
Generation and Combination of
Complementary Systems for

Automatic Speech Recognition

Catherine Breslin

Cambridge University Engineering Department
and

Darwin College
June 23, 2008

Dissertation submitted to the University of Cambridge
for the degree of Doctor of Philosophy

figures/crest.eps

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration. It has not been submitted in whole or in part for a degree at any
other university. Some of the work has been published previously in conference proceedings
[15, 16, 17]. The length of this thesis including appendices, references, footnotes, tables and
equations is approximately 56,000 words and contains 42 figures and 40 tables.

i

Summary

It has been found that using a combination of systems for large vocabulary continuous speech
recognition (LVCSR) can outperform the use of a single system. For the combination to yield
gains, the individual models must be complementary, i.e. they must make different errors.

Previous work in ASR has mainly relied on an ad-hoc approach to finding complemen-
tary systems. Multiple systems are built, and those that perform well in combination are
selected. The multiple diverse systems can be built in many ways, including the use of differ-
ent frontends, injecting randomness, altering the model topology or using different training
algorithms. However, it is not guaranteed that independent systems will be complementary,
and hence it is preferable to explicitly generate complementary systems. Generating comple-
mentary systems is a current research topic in ASR, and for machine learning in general.

In this thesis, two approaches for generating complementary systems for LVCSR are pro-
posed. The first of these alters the decision tree algorithm for state clustering, and the second
directly alters the standard ML and discriminative training algorithms. Both approaches
make use of a data weighting over the training set, which allows the training data to be
weighted to reflect the errors made by a number of previous systems. In this way, training
can be focused directly on these errors. The complementary systems may correct errors made
by previous systems, but can introduce new errors. However, if the systems make comple-
mentary errors, they should yield improvements when combined. The data weighting takes
into account the errors made by multiple systems, and allows these algorithms to be em-
bedded within an iterative framework for building multiple complementary systems. Thus,
the approaches presented in this thesis differ from standard approaches to speech recognition
in their aim of training an ensemble of speech recognisers which perform optimally when
combined, not individually.

To address potential issues in decoding with the complementary systems, two modified
combination schemes are proposed. They aim to better match the decoding and combination
scheme with the complementary system training algorithm. The first of these uses the com-
plementary system to rescore only segments of data where it is believed that the first system
is incorrect. The second approach only combines the two systems when it is believed that the
first is incorrect. Hence, both require accurate word error detection.

Experimental results on a broadcast news LVCSR task for three languages show that gains
can be achieved by building multiple complementary systems with the directed tree approach.
However, while the explicit training approach does build diverse systems, the current combi-
nation algorithm does not take advantage. Results also show that with an accurate word error
detection algorithm, the combination of multiple complementary systems with the modified
combination schemes could outperform the standard combination algorithm.

Keywords: speech recognition; hidden Markov models; acoustic modelling; complemen-
tary systems; system combination; discriminative training

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Mark Gales, for his guidance and
support throughout my time studying in Cambridge. Without his help, expertise and insight,
this research would never have come to fruition. It has been a privilege to work with him.

Secondly, I would like to thank Toshiba Research Europe and the EPSRC for their gen-
erous funding, which has made it possible for me to complete this work. Also, I am indebted
to those who have built and maintained the HTK toolkit.

I am grateful to many people in the Speech Research group for their help during my time
here. Special thanks go to Anna Langley and Patrick Gosling for maintaining the computer
systems at the Machine Intelligence Laboratory, and also to Andrew Liu, Khe Chai Sim
and Kai Yu for their early help with setting up the broadcast news experiments, and their
unending advice and assistance whenever I ran into problems.

There are many people who have made this group an interesting place to work. In no
particular order, I’d like to thank Hank, Chris, Rogier, Andrew, Jamie, Frank, Graham, Kai
and Khe Chai for their help and friendship. Particularly, I’d like to thank Mark, Hank and
Kai for proofreading various parts of this thesis.

Finally, I must thank my friends outside of the department, who have always been there
to distract me, and my family, who I don’t visit often enough!

iii

Acronyms

ASR Automatic speech recognition
BN Broadcast news
BW Baum-Welch
CDF Cumulative density function
CER Character error rate
CMLLR Constrained MLLR
CMN Cepstral mean normalisation
CVN Cepstral variance normalisation
DBN Dynamic Bayesian network
EM Expectation maximisation
FFT Fast Fourier transform
FMLLR Feature-space maximum likelihood linear regression
GMM Gaussian mixture model
HLDA Heteroscedastic linear discriminant analysis
HMM Hidden Markov model
HTK HMM toolkit
LVCSR Large vocabulary continuous speech recognition
MAP Maximum a posteriori
MFCC Mel-frequency cepstral coefficients
ML Maximum likelihood
MLLR Maximum likelihood linear regression
MMI Maximum mutual information
MPE Minimum phone error
NIST National Institute of Standards and Technology
PDF Probability density function
PLP Perceptual linear prediction
RM Resource Management
SAT Speaker adaptive training
SER Sentence error rate
STC Semi-tied covariances
VTLN Vocal tract length normalisation
WER Word error rate

iv

Notation

These are the terms and notation used throughout this work.

Variables, Symbols and Operations

≈ approximately equal to

∝ proportional to

x scalar quantity

x̂ estimate of the true value of x

x vector of arbitrary dimensions

argmax
x

f(x) the value of x that maximises the value of f(x)

argmin
x

f(x) the value of x that minimises the value of f(x)

log(x) logarithm base e of x

exp(x) exponential of x

E[f(x)] the expected value of f(x), where x is a random variable

f(x)
∣

∣

µ0
evaluate function f(x) at the expansion point µ0

∑N
n=1 an summation from n = 1 to N—that is, a1 + a2 + · · · + aN

Vectors and Matrices
Rd d-dimensional Euclidean space

A an arbitrary square matrix

AT transpose of matrix A

trace{A} trace of matrix A

diag{A} a diagonalised version of matrix A
∣

∣A
∣

∣ determinant of matrix A

A-1 inverse of matrix A

aij scalar value that is the element in row i and column j of A

v

vi

I identity matrix

b column vector

a � b dot product of a and b yielding a scalar

h(t) ∗ x(t) convolution operator—that is,
∫∞
−∞ h(τ)x(t− τ)dτ

Observations
T number of frames in a sequence of observations

t time frame index

ot speech observation vector at time t

O set of training data (sequence of speech observation vectors for ASR)
{o1, . . . ,oT }

D number of dimensions of full feature vector

d dimension index

C discrete cosine transform matrix, with rows ci

C-1 inverse discrete cosine transform matrix

HMM Parameters
S number of systems to be combined

s index for the sth system

M set of current acoustic model parameters

M(s) set of acoustic model parameters associated with system s

N number of HMM states in the full acoustic model

θj jth state of an HMM

Θ set of P HMM states {θ1 · · · θP }

ψt current state of an HMM at time t

ψ sequence of discrete speech states {ψ1, . . . , ψT }

Ψ set of all possible sequences ψ

M number of GMM components in the full acoustic model

m index for the mth component of an GMM

cjm mixture weight associated with GMM component m of state j

µjm mean of component m in state θj

Σjm variance of component m in state θj

vii

Parameter Estimation
γjm(t) posterior probability of component m in state θj at time t

