5. Although the office condition uses a close-talk
microphone, the SNR is as about the same as the engine idling condition with the medium
distance microphone. The SNR varies more in the city condition than in idle or highway
conditions. The focus of this work will be on these three in-car conditions.

Table 9.6 provides additional details for each of the test sets. For the office data there were
20 speakers (10 male, 10 female), while for the in-car data there were 30 speakers (15 male,
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Digits City Names Command &Control
Condition µ σ n µ σ n µ σ n

Office 672 158 565 319 32.8 597 474 64.2 1194
Idle 656 158 824 304 37.3 928 452 67.2 1856
City 712 197 862 317 43.9 959 471 67.8 1915
Highway 726 179 898 328 41.8 988 492 70.1 1976
Total 694 178 3149 317 40.8 3472 472 69.3 6941

Table 9.6: Utterance length mean and standard deviation (frames) in TREL-CRL04 test sets.
The # of utterances is denoted by n.

15 male) per session. Each provided about 30 utterances with twice as many utterances per
speaker for the command and control task. All were native adult speakers of English. The
digit task yielded the longest utterances on average while the city name utterances are the
shortest. Notice that the mean length of the utterances increases for all the different tasks as
the SNR decreases. This may be a reflection of hyper-articulation due to the Lombard Effect.

The test and training speech were parameterised in the following manner. The TREL-
CRL04 data was recorded with 16-bit resolution at 16 kHz. Pre-emphasis was applied with
a factor of 0.97. Magnitude spectra were obtained from a Hamming window and a filterbank
of 24 channels. Applying the DCT gave MFCC of which the first 13 coefficients were used,
including C0, plus the first and second differentials. This yields a 39-dimensional feature
vector. The WSJ SI284 training data was used to train a clean acoustic model in a similar
manner to Woodland et al. [148]. There are 284 speakers from the WSJ0 and WSJ1 corpora
yielding 66 hours of speech data. The acoustic models are decision tree clustered state, cross-
word triphones, with three-emitting states per HMM, sixteen components per GMM and
diagonal covariance matrices. In total there are just over 6000 states and 72k components.

A multistyle model was trained from this clean model using SPR with an artificially
created stereo database of the clean and noise-corrupted multi-condition data. To generate
the multi-condition training database, the WSJ SI284 corpus was artificially corrupted at a
speaker/session level using in-car recordings from SpeechDat and Toshiba. The SpeechDat
noise added was recorded at three different driving conditions: city, country and highway; and
at Finland, Korea, Russia and Turkey. The Toshiba data comprised of one noise recording
for each of the conditions plus an engine-on, idle recording. Hence the Toshiba idle condition
data was used for corrupting a quarter of the training data, while a mixture of the SpeechDat
and Toshiba noise data was used to corrupt the remainder of the training data. No samples
from the actual evaluation data was used in the training. The noise to be added was selected
at random intervals. The different noise recordings were scaled so that the average signal
power is similar for each condition. Also, the WSJ0 training data was scaled down to a
similar average power level to the WSJ1 data. The characteristics of the artificially created
multi-condition training database are detailed in table 9.7. After SPR on the stereo data, the
decision tree and state clustering were re-done to optimise them for noisy data and followed
by another four iterations of BW re-estimation.

Decoding is conducted directly with a task-specific word network. The phone number
digits task used an open digit loop. The city names grammar was a flat list of 550 cities. The
command and control task was derived from the utterances in the data. A constant insertion
penalty of -100 was used for the digits task and 0 for the others. The pruning threshold was
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Portion SNR
Condition of data µ σ

Idle 25% 35 5.5
City 25% 25 7.2
Country 25% 18 6.4
Highway 25% 15 5.8

Table 9.7: Summary of multistyle training data for TREL-CRL04 system, SNR in dB.

fixed at 400. As with RM, for adaptation and noise model estimation, an initial decoding pass
was conducted on uncompensated clean or multistyle acoustic models to gives a recognition
hypothesis. This is the baseline CUED configuration for this corpus.

9.2.1 Clean Acoustic Model Compensation
It was clear in the RM experiments that compensating multistyle trained acoustic models
was more effective than compensating clean since the mismatch between training and testing
conditions is less. Thus although many experiments for this corpus will focus on compensating
multistyle and JAT models, some results for compensating clean models will be presented to
evaluate the predictive techniques discussed on non-artificially corrupted test data. Table 9.8
provides some baseline experiments for clean-trained acoustic model compensation on the
TREL-CRL04 corpus.

Compensation Idle City H’way
None 2.7 33.8 64.4

CMLLR
2 Full 0.6 16.1 58.7
16 Diag. 0.8 15.2 21.3

M-Joint 1.0 9.0 31.8
VTS 1.3 13.1 34.6

Table 9.8: WER (%) for CMLLR, 16-diagonal M-Joint and VTS compensation of clean
models on TREL-CRL04 digits task. Recognition hypothesis used for speaker-level transform
estimation with all test utterances.

It is clear that uncompensated clean acoustic models perform poorly. Based on the RM
results, it is expected that simple feature normalisation schemes will give limited robustness.
Adaptation provides a more powerful means to compensate the models to the test conditions
for both the noise and speaker. Two forms of CMLLR were tested: two full matrix transforms,
one for speech and one for silence, as it is often applied; and 16 diagonal transforms to better
model the non-linear effect of noise. Transforms are estimated at a speaker-level with all
available test data, which is about 3 minutes, for each speaker; this is sufficient for robust
estimation of the transform parameters. As expected, when the noise level is low, i.e. the
idle condition, 2 full CMLLR transforms are more effective than 16 diagonal transforms. As
the mismatch between the training and test conditions grow, 2 full transforms performs more
poorly—the most extreme example of this is clean models for highway with a compensated
WER of 58.71%. With 16 transforms, CMLLR can more accurately model the non-linear effect
of noise on the speech in a piece-wise fashion. Predictive M-Joint and VTS compensation
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were also explored. The ML noise estimation procedure used for RM and BN are also used
here; for all results, M-Joint noise model estimation was used to generate 16 transforms for M-
Joint compensation. These results are less clear in comparison to CMLLR. Although CMLLR
effectively compensates for both speaker and environment, it is expected that CMLLR should
be worse than predictive forms in noisier conditions. In fact the WER of 21.3% is better
than VTS or M-Joint at highways conditions. This may be explained by a sensitivity to
the extremely poor recognition hypothesis, with an error rate of 64.4%. The poor alignment
causes far more insertions in the predictive forms than with 16-diagonal CMLLR. In contrast,
at the city condition the predictive forms are better.

9.2.2 Multistyle Acoustic Model Compensation
For the multistyle acoustic models, two forms of normalisation were examined: CMN+CVN
and Gaussianisation with 4 components. These were conducted on a per utterance or per
speaker level. The results in table 9.9 show that CMN and CVN performed poorly increas-

Compensation Idle City H’way
None 1.9 5.8 19.4

CMN+CVN
Per Utt 2.4 7.5 12.8
Per Spkr 2.7 6.8 12.0

Gaussianisation
Per Utt 2.5 6.5 9.4
Per Spkr 3.3 7.2 11.0

Table 9.9: WER (%) for CMN+CVN and 4-component Gaussianisation with multistyle mod-
els on TREL-CRL04 digits task.

ing the WER by over 25% and 10% on the idle and city conditions compared to the un-
compensated multistyle system although there were some gains on the highway condition.
Gaussianisation generally did not improve on these results. The poor performance of these
noise normalisation schemes might be due to the large SNR range in the multistyle training
data as detailed in table 9.7. Part of the increase in errors may be attributed to a difference
in the average utterance length that would affect the balance of speech and silence in the
histograms; for WSJ0 and WSJ1 the average utterance length is 664 frames whereas there is
variation around this mean in the test sets—table 9.6 showed a complete breakdown for the
different test sets. The city names test has even shorter utterances, hence when Gaussiani-
sation is applied, error rates in excess of 50% are obtained. Overall, the utterances in this
task may simply be too short for normalisation to work effectively–too much discriminating
information is lost due to the normalisation.