Q
(

M,M̂
)

auxiliary function where component posteriors computed using pa-
rameter set M and output probabilities with M̂

H hypothesised transcription (sequence of words)

H(s) hypothesised transcription output from system s

Ĥ estimated 1-best hypothesis

Href reference transcription of data

K number of words in a hypothesis

k index to kth word in a hypothesis

W(k) kth word in a hypothesis

Ŵ(k) kth word in estimated 1-best hypothesis

W set of aligned words

P phone in a hypothesis

L(H1,H2) loss between two hypotheses, H1 and H2

l(W1,W2) loss between two words, W1 and W2

λs weight on system s

A + B CNC combination of systems A and B

Probability and Distributions

P (·) probability mass function

p(·) probability density function

p(x, y) joint probability density function—that is, the probability density of
x and y

p(x|y) conditional probability density of x given y

N (µ,Σ) multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ

N (o;µ,Σ) probability of vector o given a multivariate Gaussian distribution

δ(x) Dirac delta function: δ(x) = 0 for x 6= 0 and
∫∞
−∞ δ(x)dx = 1

δ(i, j) Kronecker delta function, which equals 1 when i = j and is 0 otherwise

Table of Contents

1 Introduction 1

1.1 Automatic Speech Recognition . 1
1.2 Complementary Systems . 2
1.3 Thesis Organisation . 4

2 HMM-based Statistical Speech Recognition 5

2.1 Statistical Framework for ASR . 5
2.2 Frontend Processing . 7

2.2.1 Feature Extraction . 7
2.2.2 Feature Normalisation and Transformations 9

2.2.2.1 Cepstral Mean and Variance Normalisation 9
2.2.2.2 Gaussianisation . 9
2.2.2.3 Feature Transforms . 10

2.3 Hidden Markov Models . 11
2.3.1 HMM Topology for ASR . 11
2.3.2 Likelihood Calculation . 13

2.4 Training Hidden Markov Models . 15
2.4.1 Maximum Likelihood . 15
2.4.2 Discriminative Training . 17

2.4.2.1 Maximum Mutual Information 17
2.4.2.2 Minimum Bayes’ Risk Training 18
2.4.2.3 Implementation Detail . 19
2.4.2.4 Optimisation of Discriminative Criteria 20
2.4.2.5 Smoothing . 22

2.4.3 Active and Unsupervised Training . 23
2.5 Language Modelling . 24
2.6 Decoding . 24

2.6.1 Viterbi Decoding . 25
2.6.2 Minimum Bayes’ Risk Decoding . 26

2.6.2.1 Confusion Network Decoding 27
2.7 Aligning Multiple Hypotheses . 29

2.7.1 N-best Lists and Word Lattices . 29
2.7.2 Levenshtein Alignment . 29
2.7.3 Aligning Multiple Hypotheses . 30

2.8 Decision Trees for Parameter Tying . 30
2.9 Adaptation . 33

viii

TABLE OF CONTENTS ix

2.10 Summary . 35

3 System Combination 36

3.1 Multi-pass Combination Framework for LVCSR 36
3.2 General Combination Methods . 38

3.2.1 Majority and Weighted Voting . 39
3.2.2 Posterior Combination . 39
3.2.3 Mixtures and Products of Experts . 40

3.3 Combination for Automatic Speech Recognition 41
3.3.1 Hypothesis Combination Schemes . 42

3.3.1.1 Minimum Bayes’ Risk Decoding 42
3.3.1.2 ROVER . 43
3.3.1.3 Confusion Network Combination 44
3.3.1.4 Weighted Combination . 45
3.3.1.5 Frame-level Posterior Combination 46
3.3.1.6 Discriminative Model Combination 47

3.3.2 Distributional Combination Schemes 47
3.3.3 Likelihood Combination Schemes . 49

3.3.3.1 Mixture Models for ASR . 49
3.3.3.2 Products of Experts . 50
3.3.3.3 Multiple Streams and the Mixed Memory Model 51

3.3.4 Implicit Combination Schemes . 52
3.3.4.1 N-best and Lattice Rescoring 52
3.3.4.2 Cross Adaptation . 52

3.4 IDEAL combination . 53
3.5 Summary . 54

4 Generating Complementary Systems 55

4.1 General Approaches . 55
4.1.1 Injecting Randomness . 56
4.1.2 Boosting . 56
4.1.3 Simultaneously Training Multiple Systems 58

4.2 Methods in Automatic Speech Recognition 59
4.2.1 Random Decision Trees . 59
4.2.2 Boosting for Automatic Speech Recognition 61
4.2.3 Simultaneously Training Multiple Systems for ASR 62

4.2.3.1 Products of GMMs . 62
4.2.3.2 Factorial HMMs . 62

4.2.4 Acoustic Code Breaking . 63
4.3 Summary . 64

TABLE OF CONTENTS x

5 Data Weighting for ASR 65

5.1 Confidence Measures . 65
5.1.1 Estimating Posterior Probability . 66
5.1.2 Alternative Confidence Scores . 66
5.1.3 Combining Multiple Scores . 67

5.1.3.1 Logistic Regression . 68
5.2 Existing Approaches to Data Weighting for ASR 69

5.2.1 ML Training . 69
5.2.2 Discriminative Training . 70

5.3 A New Approach to Data Weighting for ASR 71
5.3.1 Weighting Reference Words . 73
5.3.2 Weighting Lattice Arcs . 75
5.3.3 Alternative to Confusion Networks . 77

5.4 Summary . 78

6 Directed Decision Trees 79

6.1 Directed Decision Tree Algorithm . 80
6.2 Multiple Complementary Systems . 81
6.3 Decision Tree Cluster Divergence Measure . 81
6.4 Summary . 83

7 Minimum Bayes’ Risk Leveraging 84

7.1 Word-level Active Training . 85
7.2 Minimum Bayes’ Risk Leveraging Algorithm 86
7.3 Issues with Training Complementary Systems 88

7.3.1 Alignment . 89
7.3.2 Combination as a Binary Classification Task 90

7.4 Summary . 92

8 Experimental Setup 94

8.1 Broadcast News Training and Decoding . 94
8.1.1 Training Approach . 94
8.1.2 Single-pass Decoding . 95
8.1.3 Multi-Pass Decoding Framework . 95

8.2 Broadcast News English . 96
8.3 Broadcast News Mandarin . 97
8.4 Broadcast News Arabic . 98

9 Experimental Results with Directed Decision Trees 100

9.1 Decision Tree Divergence . 100
9.2 Random Decision Trees . 103
9.3 Directed Decision Trees . 103
9.4 MPE Training and Directed Decision Trees 105
9.5 Combination of Complementary Approaches 107
9.6 Multi-pass Performance . 108
9.7 Summary . 112