Alternatively, adaptation may be applied to improve performance. Table 9.10 provides
results using CMLLR adaptation and predictive M-Joint and VTS compensation of multistyle
models. The same methods to estimate the transforms were used as the previous section.
Compared to the clean compensation results in table 9.8, with multistyle-trained models the
mismatch is less and therefore the disparity between the full and diagonal results is smaller.
As discussed for RM in section 8.2.2.2, the diagonal CMLLR transforms have many more
free parameters than the predictive forms. In general, for both clean and multistyle systems,
CMLLR outperformed the predictive M-Joint and VTS forms where on RM the opposite was
found. This may be because CMLLR transforms are more flexible and can better adapt to the
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Compensation Idle City H’way
None 1.9 5.8 19.4

CMLLR
2 Full 0.6 1.9 5.1
16 Diag. 0.8 1.8 3.5

VTS 1.8 3.4 5.9
M-Joint 1.6 3.0 4.8

Table 9.10: WER (%) for CMLLR, 16-diagonal M-Joint and VTS compensation of multistyle
models on TREL-CRL04 digits task. Recognition hypothesis used for speaker-level transform
estimation with all test utterances.

speaker; although the M-Joint and VTS compensation have more powerful model variance
updates than CMLLR, they are constrained to the noise model. Unexpectedly, VTS was
worse than M-Joint compensation. This may be due to sensitivity to initial noise model or
differences between VTS noise model estimation and M-Joint noise model estimation.

Hypothesis EM Iter Idle City H’Way
— 1.9 5.8 19.4

Recognition
1 1.8 3.4 5.9
2 1.8 3.3 5.3

Reference
1 1.7 3.4 5.4
2 1.7 3.2 5.1

Table 9.11: WER (%) for VTS compensation of multistyle models, varying supervision mode
and number of EM iterations, on TREL-CRL04 digits task. Noise model estimated at a
speaker level with all utterances.

Table 9.11 investigates how VTS performance improves with further EM iterations to
refine the noise model. Results with supervised noise model estimation are also presented for
contrast. As expected results improve when a second EM iteration is conducting using the
same recognition hypothesis. Though the gains are small on the idle and city conditions, the
second iteration gives performance close to supervised estimation on the highway condition.
Results are also better when the reference hypothesis is used, but not by much. This would
indicate that the noise model estimation procedure is not very sensitive to errors in the
hypothesis. Overall, the reported M-Joint compensation performance is still superior to any
of these VTS model compensation results.

Compensation Noise Est. Type Idle City H’Way
— 1.9 5.8 19.4

M-Joint
VTS 1.6 3.3 7.6
M-Joint 1.6 3.0 4.8

VTS
VTS 1.8 3.4 5.9
M-Joint 1.7 3.0 4.1

Table 9.12: WER (%) for 16-diagonal M-Joint and VTS compensation of multistyle models,
varying the noise estimation type, on TREL-CRL04 digits task. Recognition hypothesis used
for speaker level noise model estimation with all test utterances
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Table 9.12 examines M-Joint and VTS compensation with ML M-Joint or VTS noise mod-
els. As discussed previously, the compensation form should match the noise model estimation
type. As expected the matched M-Joint compensation and noise models generally gave better
results as was shown on RM. However, when VTS model compensation is performed with the
ML M-Joint noise models, the results are better than with the VTS “tuned” noise models.
This can be explained by the limited noise estimation procedure using VTS compensation.
The statics fixed-point estimation only optimises the noise model for the static dimensions.
The M-Joint noise model estimation uses numerical gradients to optimise the noise model
for all dimensions. The similarity between VTS and M-Joint compensation allows VTS com-
pensation to effectively use the M-Joint noise model. In fact, if the number of regression
classes is increased to the number of model components, then M-Joint noise model estima-
tion can be used to estimate VTS noise models since the compensation converge to be the
same. The VTS results in table 9.12, using the ML M-Joint noise models, are the best of all
predictive compensation schemes tested for multistyle acoustic models across all conditions.
This was not the case on the RM task though; the best performance was obtained when the
compensation matched the noise model estimation type.

The previous results use all the available adaptation data from the test set to estimate
the compensation parameters. In some circumstances, such as interactive dialogue systems,
the system should be compensated quickly such that accuracy is relatively high early in the
interaction and latency in the system response is low. Thus results will now be presented
where only the first utterance in the dialogue session is used to estimate the compensation
parameters for rest of the session. Utterances average 6.9 seconds in length, hence full CMLLR
transforms cannot be reliable estimated. Multiple diagonal CMLLR transforms can still be
reliably estimated with a regression tree as applied in the RM task. In addition to evaluating
CMLLR, M-Joint and VTS compensation, experiments with PCMLLR transforms will be
conducted. PCMLLR has the same decoding form as CMLLR, however the transforms are
estimated using predicted statistics from M-Joint transforms as discussed in section 5.8. Hence
it is also a predictive compensation form, but without a model variance update as compared
to M-Joint or VTS compensation.

City Highway
Compensation 30 Utt 1 Utt 30 Utt 1 Utt
None 5.8 19.4
CMLLR 1.8 8.4 3.5 8.8
PCMLLR 3.1 5.0 5.2 6.6
M-Joint 3.0 5.2 4.8 6.9

Table 9.13: WER (%) for CMLLR, PCMLLR or M-Joint compensation of multistyle models
on TREL-CRL04 digits task comparing estimation with all utterances to only one utterance
per speaker. Recognition hypothesis used for speaker-level 16-diagonal transform estimation.

Table 9.13 examines estimation with only the first utterance for each speaker compared
with all 30. Only city and highway results are reported since the differences for the idle
condition are small. While there is some expected degradation in performance when limiting
the adaptation data, it is more substantial for CMLLR than the predictive forms. The WER
more than quadruples on the city condition and doubles on the highway task. With the
regression tree split threshold set at 200, transforms should be robustly estimated, although
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on average only 3 transforms are produced per speaker since only a single utterance is avail-
able for adaptation. The transforms do not generalise well to the other utterances for the
speaker, decreasing the overall likelihood of all test data. In contrast, PCMLLR transforms
are estimated from M-Joint transforms and therefore a noise model. The noise model may be
robustly estimated on little data. Thus PCMLLR and M-Joint perform better than CMLLR
with limited adaptation data. It is surprising to find that PCMLLR gives similar performance
to M-Joint. This is likely due to the mismatch between the multistyle acoustic models and
the actual test conditions being not too large. For lower SNR conditions, this trend is unlikely
to continue.

9.2.3 Joint Adaptive Training
This section examines JAT for noise robustness on this task. The training is conducted in
the same manner as for the RM and BN systems. To achieve faster noise model estimation,
limiting the adaptation data and using a GMM for noise model estimation during testing is
also investigated for JAT and compared with the multistyle model results.

Acoustic Compensation Digits
Model M-Joint CMLLR Idle City H’way

Multistyle
1.9 5.8 19.4

X 1.6 3.0 4.8
X X 0.7 1.5 2.7

JAT
X 1.1 2.4 4.5
X X 0.6 1.4 3.0

Table 9.14: WER (%) for 16-diagonal M-Joint combined with 2 full CMLLR transforms com-
pensating multistyle and JAT models on TREL-CRL04 digits task. Recognition hypothesis
used for speaker-level ML noise model estimation using all test utterances.