TABLE OF CONTENTS xi

10 Experimental Results with Data Weighting 113

10.1 Word-level Active Training Results . 113
10.1.1 Test Data Performance . 114
10.1.2 Effect on Training Data . 119
10.1.3 Two Complementary Systems . 121
10.1.4 Mandarin Results . 122

10.2 Discriminatively Training Complementary Systems 123
10.2.1 MPE Training for Complementary Systems 123
10.2.2 MBRL Test Data Performance . 125

10.2.2.1 Effect of Loss Function . 125
10.2.2.2 Effect of Smoothing . 127

10.2.3 Effect on the Training Data . 128
10.2.4 Overtraining and Generalisation . 129
10.2.5 Building Multiple Complementary Systems 131
10.2.6 MBRL on Broadcast News Mandarin 131

10.3 Addressing Alignment Issues . 132
10.4 Summary . 135

11 Combination of Complementary Systems 137

11.1 Global Approaches to Combination . 138
11.1.1 Global Weighting . 138
11.1.2 Global Posterior Threshold . 139

11.2 Word Error Detection and Combination using Single Features 140
11.3 Word Error Detection and Combination using Multiple Features 142
11.4 Summary . 147

12 Conclusions 149

12.1 Review of Work . 149
12.2 Future Work . 152

References 154

List of Tables

5.1 Values of ML loss function for the alignment in figure 5.2 75
5.2 Values of loss function for the alignment in figure 5.2 77

8.1 Singlepass BN English baseline WER (%) results on the dev03 and eval98 test
sets and the 10 hour training data subset . 97

8.2 Singlepass BN Mandarin baseline CER (%) results on the bnmdev06 test set . 98
8.3 BN Mandarin baseline CER (%) results on the bnmdev06 test set in the mul-

tipass framework . 98
8.4 Singlepass BN Arabic baseline WER (%) results on the bnat06, bnad06, bcat06

and bcad06 test sets . 99
8.5 BN Arabic baseline WER (%) results on the bnat06, bnad06, bcat06 and bcad06

test sets in the multipass framework . 99

9.1 Random Trees for ML trained BN Mandarin systems - number of states and
divergence with baseline S0 system . 102

9.2 Random Tree Mandarin performance for ML trained systems, bnmdev06 (CER
%) . 104

9.3 Comparison of Directed and Random Tree Mandarin results for ML trained
systems, bnmdev06 set (CER %) . 105

9.4 Directed tree performance for Mandarin with MPE trained systems, bnmdev06
testset (CER %) . 106

9.5 Directed tree performance for Arabic using a singlepass decoding framework
with single pronunciation MPE trained systems, bnat06, bcat06, bnad06 and
bcat06 testsets (WER %) . 106

9.6 Directed tree performance for English with MPE trained systems, dev03 and
eval98 testsets (WER %) . 107

9.7 Mandarin Directed Tree performance in addition to Gaussianisation, bnmdev06
testset (CER %) . 108

9.8 Directed tree performance for Mandarin with MPE trained systems in a multi-
pass adaptive framework with separate adaptation and lattice generation passes,
bnmdev06 testset (CER %) . 108

9.9 Directed tree performance for Mandarin with MPE trained systems in a multi-
pass adaptive framework with a common adaptation and lattice generation pass,
bnmdev06 testset (CER %) . 109

9.10 Arabic results using a common adaptation and lattice generation pass with sin-
gle pronunciation MPE trained systems, bnat06, bcat06, bnad06 and bcat06
testsets (WER %) . 109

xii

LIST OF TABLES xiii

9.11 Arabic results using a common adaptation and lattice generation pass and
both single/multiple pronunciation MPE training, bnat06, bcat06, bnad06 and
bcat06 testsets (WER %) . 110

9.12 Arabic results using separate adaptation and lattice generation passes and both
single/multiple pronunciation MPE training, bnat06, bcat06, bnad06 and bcat06
testsets (WER %) . 111

10.1 BN English word-level active ML training WER (%) results as the number of
iterations increases. Threshold loss function with β = 0.25 on the dev03 and
eval98 test sets . 115

10.2 BN English word-level active ML training WER (%) results as the number of
iterations increases. Sum loss function on the dev03 and eval98 testsets . . . 116

10.3 BN English word-level active ML training WER (%) results as the threshold in
the loss function changes. 2 iterations of training, % words = percentage of
reference words below threshold, dev03 and eval98 testsets 117

10.4 BN English word-level active ML training WER (%) results as the updated
parameters change. 2 iterations of training, loss threshold function with β
= 0.25. m=means, v=variances, t=transition probabilities and w=component
priors, dev03 and eval98 testsets . 118

10.5 BN English word-level active ML training WER (%) with a 4 component sys-
tem. 2 iterations of training, loss threshold function with β = 0.25, dev03 and
eval98 testsets . 119

10.6 BN English active ML training WER (%) results on a 10 hour training data
subset, as the number of iterations increases, threshold loss β = 0.25 120

10.7 BN English active ML training WER (%) results for two complementary sys-
tems, threshold loss β = 0.25, 2 iterations of training, dev03 and eval98 testsets 122

10.8 16-component BN Mandarin active training CER (%) results, 2 iterations of
training, threshold loss function β = 0.25, bnmdev06 testset 123

10.9 BN English MPE training for generating complementary systems, WER (%),
on the dev03 and eval98 testsets, and a 10 hour subset of training data . . . 124

10.10English BN MBRL training results, with change in threshold, WER (%), %
words = percentage of reference words below threshold, dev03 and eval98 testsets126

10.11English BN MBRL training results, with the sum loss function, WER (%), two
iterations of training, dev03 and eval98 testsets 126

10.12English BN MBRL training results, with change in smoothing, WER (%),
threshold loss function with β = 0.5, 2 iterations of training, dev03 and eval98
testsets . 127

10.13BN English MBRL training data subset recognition performance as number of
iterations increases, threshold loss β = 0.5, τ = 70 128

10.14English BN Results MBRL 4, 8 and 16 components, dev03 and eval98 testsets 130
10.15BN English results for two complementary systems, threshold loss β = 0.5,

dev03 and eval98 testsets . 131
10.16Mandarn BN MBRL results (CER %) in addition to Gaussianisation, β = 0.5,

bnmdev06 testset . 132
10.17English BN Results MBRL 16 component results (WER %) 133
10.18Effect of the restricted decoding on the rescored CN segments, i.e. those where

the best word posterior ≤ 0.7, on the dev03 set using systems C2 and C8 . . . 134

LIST OF TABLES xiv

11.1 English BN Results MBRL 16 component . 138
11.2 Class sizes for error detection, combined dev03 and eval98 sets, for the combi-

nation S0+C2 . 141
11.3 Class sizes for error detection of words hypothesised by S0, split into !NULL

and non-!NULL words . 144

List of Figures

2.1 Speech Recognition System Architecture . 6
2.2 MFCC extraction . 8
2.3 5-state HMM with 3 emitting states . 12
2.4 HMM in figure 2.3 as a Dynamic Bayesian Network. The state sequence is

hidden and observations are observed variables. The state sequence is discrete,
and the output observations continuous. 12

2.5 The EM algorithm . 16
2.6 CN generation from a lattice . 28
2.7 Levenshtein alignment of two transcriptions, S0 and S1 29
2.8 Example decision tree to cluster second state of phone i 31

3.1 A multi-pass combination framework for ASR 37
3.2 ROVER Combination of four systems, S0-S3, without confidence scores . . . 43
3.3 Confusion Network Combination of two systems 45
3.4 Dynamic Bayesian Network Representation of an HMM 48
3.5 IDEAL combination, only the solid CN arcs from system S1 are used in com-

bination as these correspond to segments where the first system is incorrect . 54

4.1 The multiclass AdaBoost.M2 algorithm . 57
4.2 Random tree question selection . 60
4.3 Pruning the Confusion Network for Acoustic Codebreaking 63

5.1 Logistic Regression . 68
5.2 Confusion Networks for systems S0 and S1 aligned with a reference transcription 71
5.3 Tracking lattice arcs in CN generation . 75

6.1 Directed decision tree question selection . 80
6.2 Framework for building multiple directed decision trees 82

7.1 Minimum Bayes Risk Leveraging Algorithm for estimating and decoding with
a baseline system M(0) and S − 1 complementary systems, M(1) · · ·M(S) . . 87

7.2 Pruning the Confusion Network with a posterior threshold of 0.5 90
7.3 Word graph resulting from the CN pruning in figure 7.2 90
7.4 Classes for Combination as a Binary Classification Task 91
7.5 Combination as a Binary Classification Task 92

8.1 Multi-Pass framework with (a) common lattice generation, (b) separate lattice
generation passes . 96

xv

LIST OF FIGURES xvi

9.1 Decision Tree Divergence with α when comparing S0 and D1 (dotted line), S0
and D2 (solid), D1 and D2 (dashed) . 101

9.2 Number of unique states with α for the Mandarin directed decision tree D1 . . 102

10.1 CDFs of training data reference word posteriors, (a) and (b) before and (c)
and (d) after active training with β = 0.25 for the BN English task 121

10.2 CDFs of training data reference word posteriors, (a) and (b) before and (c)
and (d) after MBRL training with β = 0.5, for the BN English task 130

10.3 English BN Results MBRL 16 component training subset results (WER %) for
the restricted decoding with percentage of CN segments rescored, dev03 134

10.4 English BN Results MBRL 16 component training subset results (WER %) for
the restricted decoding with percentage of CN segments rescored, eval98 134

10.5 English BN Results MBRL 16 component training subset results (WER %) for
the restricted decoding with percentage of CN segments rescored, training data
subset . 135

11.1 Global weighting for confusion network combination, dev03 set 139
11.2 Global posterior threshold for confusion network combination, dev03 set . . . 140
11.3 ROC for word error detection using system S0 with the posterior probability,

number of alternative words, and CN segment entropy 142
11.4 ROC for word error detection from the S0 system, only on the subset of words

which alter the combination S0+C2 . 143
11.5 ROC for error detection with multiple features, all of the eval98 and dev03 sets 145
11.6 ROC for error detection with multiple features, on the subset of the eval98 and

dev03 sets which alter the combination S0+C2 146
11.7 ROC for word error detection using multiple features from systems S0 and C2,

for all words . 146
11.8 ROC for word error detection using multiple features from systems S0 and C2,

for the subset of words which affects the combination 147

CHAPTER 1
Introduction

Speech is a natural method of communication, and can potentially provide an intuitive
user interface to machines. Applications range from speaker dependent tasks like desktop

dictation and interaction with personal devices, such as mobile phones, through to speaker
independent tasks such as automatic call centres, automatic subtitling and indexing videos
for improved search.

For these applications to be practical, several different aspects of speech need to be consid-
ered, including speech-to-text, language understanding, dialogue systems, and text-to-speech.
This thesis focuses on the first of these, the problem of automatic speech recognition (ASR).

1.1 Automatic Speech Recognition
Automatic speech recognition has been the subject of research for over fifty years, and has
matured markedly during this time. This is due in part to the increase in available computing
power, and in part to more sophisticated modelling techniques. The introduction of the HMM
in the 1970s [8], and a statistical framework for ASR, has proven the most successful approach
to date, and is the basis for current state-of-the-art speech recognisers.

Initially, the focus of automatic speech recognition was on isolated word recognition for
small vocabularies, such as the task of digit recognition. With good performance on such tasks,
the focus then shifted towards small and medium vocabulary continuous speech recognition.
The performance on these has steadily improved and consequently, in recent years, research
has begun to consider large vocabulary continuous speech recognition (LVCSR). Due to the
expense of obtaining a large training database, real-life or found data is often used to train
these systems. This is data that is readily available, such as broadcast news (BN) or broadcast
conversation (BC). Performance on these tasks is still relatively poor, for example around 10%

1

CHAPTER 1. INTRODUCTION 2

character error rate (CER) on broadcast news Mandarin [48], which is significantly worse than
the performance of human transcription on spontaneous speech [97].

ASR technology is now commercially deployed in a variety of applications. For example,
Microsoft’s Vista operating system allows the user to interact with the computer via speech
recognition, while call centres like those at Cineworld and BA’s flight information service
also use a voice interface. Dictation software such as IBM’s ViaVoice and Nuance’s Dragon
NaturallySpeaking have been available for many years, and can achieve good performance
when the system has been trained for a particular user.

Recent LVCSR projects include the AGILE/GALE project1 for speech-to-speech transla-
tion of broadcast news, Computers in the Human Interaction Loop (CHIL)2 for incorporating
computers into human interactions in a non-intrusive manner, and the TC-STAR project3

where the overall aim is also speech-to-speech translation, focused on the European Parlia-
mentary speeches.

1.2 Complementary Systems
This thesis concentrates on large vocabulary continuous speech recognition (LVCSR). A typ-
ical architecture for LVCSR is a multi-pass framework. Such a framework performs an initial
decoding pass of the data to obtain a rough hypothesis, before refining the hypothesis in the
final pass using complex models. It has been found that improved results can be obtained
by using a combination of models in the final pass. A combination of models can only give
improvements if they are complementary. That is, if they make different errors. This the-
sis is concerned with generating and combining complementary systems for large vocabulary
recognition.

There are several reasons why a combination of systems can outperform a single system,
and it is necessary to consider the limitations of using a single system for recognition. There
are several ways to improve the performance of a single system. First, the underlying model
parameters can be improved, perhaps by ignoring simple modelling assumptions, to better
model the data. For speech recognition, more advanced models have had limited success, and
the HMM based approach presented below in chapter 2 remains the most successful.

Second, the models can be made more complex by increasing the number of parameters
in the system so they have more power to model the data. However, it is well known that
increasing the number of parameters can led to overtraining and a lack of generalisation.
To address this problem, more training data is normally added. Unfortunately, increasing
the amount of training data is not always the most efficient way to improve results as it is
expensive to accurately transcribe a large database, and the gains achieved from incorporating
more training data become increasingly smaller [80].