Table 9.14 gives results for multistyle compensation compared with JAT in combination
with CMLLR. JAT was superior to the multistyle by about 0.5% absolute WER for all
conditions. It was expected that gains would be larger for the highway condition just as they
were for the city names task and the lower SNR conditions on RM in table 8.16, but this was
not the case. This may be due to the higher average levels of noise in the multistyle training
data for this task. The greatest relative reduction in error was in the idle condition at 30%.
These results demonstrate that the JAT model is more amenable to being transformed to
other conditions compared to the multistyle models. As was found on RM in table 8.19,
the CMLLR transforms complemented M-Joint. The most substantial gains were on the
idle condition where error rates are more than halved compared to compensation with only
M-Joint transforms. There is large difference because this condition is less noisy than the
average multistyle training SNR which is less appropriate for the M-Joint form to compensate.
The mismatch function fundamental to generating M-Joint transforms represents combining
clean speech with noise to give noisier speech, not cleaner speech. CMLLR transforms are not
restrained in this manner. In combination the two provide results better than simply using
CMLLR alone, as reported in table 9.10, especially on the highway condition.

The amount of adaptation data can also be reduced when testing the JAT system. Al-
though during training, all the data are used to estimate transforms, for testing only the first
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Acoustic Idle City Highway
Model Compensation 30 Utt 1 Utt 30 Utt 1 Utt 30 Utt 1 Utt

Multistyle
— 1.9 5.8 19.4
M-Joint 1.6 1.7 3.0 5.2 4.8 6.9

JAT M-Joint 1.1 1.1 2.4 3.2 4.5 4.7

Table 9.15: WER (%) for 16-diagonal M-Joint compensation on TREL-CRL04 digits task
comparing estimation with all utterances to only one per speaker. Recognition hypothesis
used for speaker-level ML noise model estimation.

utterance is used for noise model estimation. Results for this scenario are shown in table 9.15.
Although there is reduced performance, between using all test data and only one, the overall
results are still good. For example, using JAT with transforms estimated with only one test
utterance was more effective than multistyle transforms estimated with all adaptation data
in the idle and highway conditions. The large difference in the city condition, between esti-
mating noise from 30 utterances or a single one for both compensated multistyle and JAT
models, may be due to the more non-stationary nature of the noise in city driving.

For this task, one aspect of the noise model estimation process that has not been explored
yet is the form of the acoustic model used during estimation. The JAT acoustic model is
unchanged—only the noise model estimation for testing differs. The clean speech GMM is
derived using the same approach described in section 5.4.1 to produce the clean speech class
model. M-Joint transforms are generated using the VTS noise model estimated with the
GMM. This is a limitation since there is a mismatch between the noise model estimation
type, VTS, and the compensation the model will be used for, M-Joint. It was demonstrated
on RM, BN and in table 9.12 for this task that it is important to match these.

Acoustic Idle City Highway
Model Compensation HMM GMM HMM GMM HMM GMM

Multistyle
— 1.9 5.8 19.4
M-Joint 1.7 1.8 5.2 6.5 6.9 11.3

JAT M-Joint 1.1 1.5 3.2 6.0 4.7 7.6

Table 9.16: WER (%) for 16-diagonal M-Joint compensation on TREL-CRL04 digits com-
paring HMM or GMM speech model for noise model estimation. Recognition hypothesis used
for speaker-level ML noise model estimation using only the first utterance per speaker.

Table 9.16 provides results comparing GMM versus HMM speech models for noise model
estimation on the first test utterance per speaker. With the 256-component GMM, M-Joint
transforms are generated using the ML VTS noise model. Based on the experiments with
VTS compensation on RM, 16 components are expected to be too few. Experiments on
the multistyle system with a 1024-component GMM did not give improve improvements.
Unlike the RM results in table 8.15 with VTS compensation, M-Joint performance degrades
substantially when a GMM is used compared to the HMM. Part of this may be attributed
to the mismatch between the VTS noise model estimation and the M-Joint compensation.
The JAT results are still better than the multistyle, however on the city condition, the results
with using a GMM for noise model estimation are worse than not compensating the multistyle
models. This is likely due to the cumulative effects of estimating the noise model with a GMM
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and only with a single utterance. Results should improve if the noise model is updated more
frequently than once every 30 utterances.

Acoustic City Names
Model Compensation Idle City H’way

Multistyle
— 11.1 17.8 39.1
M-Joint 9.5 15.4 22.8

JAT M-Joint 9.4 14.8 16.9

Table 9.17: WER (%) for 16-diagonal M-Joint compensation of multistyle or JAT models on
TREL-CRL04 city names task. Recognition hypothesis used for speaker-level noise model
estimation with all test utterances.

Table 9.17 gives results comparing M-Joint compensation with multistyle or JAT acoustic
models, but on the city names task to demonstrate that these results carry beyond a digit
recognition task. The results are reported using all available adaptation data to estimate
the noise models. Table 9.14 shows that performance levels on the city names task is worse
than on digits, reflecting the increased task difficulty, and the gains from compensation less
substantial. For predictive multistyle model compensation on digits at highway noise levels,
the WER was reduced by about four times, whereas on city names it is not halved with
M-Joint compensation. With the JAT models, results are only marginally better for the idle
and city conditions, but more substantial on the highway. The WER is more than half of the
uncompensated multistyle model. The results from table 9.14 and 9.17 show that JAT is an
effective form of improving noise robustness.

9.3 Summary
This chapter has presented results examining uncertainty decoding on recorded noisy speech
that is not artificially corrupted. Two corpora were examined: the large vocabulary Broadcast
News task and unpublished Toshiba 2004 database. Experiments on Broadcast News demon-
strated that predictive M-Joint and VTS compensation forms can successfully be applied to a
large vocabulary task. Since the SNR did not vary by large amounts, joint adaptive training
did not give any gains. The Toshiba 2004 database contains drivers saying phone numbers,
city names, and commands whilst driving at various speeds. While the experimentation on
this database focused on the phone number digits task, performance trends were similar for
the other tasks. Many of the conclusions from RM testing were confirmed. While M-Joint
compensation improved results for clean- and multistyle-trained acoustic models across all
conditions, the best results were obtained using joint adaptive training. Experiments also
showed that with little adaptation data, M-Joint compensation can still be effective com-
pared with CMLLR compensation. Lastly some experiments were conducted using a GMM
for noise model estimation rather than a HMM to improve estimation speech and were effec-
tive for the noisier conditions. Overall, positive results were obtained on these tasks involving
speech recorded in noisy environments.



CHAPTER 10
Conclusions

This thesis has investigated uncertainty decoding for noise robust speech recognition. In
particular, a new approach called joint uncertainty decoding (JUD) was introduced. JUD

compensation parameters are derived in a straightforward manner from the joint distribution
between the training and testing conditions. An important contribution is the discussion of
inherent limitations of front-end uncertainty decoding forms like SPLICE with uncertainty
and front-end JUD. The third major contribution is a detailed presentation of maximum
likelihood noise model estimation for noise compensation. Lastly, the final contribution is
noise adaptive training with JUD transforms, which is referred to as joint adaptive training
or JAT. JAT directly takes into account the noise level of observations by de-weighting them
in proportion to the uncertainty; noisier observations contribute less to the canonical model
estimation leading to purer speech acoustic models. In conclusion, these contributions demon-
strate the overall effectiveness of JUD as a competitive noise robustness technique for a wide
variety of tasks, small to large vocabularies, clean- or multistyle-trained acoustic models, and
on large range of SNR and real world data.

The next section reviews the key findings in this thesis in more detail and the last section
in this chapter presents future work directions.

10.1 Summary of Results
JUD is a form of uncertainty decoding where the joint distribution between the training
and test conditions is considered Gaussian. In comparison to other techniques, such as
SPLICE with uncertainty or observation uncertainty, this naturally leads to more power-
ful non-diagonal transformations. If joint distributions are associated with different regions
of the acoustic space, i.e. partitioning with a front-end GMM, then this results in a form of
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front-end JUD referred to as FE-Joint compensation in this work. Alternatively if the joint
distributions are linked to different regression classes of acoustic model components, then this
results in model-based JUD, which is referred to as M-Joint compensation.

When the number of classes equals the number of model components. M-Joint compensa-
tion has the property of converging to whatever model compensation technique, such as VTS,
PMC or SPR, is used to derive the joint distribution. However, by reducing the number of
classes, the computational cost is lowered by a significant factor with little loss in accuracy.
Efficiencies are attained in transform estimation and application by sharing transforms across
a group of model components much like with MLLR adaptation. It was shown that with only
16 or 256 diagonal transforms, compared to 10k-100k model components, performance similar
to VTS compensation could be achieved. Furthermore, the form of the M-Joint transform,
which is a simple affine feature transformation and model variance bias, is far cheaper to
apply than VTS, which requires full matrix multiplication of the model variances.

Additionally, the number of transforms is not restricted to the amount of adaptation data
since M-Joint transforms are predicted by combining noise and speech models. Experiments
also show that transforms can be more robustly estimated on less data than an adaptive form
such as CMLLR. Results on the AURORA and Resource Management tasks demonstrate
that JUD is effective over a wide range of SNR and superior to other noise compensation
techniques such as standard SPLICE, SPLICE with uncertainty, and CMLLR. On the Toshiba
tests, JUD gave results similar to VTS compensation and reduced the error rate substantially
on the noisiest conditions. Hence, it may be concluded that from small to large vocabulary
tasks, over a variety of artificially added noises and real conditions like the Toshiba In-car
task, JUD is a fast, efficient yet effective, form of model-based noise compensation.

This thesis has provided a clarification between front-end uncertainty decoding and ob-
servation uncertainty. For the noise robustness framework used in this work, if the front-end
chooses a global model mean and variance update—this is the definition of a front-end un-
certainty decoding form—then problems in low SNR will arise. In contrast, observation un-
certainty simply adds the variance of the feature enhancement process to the acoustic model
variances; however, the literature has not provided a strong mathematical motivation for this
approach. This may explain the larger than expected variances that reduce performance in
cleaner conditions among the many other problems quoted using this technique. Hence the
distinction between uncertainty decoding and observation uncertainty is a crucial one when
assessing their advantages and limitations.

Another important contribution is the discussion of an inherent problem for all front-end
uncertainty decoding forms such as, but not limited to, SPLICE with uncertainty and FE-
Joint compensation. If a frame has low SNR, then the front-end will consider the region
noise and choose a transformation that updates a model component to the noise distribution.
Since a transformation is global, all the model components will be transformed to the same
noise distribution. Hence in low SNR there may be no acoustic information available for the
decoder. If this occurs for several frames, then errors in the search can arise. A language
model can alleviate this problem, however in some tasks, such as recognising digit strings, it
can be rather weak. In comparison model-based approaches do not have this problem since
models are affected by different transforms. Moreover, the M-Joint variance update can be
cached if the noise is stationary; otherwise M-Joint compensation has a similar computational
cost to front-end uncertainty decoding or observation uncertainty for a comparable number
of compensation parameters. Compared to the front-end forms, experiments on AURORA
and Resource Management showed that model-based compensation provided superior results
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especially with fewer transforms. These aspects lead to the conclusion that model-based
uncertainty decoding is superior to front-end uncertainty decoding.

A ML noise model estimation framework using EM for state-of-the-art recognisers was put
forward in this thesis. Some past work in this area has been limited to only static features,
the log-spectral domain or models for enhancement. Here, the approach is used for model
compensation forms such as M-Joint and VTS compensation and furthermore allows them
to be applied to both clean and multistyle acoustic models. It was shown that using an
ML noise model was superior to using an acoustic additive noise model computed from non-
speech regions. Although this latter approach may be computationally efficient, the detection
of speech may become more difficult and prone to error as the SNR becomes low. An EM
approach can overcome this problem, and provides a noise model consistent with the noise
compensation technique. Experimental results allow it to be concluded that ML noise model
estimation is a useful technique for improving model-based noise compensation.

The last main contribution is noise adaptive training using JUD transforms called JAT.
Instead of forcing the acoustic models to represent extraneous variability introduced by noise
in the training data, as is the case for multistyle training, the noise effect is modelled by
JUD transforms. Adaptive training with CMLLR or normalisation updates the features
and subsequently treats cleaner observations the same as noisier ones. In contrast, during
acoustic model training, JAT directly takes into account the noise level of observations by
de-weighting them in proportion to the uncertainty—noisier observations contribute less to
the canonical model estimation than cleaner ones. The resulting acoustic models are then
purer representations of the speech variability. No gains were observed on the Broadcast
News task because the mismatch between the training and test conditions is minimal. On
the Resource Management and Toshiba tasks it was shown that joint adaptive training was
superior to compensating clean or multistyle-trained acoustic models. The difference is most
apparent on test conditions where the noise is not present in the multi-condition training
data. Hence compared to multistyle training, JAT is a better, albeit more complex, method
of training acoustic models on heterogeneous data with mixed levels of noise for noise robust
speech recognition.

10.2 Future Work
The majority of this work focused on diagonal transforms. As the noise level increases, it
becomes more important to model the correlations introduced by the noise. Using stereo data
with artificially corrupted noise, full joint distributions were estimated giving results exceeding
matched performance while compensating clean acoustic models—this demonstrates the gains
possible by improving correlation modelling. It would be advantageous to extend the M-Joint
transform and noise model estimation procedure to produce full, or at the least, block-diagonal
transforms. A block-diagonal form could easily be derived by not diagonalising the Jacobian
matrices or the predicted corrupted speech variance even though the additive noise variances
are diagonal. This could be improved by estimating non-diagonal forms of additive noise
covariance.

A goal of this work was to produce an efficient form of noise compensation. Although
M-Joint compensation is more efficient than model-based VTS, the noise model estimation
procedures used were not very efficient. For the ML M-Joint noise model, numerical deriva-
tives were used. Analytic forms of these derivatives should be derived. As the noise level
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increases, many models are effectively subsumed by the noise and could be tied to a single
noise distribution to improve efficiency. Also, preliminary experiments in this work demon-
strated that noise models could be estimated on only a single utterance with a GMM speech
model. It would be interesting to develop a sub-utterance noise model estimation technique
that would truly allow rapid adaptation to noisy environments.

Additional steps can be taken to improve the overall noise compensation capability of
JUD. A major assumption in this work is that the noise is stationary. However, gains have
been shown by introducing more complex noise models used for model-based compensation
that handle non-stationary noises like babble speech [86] or machine gun noise [39]. Similarly
M-Joint compensation can be extended to handle such situations by considering multi-state
noise models. Each noise state may be associated with a set of JUD transforms. The noise
state can be efficiently determined by associated each state with a component in a front-end
GMM.

Furthermore, the joint distribution for M-Joint transforms has been assumed Gaussian,
however it can be clearly non-Gaussian depending on the SNR and speech and noise variances.
More complex forms of the joint distribution and hence the corrupted speech conditional
should be explored to see how performance is affected by the single Gaussian approximation.
The joint distribution has also been predicted using a noise mismatch function. If other
factors, such as the speaker, can be captured in the joint distribution between the training
and test conditions, then uncertainty decoding can be extended beyond noise compensation.
This of course could complicate the JAT process. However, it could permit fast adaptation of
an ASR system to new environments and speakers using a single set of predictive transforms
that are estimated from small amounts of data and can be compactly stored.



APPENDIX A
Useful Derivations

This section contains simple, useful derivations involving multivariate Gaussian distributions
and random vectors.

A.1 The Conditional Multivariate Gaussian
Let s and o be multivariate Gaussian distributed variables with mean parameters µs and µo,
and covariance matrices Σs and Σo respectively. The joint distribution of these two random
vectors can be considered Gaussian distributed

p(s,o) ∼ N (µs,o,Σs,o) (A.1)

where the mean and variance are given by

µs,o =
[
µs

µo

]
and Σs,o =

[
Σs Σso

Σos Σo

]
(A.2)

and Σso and Σos are the cross covariances between s and o, and Σso = ΣT
os.