Finally, improved training algorithms, such as discriminative training discussed in section
2.4.2.2, can be used to improve the underlying models. Again, sophisticated algorithms can
lead to issues with overtraining, and there is a limit to how much improvement they can
achieve in practice.

[29] suggests three theoretical reasons why an ensemble of classifiers may perform better
than just one classifier alone:

1http://mi.eng.cam.ac.uk/research/projects/AGILE/
2http://chil.server.de/servlet/is/101/
3http://www.tc-star.org/

CHAPTER 1. INTRODUCTION 3

• Lack of training data

– With limited training data, the estimated models will only be an approximation
to the true underlying data distribution. The average of a number of different
estimates may be closer to the true model than any of the individual estimates.

• Limitations of the optimisation algorithm

– In practice, the optimisation algorithm is normally only able to find a local opti-
mum for parameter estimates, except in very simple situations. Again, an average
of multiple estimates may be closer to the global optimum than a single estimate.

• Representational issues

– It may be the case that the model has limited capability and is unable to represent
the true data distribution. A combination of multiple models may be able represent
distributions which cannot be modelled by just one model.

For automatic speech recognition, these three factors are all limitations of the current
approach. Large training databases are used for training complex models and optimum pa-
rameter estimation is an issue and an ongoing area of research. Also, as discussed in the
following chapter, the HMM for speech recognition is not a correct model for speech and so
does not accurately represent the underlying speech distribution. Thus, a combination of
multiple speech recognisers may outperform a single speech recogniser.

This thesis presents two methods for building complementary systems for automatic speech
recognition. The first method in chapter 6 alters the decision tree generation process and
changes the parameter tying across HMM states. The algorithm biases the tree generation
so states which are confusable are less likely to be clustered. By doing this, there is more
information available to distinguish confusable states, though new errors may be introduced
by clustering states which were not previously clustered. Thus, the new decision tree will make
different errors to the original, and it is hoped they will be complementary. The parameter
tying stage is chosen as the decision tree generation algorithm makes locally optimal decisions,
and so small changes can yield very different decision trees.

The second method presented in this thesis for generating complementary systems fo-
cuses on explicitly altering the training algorithm to resolve errors. Currently, discriminative
training focuses on portions of the training data where there are errors. Hence, it might be
expected that discriminative training leads to complementary systems as it resolves errors
made by the existing system. However, in doing this, the training algorithm is still required
to keep a good representation of data which is well modelled, and so the ability to model
poor data is limited. The algorithms presented in chapter 7 relax the requirementdevice
that the training should keep a good representation of previously well modelled data. Now,
the training algorithm may introduce new errors where there previously were none, but the
training also aims to correct existing errors. Thus, the errors made by the two systems will
be complementary. Chapter 7 presents modifications to the existing ML and discriminative
training algorithms to achieve this.

Both approaches use a data weighting to reflect errors made by existing systems, to allow
the training to focus on these errors. Chapter 5 presents the form of data weighting which is
used for both the decision tree generation and the explicit complementary system training.

CHAPTER 1. INTRODUCTION 4

While the goal of ASR research is often to reduce the word error rate of the recogniser, a
certain level of error may be acceptable in practice. For example, in a call centre application,
the exact output from the recogniser is not important, provided the meaning can be extracted.
In contrast, for automatic subtitling, errors are less tolerable. In this thesis, the goal is to
reduce the word error rate of a combination of systems, rather than improve the individual
system performance.

In this thesis, classifiers for both static and dynamic data are discussed. To avoid confu-
sion between the two, only the former is referred to as a classifier. For classifying dynamic
speech data, the HMM framework discussed in chapter 2 is used. A speech recognition sys-
tem contains, among its components, a set of hidden Markov models representing acoustic
units, typically phones. This distinction is made as techniques for generating and combining
complementary classifiers for static data may not be applicable to dynamic data.

1.3 Thesis Organisation
This thesis is organised as follows. Chapter 2 introduces the standard HMM based approach
to automatic speech recognition, and chapters 3 and 4 discuss existing methods for comple-
mentary system combination and generation, both for general applications and specifically
for ASR. Chapter 5 discusses existing approaches to confidence scoring and data weighting,
before presenting the form of data weighting which forms the basis of the two complementary
system algorithms proposed in this thesis. Chapters 6 and 7 introduce the two new algorithms
for building complementary systems. First, the directed decision tree (DDT) algorithm and a
divergence measure for comparing decision trees are presented in chapter 6. Then, chapter 7
discusses modifications to ML and discriminative training for explicitly training complemen-
tary systems for ASR. Chapter 8 details the experimental setup for the tasks of broadcast
news English, Mandarin and Arabic, which are used for experimental results. Chapters 9
and 10 present and discuss the experimental results obtained with the directed decision tree
and the methods for explicitly training complementary systems. Next, chapter 11 discusses
the problem of improved word error detection to improve the combination of complementary
systems, while chapter 12 concludes and suggests directions for further work.

CHAPTER 2
HMM-based Statistical

Speech Recognition

This chapter presents the theory behind a hidden Markov model (HMM) based automatic
speech recognition system. An overview of automatic speech recognition as a statistical

pattern recognition task is first given, followed by a discussion of the main elements of a
large vocabulary speech recognition system including frontend processing, acoustic modelling,
parameter estimation, language modelling, speaker adaptation, and decoding.

2.1 Statistical Framework for ASR
Speech recognition is a classic pattern recognition task where, given a speech signal, the task
is to identify the most likely word sequence uttered. Speech is a dynamic signal; utterances
can differ substantially in length, even if the same words are uttered by the same person.
There are also a large number of potential word sequences, or hypotheses, which the system
must search over to find the most likely. These properties make automatic speech recognition
a complex task.

Formally, the task of a speech recognition system is to find the most probable hypothesis,
Ĥ, given the uttered speech signal, O

Ĥ = argmax
H

P (H|O) (2.1)

Using Bayes’ rule, this can be formulated as

5

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 6

Ĥ = argmax
H

p(O|H)P (H)

p(O)

= argmax
H

p(O|H)P (H) (2.2)

The denominator term p(O) is dropped from the maximisation as it is not dependent
on H. In this framework, p(O|H) is obtained from the acoustic model and P (H) from the
language model. Figure 2.1 shows the typical components of a speech recognition system. The
input speech is first converted to a series of feature vectors, or observations, O = {o1 · · · ot},
in a stage known as frontend processing or feature extraction. The features are then passed
to the decoder, which searches for the most likely hypothesis, making use of the language
and acoustic models. Optionally, speaker or environmental adaptation of the models can
be performed which, for large vocabulary recognition, might make use of an initial output
transcription. Acoustic models are trained at the sub-word level, typically at the phone level,
and the dictionary contains a mapping from words to sub-word units. The system might
output a single best hypothesis, a list of the N best hypotheses, or another representation of
likely hypotheses such as a word lattice [121].

Input
Speech

Output
Hypothesis

o1 oT
. . .