Bayes’ rule dictates that

p(s|o) =
p(s,o)
p(o)

(A.3)

If p(s,o) is Gaussian, then the conditional PDF of s given o is also Gaussian

p(s|o) = N
(
µs|o,Σs|o

)
(A.4)
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where

µs|o = µs + ΣsoΣ -1
o (o− µo) (A.5)

Σs|o = Σs −ΣsoΣ -1
o Σos (A.6)

A similar form can also be derived for p(o|s). Σs|o is also referred to as the Schur
decomposition of Σs,o w.r.t. Σo and denoted by Σ|Σo

. A full derivation may be found in [122].

A.2 Convolution of Two Gaussian Distributions
In the marginalisation over the clean speech variable st, an integral of this form appears

p(ot|m, k) =
∫
RD

|A(k)|N
(
A(k)ot + b(k); st,Σ

(k)
b

)
N
(
st;µ(m)

s ,Σ(m)
s

)
dst

=
∫
RD

|A(k)|N
(
A(k)ot + b(k) − st;0,Σ(k)

b

)
N
(
st;µ(m)

s ,Σ(m)
s

)
dst (A.7)

where ot is the noisy observation vector at frame t, m indexing the model component param-
eters in the acoustic model M and k the transform index in the compensation parameter set
M̌. This integration can be considered the convolution of the two Gaussian distributions

p(ot|m, k) = |A(k)|N
(
A(k)ot + b(k) − st;0,Σ(k)

b

)
∗ N

(
st;µ(m)

s ,Σ(m)
s

)
(A.8)

The convolution of two Gaussian distributions results in another Gaussian distribution with
a mean that is the sum of their means and a variance that is the sum of their variances [27]

p(ot|m, k) = |A(k)|N
(
A(k)ot + b(k);µ(m)

s ,Σ(m)
s + Σ(k)

b

)
(A.9)

To prove this, consider the product of two Gaussians

N (y − x,Σ1)N (x− µ,Σ2) =
1

(2π)D
√
|Σ1||Σ2|

exp
{
−1

2

[
(y − x)TW1(y − x) + (x− µ)TW2(x− µ)

]}
(A.10)

where W1 = Σ -1
1 and W2 = Σ -1

2 . In the square brackets, x can be brought out and isolated

(y − x)TW1(y − x) + (x− µ)TW2(x− µ)

= yTW1y − 2xTW1y + xTW1x + xTW2x− 2xTW2µ + µTW2µ

= xT(W1 + W2)x− 2xT(W1y + W2µ) + yTW1y + µTW2µ (A.11)

For simplicity, define Ws = (W1 + W2), such that

(y − x)TW1(y − x) + (x− µ)TW2(x− µ)

= xTWsx− 2xT(W1y + W2µ) + yTW1y + µTW2µ

= xTWsx− 2xT(W1y + W2µ) + (W1y + W2µ)TW -1
s (W1y + W2µ)+

yTW1y + µTW2µ − (W1y + W2µ)TW -1
s (W1y + W2µ)

(A.12)
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The first three terms in equation (A.12) can be factored as follows

xTWsx−2xT(W1y+W2µ)+(W1y+W2µ)TW -1
s (W1y+W2µ) = (x−x̂)TWs(x−x̂) (A.13)

if x̂ = W -1
s (W1y+W2µ). The next two terms in equation (A.12) can be expanded as follows

yTW1y + µTW2µ = yT(W1 + W2)W -1
s W1y + µT(W1 + W2)W -1

s W2µ

= yTW1W
-1

s W1y + yTW2W
-1

s W1y+

µTW1W
-1

s W2µ + µTW2W
-1

s W2µ (A.14)

and the final term

(W1y+W2µ)TW -1
s (W1y+W2µ)

= yTW T
1 W -1

s W1y − 2yTW T
1 W -1

s W2µ + µTW T
2 W -1

s W2µ (A.15)

Since Σ1 and Σ2 are symmetric and therefore W1 and W2 are as well, subtracting equa-
tion (A.15) from equation (A.14) gives

yTW1y + µTW2µ− (W1y + W2µ)TW -1
s (W1y + W2µ)

= yTW2W
-1

s W1y + µTW1W
-1

s W2µ− 2yTW T
1 W -1

s W2µ

= (y − µ)T(W -1
1 + W -1

2 ) -1(y − µ) (A.16)

using the following identity A(A + B) -1B = B(A + B) -1A = (A -1 + B -1) -1 found in Searle
[126]. Equations (A.13) and (A.16) combine to form equation (A.12)

(y − x)TW1(y − x) + (x− µ)TW2(x− µ)

= (x− x̂)TWs(x− x̂) + (y − µ)T(W -1
1 + W -1

2 ) -1(y − µ) (A.17)

and therefore

N (y − x,Σ1)N (x− µ,Σ2) = N (y − µ,Σ1 + Σ2)N (x− x̂,W -1
s ) (A.18)

This result allows the convolution to be simplified as follows∫
RD

N (y − x,Σ1)N (x− µ,Σ2)dx =
∫
RD

N (y − µ,Σ1 + Σ2)N (x− x̂,W -1
s )dx

= N (y − µ,Σ1 + Σ2) (A.19)

Thus it is clear that for y = A(k)ot + b(k), µ = µ
(m)
s , Σ1 = Σ(k)

b and Σ2 = Σ(m)
s

p(ot|m, k) =
∫
RD

|A(k)|N
(
A(k)ot + b(k) − st;0,Σ(k)

b

)
N
(
st;µ(m)

s ,Σ(m)
s

)
dst

= |A(k)|N (A(k)ot + b(k);µ(m)
s ,Σ(k)

b + Σ(m)
s ) (A.20)

Alternatively, the convolution of two probability “component” densities yields the density
function for the sum of two random variables that are distributed according the two respective
component densities [27]. If these two random variables are wt ∼ N

(
0,Σ(k)

b

)
and vt ∼

N
(
µ

(m)
s ,Σ(m)

s

)
then

ot = wt + vt ∼ N
(
µ(m)

s ,Σ(m)
s + Σ(k)

b

)
(A.21)

after noting the distribution of the sum two Gaussian distributed variables has a mean that is
the sum of the component means and a variance the sum of the component variances [27]. It
follows that the probability of the observation for a given front-end component k and model
component m is given by equation (A.9).
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A.3 Linear Models and Expected Values
Let x be a random vector and y a linear function of x such that

y = Ax + b (A.22)

where A is a square transformation matrix and b a bias vector. The expected value of y is
then given by

µy = E{y}
= E{Ax + b}
= Aµx + b (A.23)

where µx is the mean of x. The covariance of x is Σx whereas the covariance of y is given by

Σy = E
{

(y − µy)(y − µy)T
}

= E
{

(Ax + b− (Aµx + b))(Ax + b− (Aµx + b))T
}

= E
{

(Ax−Aµx)(Ax−Aµx)T
}

= E
{

A(x− µx)(x− µx)TAT
}

= AΣxAT (A.24)

This result is useful for deriving the covariance terms of the corrupted speech distribution from
a linear equation of the clean speech and noise means, e.g. equation (4.33). The covariance
between y and x is

Σyx = E
{

(y − µy)(x− µx)T
}

= E
{

(Ax + b− (Aµx + b))(x− µx)T
}

= E
{

(Ax−Aµx)(x− µx)T
}

= E
{

A(x− µx)(x− µx)T
}

= AΣx (A.25)

Hence the covariance between a random vector and its transformed version is simply a linear
transform of the variance of the random vector.