Dictionary

Decoder
{ }

Frontend

Acoustic
Models Adaptation Language

Models

Figure 2.1: Speech Recognition System Architecture

The recogniser can only handle words for which a pronunciation exists, i.e. those words
in the dictionary. A word to be recognised which is not in the dictionary is labelled out of
vocabulary (OOV). However, as the size of the dictionary increases, so does the complexity of
the search, and so tasks are often categorised as small, medium or large vocabulary, depending
on the size of the dictionary.

Both the acoustic and language models are trained on labelled training sets, and the system
is evaluated on an independent test set. The aim in training is to model the underlying speech
process such that the models generalise well to the unseen test data. A model is overtrained
when it is overly biased towards the training set and fails to generalise to the test set. This can
occur, for example, when the models contain too many parameters, or too many iterations of

figures/asr.eps

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 7

training are performed. The converse, undertraining, occurs when the models are not complex
enough to correctly model the speech, or have not been adequately trained.

This thesis concentrates on the acoustic modelling aspect of automatic speech recognition,
particularly for training and decoding with multiple complementary acoustic models.

2.2 Frontend Processing
The first stage in a speech recognition system is to convert the input, a continuous speech
signal, into an appropriate form that can be used for recognition. First, a representation of the
speech signal is extracted as a series of feature vectors, O = {o1 · · · ot}. The extracted feature
vectors should be compact and discriminatory. That is, they should contain all the information
necessary for distinguishing words, and suppress the irrelevant information, while remaining
small in dimension. The next step is to segment the signal into individual utterances, and often
non-speech segments such as music, commercials and silence are removed. Then, optional
speaker clustering and gender identification can be performed.

For this purpose, it is assumed that speech can be partitioned into a series of short quasi-
stationary frames, and a single feature vector is extracted from each frame. Frames of data are
overlapped, with a typical window size of 25ms and a frame shift of 10ms [163]. A Hamming
filter is applied to each windowed frame of data to suppress discontinuities at the edge, before
an FFT is performed to obtain the short-term spectrum. A pre-emphasis filter is normally
applied to the short term spectrum to boost the energy at higher frequencies.

From this short-term spectrum, two popular representations for the speech signal can be
extracted. These are mel frequency cepstral coefficients (MFCC) [27] and perceptual linear
prediction (PLP) coefficients [66], both described below.

2.2.1 Feature Extraction
Figure 2.2 shows the process of obtaining MFCC [27]. These make use of the mel-scale, given
by

fmel = 1127 log

(

1 +
fHz

700

)

(2.3)

This scale takes account of the fact that as frequency rises, the perceived pitch of the
speech increases linearly at low frequencies but logarithmically at high frequencies. Filterbank
coefficients are obtained by filtering the short-term spectrum with a series of N triangular
band-pass filters, spaced according to the mel-scale. The logarithm of the amplitudes of each
of the filters gives a vector of filterbank coefficients. These filterbank coefficients are highly
correlated, and so a discrete cosine transform (DCT) is applied to transform the filterbank
coefficients to MFCC

otd =

√

2

N

N
∑

i=1

log(xtfd
) cos

(

πd

N
(i− 0.5)

)

(2.4)

where xtfd
is the amplitude of filterbank d at time t, and N is the number of filterbank coef-

ficients. otd is the dth cepstral coefficient at time t. Usually, the lower 12 cepstral coefficients

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 8

Figure 2.2: MFCC extraction

are used as the higher frequencies don’t contain much useful information. The zeroth cepstral
coefficient, or the log energy, is also incorporated to give a 13 dimensional feature vector.

Perceptual linear prediction (PLP) coefficients [66] make use of critical band filters, equal-
loudness pre-emphasis, intensity-loudness warping and linear prediction. The frequency is
warped according to the Bark scale

fbark = log

(

1 +

(

fHz

600

)2
)

1
2

+
fHz

600

 (2.5)

In the HMM framework, observations are modelled as conditionally independent although
there is some temporal correlation between observations. To better model this, it is desirable
to incorporate information about the correlation between frames. This is often done by using
dynamic coefficients [39]. The first-order dynamic, or delta, coefficients ∆ot are calculated
using

∆ot =

∑∆
δ=1 δ(ot+δ − ot−δ)

2
∑∆

δ=1 δ
2

(2.6)

Second order delta parameters are obtained in same way, replacing static by delta pa-
rameters. The final feature vector, õt is then a concatenation of the static and dynamic
parameters

õt =

ot
∆ot
∆2ot

 (2.7)

mfcc2.eps

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 9

For a vector with 13 static features plus the first and second order deltas, the complete
feature vector is 39 dimensional.

2.2.2 Feature Normalisation and Transformations
The MFCC and PLP features are speaker and environment dependent and, despite the dis-
crete cosine transform, there are still some correlations between features [99]. A number of
approaches have been proposed to address these issues.

One approach to speaker normalisation, vocal tract length normalisation (VTLN) [94] is
commonly used to compensate for the fact that speakers have different vocal tract lengths.
Formant frequencies in the short-term spectrum are shifted to account for the differing vocal
tract lengths. VTLN is implemented as a linear warping of the frequency axis, where the
warping factor is found empirically. The normalisation techniques cepstral mean and variance
normalisation and Gaussianisation, along with feature transformations PCA, LDA and HLDA,
are discussed in detail below.

2.2.2.1 Cepstral Mean and Variance Normalisation

Cepstral mean normalisation (CMN), or cepstral mean subtraction, converts the observed fea-
tures so they have a mean of zero, which removes the bias that arises from fixed convolutional
noise. This is done by subtracting the mean of the cepstral features from the observations to
obtain a new feature vector õt

õt = ot −
1

T

T
∑

τ=1

oτ (2.8)

To perform the normalisation, the average value of ot needs to be calculated over T frames.
For offline use it is trivial to calculate these using all available data. For online use however,
it may be necessary to average over a smaller number of frames, perhaps just one utterance,
otherwise the normalisation is delayed. Similarly, cepstral variance normalisation transforms
the features so they have unity variance. Cepstral mean and variance normalisation are
inexpensive to apply in practice, and so are commonly used in ASR.

2.2.2.2 Gaussianisation

CMN and CVN normalise the mean and variance of the date, i.e. the first and second order
moments. Gaussianisation [23, 132] normalises the higher order moments transforming ot via
a non-linear function φ(.)

õt = φ(ot) (2.9)

so õt, the transformed observation, is normally distributed with zero mean and identity
variance

õt ∼ N (0, I) (2.10)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 10

This approach is motivated in part by the fact that the state output distributions for ASR
are normally mixtures of Gaussians, and so are a better model of Gaussian input data.

To simplify the transform function estimation, it is assumed that the feature dimensions
are independent. As some correlations between dimensions exist, the transformed feature
vector is only approximately Gaussian. The transform is estimated to match the cumulative
density function (CDF) of the actual data with that of a Gaussian distribution [132]. The
input data CDF, F (ot), can be approximated by a histogram [132] or a GMM [23]. The
transformation for the dth dimension of o is then

õd = Φ−1 (F (od)) (2.11)

where Φ is the CDF of a Gaussian. Gaussianisation has successfully been used in large
vocabulary recognition [98]. As it is assumed the feature dimensions are independent, it may
be useful to use one of the feature transforms discussed next in section 2.2.2.3 to decorrelate
the features before Gaussianisation is applied.

2.2.2.3 Feature Transforms

CMN, CVN, and Gaussianisation are feature normalisation techniques. An alternative class of
algorithms transform the feature vector into an uncorrelated subspace to remove correlations
while retaining discriminatory features. The linear transforms discussed in this section project
the observation vector using a transform A to obtain a new observation, õt, given by

õt = Aot (2.12)

The most straightforward linear transform is Principal Component Analysis (PCA) [11],
which decorrelates the global data covariance matrix using an Eigen-decomposition, Σg =
ATΛA, where Σg is the covariance of all observations {o1 · · · oT }. This assumes that di-
mensions with large variance are more important, and hence PCA is not robust to scaling of
feature dimensions.

PCA is an unsupervised technique, as it doesn’t use class labels. Two further linear
transforms, LDA and HLDA, are supervised and assume each Gaussian component in the
HMM set is a separate ‘class’ to be discriminated.

Linear Discriminant Analysis (LDA) is a linear transform applied to the features which
aims to project the features into an uncorrelated feature space while retaining discriminatory
information. It minimises the within-class covariance W while maximising the between-class
variance B. The transform A is estimated to maximise

ÂLDA = argmax
A

{

|diag(ABAT)|

|diag(AWAT)|

}

(2.13)

This can be optimised using an Eigen-decomposition of the matrix W −1B where B is the
between-class covariance and W is the average of the component variances, or within class
covariance. LDA is commonly used in large vocabulary systems [100, 140].

HLDA [89] is an extension to LDA for heteroscedastic data, which relaxes the assumption
of LDA that classes should have the same covariance. A global HLDA transform which does

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 11

not reduce the feature dimension is equivalent to a global semi-tied transform [43]. As for
LDA, the HLDA transform is applied as in equation 2.12 while the parameters are estimated
in an ML fashion [43], according to

ÂHLDA = argmax
A

T
∑

t=1

J
∑

j=1

γj(t)
(

log |A|2 − log |Σ̃j|
)

(2.14)

where Σ̃j is the transformed state variance in the feature space defined by the transform A

and γj(t) is the state posterior, calculated by the forward-backward algorithm in section 2.3.2
below. HLDA has been successfully used in LVCSR systems [48, 62].

2.3 Hidden Markov Models
The Hidden Markov Model (HMM) was first introduced in the 1970s as a robust statistical
model for time varying signals [8], and has since formed the basis of many ASR systems.
An HMM is a finite state machine, where the entry to each state has an associated output
distribution, b(o). Entering a particular state, the HMM outputs an observation according to
that state’s output distribution, before transitioning to the next state according to a transition
probability a. The underlying state sequence is hidden and only the output observations are
observed. The HMM makes the following two assumptions:

• Conditional independence: an observation is conditionally independent of all other
observations, given the state which generated it

• First-order Markov assumption: the probability of transitioning to a particular
state is dependent only on the previous state

Although these assumptions are incorrect for speech, and so HMMs aren’t a correct model
for speech, they have proven the most successful model in practice.

2.3.1 HMM Topology for ASR
Typically, for ASR, each phone or other sub-word unit is modelled by a left-to-right 5 state
HMM, as in figure 2.3. Three of the states are emitting, while the start and end states are not;
this is to allow for easy model concatenation for continuous speech recognition. θj represents
the jth state of the HMM, and a hidden variable ψt is introduced to represent the current
state of the HMM at time t. In figure 2.3, the hidden state sequence through the HMM which
generates the observation sequence {o1 · · · o6} is {θ1, θ2, θ2, θ3, θ3, θ3, θ4, θ5}.

The dynamic Bayesian network (DBN) representation in figure 2.4 makes the two indepen-
dence assumptions clear. The left-to-right arrows model the first-order Markov assumption,
while the explicit dependence of the observation on just the current state is shown by the ver-
tical arrows. The state sequence is hidden and discrete, while the observations are continuous
and observed.

Each state output distribution bj(o) may take any form, and can be discrete or continuous.
For continuous speech recognition, continuous state output distributions are normally used.

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 12

θ 1
12a 23a 34a 45a

44a33a22a

Transition
Emission

Emitting state

Non−emitting state

θ 2 θ 3 θ 4

θ 5

3b)(

...

)(2b o1
o3)(4b o6

o1 2o o3 o4 o5 o6

Figure 2.3: 5-state HMM with 3 emitting states

ψtψt−1

o o tt−1

Figure 2.4: HMM in figure 2.3 as a Dynamic Bayesian Network. The state sequence is
hidden and observations are observed variables. The state sequence is discrete, and the output
observations continuous.

figures/hmm.eps
figures/hmm_dbn2.eps

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 13

The most common form of output distribution is the Gaussian mixture model (GMM), given
by

bj(ot) =

M
∑

m=1

cjmN (ot;µjm,Σjm) (2.15)

where N (.) is a Gaussian distribution

N (o;µ,Σ) =
1

√

(2π)D |Σ|
exp

(

−
1

2
(o− µ)T Σ−1 (o−µ)

)

(2.16)

The normalisation term is independent of o and can be precomputed and cached for effi-
ciency. Other forms of output distribution have been used, for example mixtures of Laplacian
distributions [61]. It is not necessary for all states to have the same form of output distri-
bution, and in the particular case of GMM output distributions, it is not necessary for each
state to have the same number of Gaussian components.

The parameters of the model, M, are those of the state output distributions and the
transition probabilities. For a GMM output distribution, the parameters are the means µjm,
variances Σjm and component priors cjm where j is the HMM state index and m is the GMM
component. There is a sum-to-one constraint on the transition probabilities from each state
and on the component priors, so

∑

j aij = 1 and
∑

m cjm = 1.

For a d-dimensional feature vector, a full covariance matrix has O(d2) parameters. Due to
the large number of states in an HMM system, the use of full covariance matrices is expensive
in practice and requires a large amount of training data to robustly estimate the parameters.
Hence, diagonal, or block-diagonal covariance matrices are often used. These can reduce the
number of parameters to O(d) but no longer model the correlations between features. Other
techniques, such as semi-tied covariances [43] or SPAM (Subspace Precision and Mean) [5] can
be used to reduce the number of parameters by sharing full covariance or precision matrices
over a number of components. The former uses a component specific diagonal matrix and a
shared full covariance, which may be global or tied over a number of components. The latter
uses a global set of basis full covariance matrices, and a set of interpolation weights for each
component.