APPENDIX B
Model-based VTS

Compensation

The non-linear environmental mismatch function for relating clean speech x, additive noise
z and channel noise h to the corrupted speech y was given in chapter 3. Ignoring the time
subscript, it is

y = x + h + Clog
(
1 + exp

(
C -1(z − x− h)

))
(B.1)

Many approximations to this function have been proposed, such as selecting the maximum
of either the noise or speech, i.e. noise masking [145] or PMC [39]. Another approach is to
linearise it with a truncated vector Taylor series (VTS) [2, 80, 106] to individually update
each model component. The first-order VTS approximation of the static corrupted speech
for dimension i is

yvts,i = yi|µ(m)
0

+ ∇x yi|µ(m)
0

•
(
x−µ(m)

x

)
+ ∇z yi|µ(m)

0
•
(
z−µz

)
+ ∇h yi|µ(m)

0
•
(
h−µh

)
(B.2)

where |µ(m)
0

indicates evaluation at the Taylor series expansion point of the clean speech
component mean µ

(m)
x , and current estimates of the additive noise mean µz and channel

noise µh. The symbol • indicates the dot product and ∇ a gradient operator. Taking the
expected value value of equation (B.2) associated with a given model component

µ
(m)
y,i ≈ E {yvts,i|m} = yi|µ(m)

0

= µ
(m)
x,i + µh,i + cīlog(1 + exp(C -1(µz − µ(m)

x − µh))) (B.3)
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where the term cī is a row vector that is the ith row of the DCT matrix C. Equation (B.3)
can be written in vector form as

µ(m)
y ≈ µ(m)

x + µh + Clog(1 + exp(C -1(µz − µ(m)
x − µh))) (B.4)

This gives a relationship between the corrupted speech mean, clean speech mean and the
noise model assuming the clean speech, additive noise and channel noise are independent of
each other and are Gaussian distributed random variables.

B.1 Compensating Dynamic Coefficients
In state of the art recognition systems, time derivatives improve performance by addressing the
continuous nature of speech. The Continuous-Time approximation has been used to give an
analytic approximation of the first- and second-order dynamic corrupted speech features [39].
Applying the chain rule to the first time derivative of the corrupted speech yields the following

∂yi

∂t
=

∂yi

∂x
•

∂x

∂t
+

∂yi

∂z
•

∂z

∂t
+

∂yi

∂h
•

∂h

∂t

= ∇x yi •
∂x

∂t
+ ∇z yi •

∂z

∂t
+ ∇h yi •

∂h

∂t
(B.5)

where recall y is the static corrupted speech, x the static clean speech, h the static channel
noise and z the static additive noise variables where the subscript t has been omitted for
simplicity. Substituting the first-order VTS approximation in equation (B.2) w.r.t. time for
the actual corrupted speech, gives the following

∂yi

∂t
≈ ∂yvts,i

∂t

=∇x

{
yi|µ(m)

0
+∇x yi|µ(m)

0
•
(
x−µx

)
+∇z yi|µ(m)

0
• (z−µz)+∇h yi|µ(m)

0
• (h−µh)

}
•
∂x

∂t
+

∇z

{
yi|µ(m)

0
+∇x yi|µ(m)

0
•
(
x−µx

)
+∇z yi|µ(m)

0
• (z−µz)+∇h yi|µ(m)

0
• (h−µh)

}
•
∂z

∂t
+

∇h

{
yi|µ(m)

0
+∇x yi|µ(m)

0
•
(
x−µx

)
+∇z yi|µ(m)

0
• (z−µz)+∇h yi|µ(m)

0
• (h−µh)

}
•
∂h

∂t
(B.6)

Since the clean speech, additive and channel noise may all considered independent of each
other

∂yi

∂t
≈ ∇x

{
∇x yi|µ(m)

0
•x
}

•
∂x

∂t
+ ∇z

{
∇z yi|µ(m)

0
•z
}

•
∂z

∂t
+ ∇h

{
∇h yi|µ(m)

0
•h
}

•
∂h

∂t
(B.7)

Recall that the vector gradient quantity in the dot products, such as ∇x yi|µ(m)
0

, is the gradient

of the corrupted speech, w.r.t. x, but with variables evaluated at µ
(m)
0 and hence is no longer

a function of any of the random variables. Thus

∂yi

∂t
≈
{

∇x yi|µ(m)
0

•∇xx
}

•
∂x

∂t
+
{

∇z yi|µ(m)
0

•∇zz
}

•
∂z

∂t
+
{

∇h yi|µ(m)
0

•∇hh
}

•
∂h

∂t

= ∇x yi|µ(m)
0

•
∂x

∂t
+ ∇z yi|µ(m)

0
•
∂z

∂t
+ ∇h yi|µ(m)

0
•
∂h

∂t
(B.8)
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This may be re-expressed as

∂y

∂t
≈ J (m)

x

∂x

∂t
+ J (m)

z

∂z

∂t
+ J

(m)
h

∂h

∂t
(B.9)

where the each row of the Jacobian matrices give the gradient of a dimension of the corrupted
speech w.r.t. the clean speech, additive noise or channel noise vectors, all evaluated at the
expansion point µ

(m)
0 and were expressed earlier in equations (4.28) and (4.30). The expected

value of equation (B.9), across the clean speech and noise variables, gives the corrupted speech
delta parameters for a given model component m

µ
(m)
∆y ≈ E

{
∂y

∂t

∣∣∣∣m}
≈ J (m)

x µ
(m)
∆x + J (m)

z µ∆z + J
(m)
h µ∆h (B.10)

If it is assumed that the additive noise is stationary, hence µ∆z = 0, and the convolutional
noise invariant, implying µ∆h = 0, then

µ
(m)
∆y ≈ J (m)

x µ
(m)
∆x (B.11)

Finding the variance of ∂y
∂t in equation (B.9) gives an approximation to the delta corrupted

speech variance

Σ(m)
∆y ≈ E

{
∂y

∂t

∂y

∂t

T∣∣∣∣m}− µ
(m)
∆y µ

(m)T
∆y

≈ J (m)
x Σ(m)

∆x J (m)T
x + J (m)

z Σ∆zJ
(m)T
z + J

(m)
h Σ∆hJ

(m)T
h (B.12)

The assumption of channel invariance translates to zero channel variance, hence

Σ(m)
∆y ≈ J (m)

x Σ(m)
∆x J (m)T

x + J (m)
z Σ∆zJ

(m)T
z (B.13)

where J
(m)
x and J

(m)
z indicate the respective Jacobian matrices are instead evaluated at the

component clean speech mean µ
(m)
x and the noise means.

B.2 Delta-delta Coefficients
Delta-delta coefficients are also typically used in standard recognisers and may be approxi-
mated by second-order time derivatives. Differentiating equation (B.9) w.r.t. time, gives the
equivalent form found in [2], however embeds the VTS approximation in the partial derivative.
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If we start from equation (B.5), while again assuming invariant convolutional noise, then

∂2yi

∂t2
=

∂

∂t

{
∂yi

∂t

}
=

∂

∂t

{
∇x yi•

∂x

∂t
+ ∇z yi•

∂z

∂t

}
=

∂∇x yi

∂t
•
∂x

∂t
+ ∇x yi•

∂2x

∂t2
+

∂∇z yi

∂t
•
∂z

∂t
+ ∇z yi•

∂2z

∂t2

=
{

∂2yi

∂x∂x

∂x

∂t
+

∂2yi

∂z∂x

∂z

∂t

}
•
∂x

∂t
+∇x yi•

∂2x

∂t2
+{

∂2yi

∂x∂z

∂x

∂t
+

∂2yi

∂z∂z

∂z

∂t

}
•
∂z

∂t
+∇z yi•

∂2z

∂t2

(B.14)

Since there are no mixed terms in a VTS approximation of the clean speech, the mixed partial
derivatives vanish, simplifying equation (B.14) to

∂2yi

∂t2
≈ ∂2yi

∂x∂x

∂x

∂t
•
∂x

∂t
+∇x yi•

∂2x

∂t2
+

∂2yi

∂z∂z

∂z

∂t
•
∂z

∂t
+∇z yi•

∂2z

∂t2
(B.15)

Substituting a first-order VTS approximation of the corrupted speech yi will also result in
the second-order partial derivatives being null

∂2yi

∂t2
≈ ∂2yvts,i

∂t2
= ∇x yi|µ(m)

0
•
∂2x

∂t2
+ ∇z yi|µ(m)

0
•
∂2z

∂t2
(B.16)

which may be re-expressed as

∂2y

∂t2
≈ J (m)

x

∂2x

∂t2
+ J (m)

z

∂2z

∂t2
(B.17)

Since equation (B.17) is similar in form to equation (B.9), it is obvious the mean and variance
delta-delta coefficients of the corrupted speech distribution are also similar

µ
(m)
∆2y

≈ J (m)
x µ

(m)
∆2x

(B.18)

Σ(m)
∆2y

≈ J (m)
x Σ(m)

∆2x
J (m)T

x + J (m)
z Σ∆2zJ

(m)T
z (B.19)

This is the same result as found in [2], however investigating higher order VTS approximations
for the delta-delta coefficients may be fruitful.

Alternatively, a second-order VTS approximation of the corrupted speech may be made
to give a better estimation of the acceleration coefficients. This is

y2vts,i = yi|µ(m)
0

+ ∇x yi|µ(m)
0

•
(
x− µx

)
+ ∇z yi|µ(m)

0
• (z − µz) + ∇h yi|µ(m)

0
• (h− µh) +

1
2

∂2yi

∂x∂x
•
(
x−µx

)
•
(
x−µx

)
+

1
2

∂2yi

∂z∂z
•(z−µz)•(z−µz)+

1
2

∂2yi

∂h∂h
•(h−µh)•(h−µh)

(B.20)

The second-order partial derivative matrices have elements

∂2yi

∂xj∂xk
=

∂2yi

∂zj∂zk
=

∂2yi

∂hj∂hk

=
Ds∑
d=1

cid

(
exp(c -1

d̄
(µz − µ

(m)
x − µh))

1 + exp(c -1
d̄

(µz − µ
(m)
x − µh))

)(
1

1 + exp(c -1
d̄

(µz − µ
(m)
x − µh))

)
c -1
dj c

-1
dk

(B.21)
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for row j and column k and c -1
d gives the dth row of the inverse DCT.

B.3 Dynamic Cross-Covariance Coefficients
To compute the joint distribution for a regression class r, the cross-covariance between the
clean and corrupted speech is needed. The static cross-covariance parameters were derived
in section 5.4, however dynamic coefficients are also necessary if a system with dynamic
coefficients is to be compensated. The delta cross-covariance is defined as

Σ(r)
∆y∆x = E

{
(∆y − µ

(r)
∆y)(∆x− µ

(r)
∆x)T

∣∣∣r} (B.22)

The Continuous-Time approximation has the delta variables approximated by time deriva-
tives, where the convolutional noise is not considered

Σ(r)
∆y∆x ≈ E

{(
∂y

∂t
− µ

(r)
∆y

)(
∂x

∂t
− µ

(r)
∆x

)T
∣∣∣∣∣r
}

≈ E

{(
J (r)

x

∂x

∂t
+ J (r)

z

∂z

∂t
− J (r)

x µ
(r)
∆x− J (r)

z µ∆z

)(
∂x

∂t
− µ

(r)
∆x

)T
∣∣∣∣∣r
}

(B.23)

An approximation to ∂y
∂t was given in equation (B.9). Assuming independence between the

speech and noise variables, simplifies this to

Σ(r)
∆y∆x ≈ E

{(
J (r)

x

∂x

∂t
− J (r)

x µ
(r)
∆x

)(
∂x

∂t
− µ

(r)
∆x

)T
∣∣∣∣∣r
}

= J (r)
x E

{(
∂x

∂t
− µ

(r)
∆x

)(
∂x

∂t
− µ

(r)
∆x

)T
∣∣∣∣∣r
}

≈ J (r)
x Σ(r)

∆x (B.24)

The delta-delta cross-covariance between the clean and corrupted speech may be derived
in a similar manner. The delta-delta cross-covariance is defined as

Σ(r)
∆2y∆2x

= E
{

(∆2y − µ
(r)
∆2y

)(∆2x− µ
(r)
∆2x

)T
∣∣∣r} (B.25)

The Continuous-Time approximation has the delta-delta variables approximated by second-
order time derivatives where the convolutional noise again is not considered

Σ(r)
∆2y∆2x

≈ E

{(
∂2y

∂t2
−µ

(r)
∆2y

)(
∂2x

∂t2
−µ

(r)
∆2x

)T∣∣∣∣∣r
}

≈ E

{(
J (r)

x

∂2x

∂t2
+J (r)

z

∂2z

∂t2
−J (r)

x µ
(r)
∆2x

−J (r)
z µ∆2z

)(
∂2x

∂t2
−µ

(r)
∆2x

)T∣∣∣∣∣r
}

(B.26)
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An approximation to ∂2y
∂t2

was given in equation (B.17). Assuming independence between the
speech and noise variables, simplifies this to

Σ(r)
∆2x∆2y

≈ E

{(
J (r)

x

∂2x

∂t2
− J (r)

x µ
(r)
∆2x

)(
∂2x

∂t2
− µ

(r)
∆2x

)T
∣∣∣∣∣r
}

= J (r)
x E

{(
∂2x

∂t2
− µ

(r)
∆2x

)(
∂2x

∂t2
− µ

(r)
∆2x

)T
∣∣∣∣∣r
}

≈ J (r)
x Σ(r)

∆2x
(B.27)



APPENDIX C
Derivative of Auxiliary

w.r.t. Additive Noise
Variance

ML estimates of the additive and channel noise means, as well as the additive noise variance,
maximise the likelihood of noise-corrupted speech data with clean speech models compensated
using these estimates. Determining these estimates directly from a log-likelihood function is
difficult. Hence and EM approach is taken. This requires optimising the auxiliary function

Qvts(Mn;M̂n) = EM̂
[
log p(O,M |M̂n,M)

]
=

T∑
t=1

M∑
m=1

γ
(m)
o,t

[
−1

2
log|Σ(m)

y | − 1
2
(yt − µ(m)

y )TΣ(m) -1
y (yt − µ(m)

y )

− 1
2

log|Σ(m)
∆y | −

1
2
(∆yt − µ

(m)
∆y )TΣ(m) -1

∆y (∆yt − µ
(m)
∆y )

− 1
2

log|Σ(m)
∆2y

| − 1
2
(∆2yt − µ

(m)
∆2y

)TΣ(m) -1
∆2y

(∆2yt − µ
(m)
∆2y

)
]

(C.1)

given previously in equation (6.3) w.r.t. these noise means.
The partial derivative of equation (C.1) w.r.t. the additive noise variance is needed in 6.2.2
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to estimate the additive noise variance. For the static dimensions this is

∂Qvts

∂Σz
= −1

2

T∑
t=1

M∑
m=1

γ
(m)
o,t

∂

∂Σz

[
log|Σ(m)

y |+
(
yt−µ(m)

y

)T
Σ(m) -1

y

(
yt−µ(m)

y

)]
(C.2)

from equation (6.8). Here the gradient w.r.t. the static additive noise variance is only a
function of the static parameters. The two terms that are being differentiated can be examined
separately and on a per dimension basis. First determine the derivative of the normalising
determinant

∂

∂σ2
z,i

log|Σ(m)
y | = 1

|Σ(m)
y |

∂|Σ(m)
y |

∂σ2
z,i

=
1

|Σ(m)
y |

|Σ(m)
y |trace

{
Σ(m) -1

y

∂Σ(m)
y

∂σ2
z,i

}
(C.3)

The partial derivative of the corrupted speech variance w.r.t. the additive noise variance
is needed. The variance of the first-order VTS approximation of the corrupted speech in
equation (4.34) provides the relationship. Hence,

∂Σ(m)
y

∂σ2
z,i

≈ ∂

∂σ2
z,i

{
J (m)

x Σ(m)
x J (m)T

x + J (m)
z ΣzJ

(m)T
z

}
= 0 + J (m)

z

∂Σz

∂σ2
z,i

J (m)T
z

= J (m)
z ∆iiJ

(m)T
z (C.4)

=
[
J (m)

z

]
i

[
J (m)

z

]T
i

(C.5)

Here the Ds-square matrix ∆ij is an all zero matrix save for a single entry of 1 at row i, column
j. The notation

[
J

(m)
z

]
i
gives the ith column of the Jacobian matrix J

(m)
z . Substituting this

result into equation (C.3) gives

∂

∂σ2
z,i

log|Σ(m)
y | ≈ trace

{
Σ(m) -1

y

[
J (m)

z

]
i

[
J (m)

z

]T
i

}
(C.6)

If it is assumed the inverse corrupted speech variance is diagonal, and since the trace function
only takes into account the diagonal terms, then this can be written as

∂

∂σ2
z,i

log|Σ(m)
y | ≈ trace

{
Σ(m) -1

y diag
{[

J (m)
z

]
i
◦
[
J (m)

z

]
i

}}
=

Ds∑
d=1

1

σ
(m)2
y,d

[
J (m)

z

]2
di

(C.7)

where the diag function converts the element-wise vector product to a matrix with the vector
elements on the diagonal. Next, the derivative of the main probability term is

∂

∂σ2
z,i

(
yt−µ(m)

y

)TΣ(m) -1
y

(
yt−µ(m)

y

)
=
(
yt−µ(m)

y

)T ∂Σ(m) -1
y

∂σ2
z,i

(
yt−µ(m)

y

)
=
(
yt−µ(m)

y

)T(−Σ(m) -1
y

∂Σ(m)
y

∂σ2
z,i

Σ(m) -1
y

)(
yt−µ(m)

y

)
(C.8)
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after applying the identity ∂A -1
∂x = −A -1 ∂A

∂x A -1. Substituting in equation (C.4) gives

∂

∂σ2
z,i

(
yt−µ(m)

y

)TΣ(m) -1
y

(
yt−µ(m)

y

)
≈−
(
yt−µ(m)

y

)T(Σ(m) -1
y J (m)

z ∆iiJ
(m)T
z Σ(m) -1

y

)(
yt−µ(m)

y

)
=−
[(

yt−µ(m)
y

)TΣ(m) -1
y J (m)

z

]2
i

(C.9)

since bT∆iib = b2
i . For a diagonal Σ(m)

y , the right-hand side of equation (C.9) may be
expressed as

−
[(

yt−µ(m)
y

)TΣ(m) -1
y J (m)

z

]2
i

= −

[a1 a2 · · · aDs

]


1
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0 · · · 0
0 1
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...
...

. . .
...

0 0 · · · 1
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...
...

. . .
...

cDs1 cDs2 · · · cDsDs




2

i

= −

[a1
b1

a2
b2

· · · aDs
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]
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2
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b2

c21 + · · ·+ aDs
bDs

cDs1
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...
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T

i


2

(C.10)

where ad = yt,d−µ
(m)
y,d , bd = σ

(m)2
y,d , and cij =

[
J

(m)
z ]ij The index variable i selects the ith

element from the vector

−
[(

yt−µ(m)
y

)TΣ(m) -1
y J (m)

z

]2
i

= −
[
a1

b1
c1i +

a2

b2
c2i + · · ·+ aDs

bDs

cDsi

]2

= −

 Ds∑
d=1

yt,d−µ
(m)
y,d

σ
(m)2
y,d

[
J (m)

z

]
di

2

(C.11)

In another approximation, the cross-terms, (yt,d − µ
(m)
y,d )(yt,i − µ

(m)
y,i ) for d 6= i may be ignored,

diagonalising the process. This simplifies equation (C.11) to

∂

∂σ2
z,i

(
yt−µ(m)

y

)TΣ(m) -1
y

(
yt−µ(m)

y

)
≈ −
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d=1

(
yt,d−µ

(m)
y,d

σ
(m)2
y,d

)2[
J (m)

z

]2
di

(C.12)

Hence, the gradient of the auxiliary function w.r.t. the static noise variances from equa-
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tion (C.2) simplifies to

∂Qvts

∂σ2
z,i
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2
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 (C.13)

where the sufficient statistics p(m) and q(m) are defined as

p
(m)
d =

T∑
t=1

γ
(m)
o,t y2

t,d q
(m)
d =

T∑
t=1

γ
(m)
o,t yt,d (C.14)

and the component posterior γ
(m)
o,t = P(mt = m|O,Wh;M,M̂).
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M. Athineos. Pushing the spectral envelope—aside. IEEE Signal Processing Magazine,
pages 81–88, September 2005. 1

[108] A. Morris, J. Barker, and H. Bourland. From missing data to maybe useful data: soft
data modelling for noise robust ASR. In Proc. WISP, Stratford-upon-Avon, England,
March 2001. 1, 4.5.3, 4.5.3, 8.1.5

[109] L. Neumeyer and M. Weintraub. Probabilistic optimum filtering for robust speech
recognition. In Proc. ICASSP, volume 1, pages 417–420, 1994. 4.3.2, 5.2.1

[110] L.R. Neumeyer, A. Sankar, and V.V. Digalakis. A comparative study of speaker adap-
tation techniques. In Proc. Eurospeech, 1995. 7

[111] J.J. Odell. The Use of Context in Large Vocabulary Speech Recognition. PhD thesis,
University of Cambridge, 1995. 2.3.3

[112] M. Padmanabhan and M. Picheny. Towards super-human speech recognition. In ASR-
2000, pages 189–194, Paris, France, 2000. 1

[113] D. Povey. Discriminative Training for Large Vocabulary Speech Recognition. PhD thesis,
University of Cambridge, 2003. 2.3.5

[114] D. Povey and G. Saon. Feature and model space speaker adaptation with full covariance
Gaussians. In Proc. ICSLP, 2006. 2.3.4

[115] D. Povey and P.C. Woodland. Minimum phone error and I-smoothing for improved
discriminative training. In Proc. ICASSP, 2002. 9.1

[116] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and G. Zweig. fMPE: Discrim-
inatively trained features for speech recognition. In Proc. ICASSP, 2005. 9.1

[117] P. Price, W.M. Fisher, J. Bernstein, and D.S. Pallett. The DARPA 1000-word resource
management database for continuous speech recognition. In Proc. ICASSP, 1988. 8.2

[118] L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proc. of the IEEE, 77(2):257–286, February 1989. 2.3, 2.3, 2.3.1, 2.3.1,
2.3.2



REFERENCES 163

[119] B. Raj and R. Stern. Missing-feature approaches in speech recognition. IEEE Signal
Processing Magazine, pages 101–116, September 2005. 4.5, 4.5.3, 4.5.3, 8.1.5

[120] B. Raj, M.L. Seltzer, and R.M. Stern. Robust speech recognition: The case for restor-
ing missing features. In Proc. Eurospeech, The Workshop on Consistent and Reliable
Acoustic Cues, Aalborg, Denmark, September 2001. 4.5.3, 4.5.3

[121] B. Ramabhadran, O. Siohan, L. Mangu, G. Zweig, M. Westphal, H. Schulz, and
A. Soneiro. The IBM 2006 speech transcription system for European parliamentary
speeches. In Proc. Interspeech, 2006. 2.3.3, 2.4.1, 2.4.2, 3.3

[122] A.-V.I. Rosti. Linear Gaussian Models for Speech Recognition. PhD thesis, University
of Cambridge, 2004. A.1

[123] A. Sankar, L. Neumeyer, and M. Weintraub. An experimental study of acoustic adap-
tation algorithms. In Proc. ICASSP, 1996. 2.5.1

[124] G. Saon, G. Zweig, and M. Padmanabhan. Linear feature space projections for speaker
adaptation. In Proc. ICASSP, 2001. 2.5.2

[125] R.W. Schafer and L.R. Rabiner. Digital representations of speech signals. Proc. of the
IEEE, 63(4):662–677, April 1975. 2.2

[126] S.R. Searle. Matrix Algebra Useful for Statistics. John Wiley and Sons, 1982. A.2
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