2.3.2 Likelihood Calculation
The HMM is a generative model of speech, and, given a sequence of observations, can be
used to obtain the acoustic likelihood score. The likelihood of a sequence of data, O given a
transcription H is the sum of the probabilities for all possible state sequences Ψ through the
transcription

p(O|M,H) =
∑

ψ∈Ψ

p(O|ψ,M); (2.17)

Applying the first order Markov and conditional independence assumptions of section 2.3
allows the likelihood to be approximated by

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 14

p(O|M,H) =
∑

ψ∈Ψ

T
∏

t=1

P (ψt|ψt−1)p(ot|ψt); (2.18)

It is infeasible to search explicitly over all possible state sequences and a recursive algo-
rithm, the forward-backward algorithm [78], can instead be used. The forward probability
αj(t) is the sum of the likelihoods of all partial paths ending in state θj at time t, and can be
calculated recursively

αj(t) = p(o1 · · · ot, ψt = θj|M,H)

=

∑

i≤j

αi(t− 1)aij

 bj(ot) (2.19)

The i ≤ j condition enforces the strict left-to-right topology of the HMM. The forward
probability is initialised at time t = 0 by

α1(0) = 1

αj(0) = 0 for j 6= 1 (2.20)

In the final state, N , at time T , the forward probability is

αN (T) = p(O|M,H) (2.21)

Conversely, the backward probability βj(t) is the probability of seeing the observations
ot+1 · · · oT , when in state θj at time t. That is, the sum of likelihoods of all partial paths
beginning at state θj and ending in the final state of the HMM. βj(t) can also be defined
recursively

βj(t) = p(ot+1 · · · oT |ψt = θj ,M,H)

=

∑

i≥j

βi(t+ 1)ajibi(ot+1)

 (2.22)

The initial conditions in the final state are

βN (T) = 1

βj(T) = ajN for j 6= N (2.23)

The algorithm terminates in the initial state of the HMM

β1(0) = p(O|M,H) (2.24)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 15

The likelihood of being in a particular state at a particular time instance, γj(t) can be
expressed in terms of the forward and backward probabilities

γj(t) = P (ψt = θj |O,M,H)

=
αj(t)βj(t)

p(O|M,H)
(2.25)

The state posterior probabilities, γj(t), form the basis of several algorithms for ASR,
including the decision tree and HMM training algorithms below.

2.4 Training Hidden Markov Models
HMM training estimates a set of optimal model parameters M̂, with respect to the training
data, O, using some criterion, or objective function, F(M|O)

M̂ = argmax
M

F(M|O) (2.26)

There are two common approaches to parameter estimation; maximum likelihood and
discriminative training. Both methods are discussed below.

2.4.1 Maximum Likelihood
Maximum Likelihood (ML) training maximises the likelihood of the training data, given
the reference transcription, i.e. p(O|Href ,M), summed over the R training data utterances.
Provided the likelihood never reaches zero, which is the case for Gaussian PDFs with non-zero
variance, then the log likelihood can instead be maximised

FML(M) =

R
∑

r=1

log p(O(r)|H
(r)
ref ,M) (2.27)

For clarity, the sum over all training data utterances is dropped. For the case of the HMM,
the objective function may be expressed as a sum over all possible state sequences through
the reference transcription Ψref

FML(M) =

log
∑

ψ∈Ψref

p(O,ψ|M)

(2.28)

Direct optimisation of this equation is difficult, and so an auxiliary function Q is iteratively
optimised using the Baum-Welch algorithm [8]. The auxiliary function is

QML(M̂k,M̂k+1) =
∑

ψ∈Ψref

P (ψ|O,M̂k,Href) log
(

p(ψ,O|M̂k+1,Href)
)

(2.29)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 16

Finding a local maxima of the auxilary function, Q, guarantees an increase in FML(M), and
Q satisfies the inequality

FML(M̂k+1) −FML(M̂k) ≥ QML(M̂k,M̂k+1) −QML(M̂k,M̂k) (2.30)

where M̂k is the current parameter set at iteration k, and M̂k+1 is the re-estimated set
at iteration k + 1. The Baum-Welch algorithm is a form of the Expectation-Maximisation
(EM) algorithm [28]. It has two steps, and is described in figure 2.5. The first step, the E-
step, computes the auxiliary function while the second M-step estimates the updated model
parameters. The steps are alternated until convergence of the auxiliary function.

Initialise M̂0

While Q(M̂k,M̂k+1) −Q(M̂k,M̂k) > threshold

E-step: compute Q(M̂k,M̂k+1)

M-step: estimate M̂k+1 = argmaxMQ(M̂k,M)

k=k+1

End

Figure 2.5: The EM algorithm

The values of γjm(t) are calculated using the forward-backward algorithm in section 2.3.2,
treating Gaussian mixture components as hidden variables. The probability of being in state
θi at time t and θj at time t + 1, ζij(t), is also calculated from the forward and backward
probabilities

ζij(t) = P (ψt = θi, ψt+1 = θj|O,M)

=
αi(t)aijbj(ot+1)βj(t+ 1)

αN (T)
(2.31)

From these, equation 2.29 becomes

QML(M̂k,M̂k+1) =

T
∑

t=1

N
∑

j=1

M
∑

m=1

γkjm(t)
[

log(ck+1
jm) + logN (ot;µ

k+1
jm ,Σk+1

jm)
]

+
N
∑

i=1

N
∑

j=1

ζij(t) log ak+1
ij

(2.32)

where the component priors, ckjm and transition probabilities, akij , should sum to one

M
∑

m=1

ckjm = 1 ;

N
∑

j=1

akij = 1 (2.33)

Equating to zero and solving, the ML estimates for the transition probabilities âij and the

GMM means µ̂jm, variances Σ̂jm and priors ĉjm are

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 17

âij =

∑T
t=1 ζij(t)

∑T
t=1

∑N
j=1 ζij(t)

(2.34)

µ̂jm =

∑T
t=1 γjm(t)ot
∑T

t=1 γjm(t)
(2.35)

Σ̂jm =

∑T
t=1 γjm(t)(ot − µ̂jm)(ot − µ̂jm)T

∑T
t=1 γjm(t)

(2.36)

ĉjm =

∑T
t=1 γjm(t)

∑M
m=1

∑T
t=1 γjm(t)

(2.37)

In the Baum-Welch algorithm, the E-step of the EM algorithm is to compute the compo-
nent occupation counts γjm(t) and transition probabilities ζij(t), and the M-step is to apply
the update formulae 2.34-2.37. These two steps are repeated for a number of iterations un-
til convergence although, in general, the EM algorithm only finds a local, and not a global,
optimum.

2.4.2 Discriminative Training
ML training is optimal if the underlying acoustic models are correct, and if there is an infinite
amount of training data [118]. Neither of these assumptions are correct for automatic speech
recognition. HMMs aren’t a correct model for speech, due to the independence assumptions
stated in section 2.3, and the amount of training data is limited in practice. Additionally,
the EM algorithm for ML training does not guarantee to find a global optimum for the
model parameters. Discriminative training addresses these issues by explicitly optimising the
model parameters with respect to the expected error rate, and allows the objective function
in training to be matched with the evaluation criterion.

2.4.2.1 Maximum Mutual Information

Maximum Mutual Information (MMI) Estimation [6, 118, 149] maximises the posterior proba-
bility of the correct hypothesis, given a fixed language model. This is equivalent to maximising
the mutual information between the models and the acoustic observation sequence. The MMI
objective function for R training utterances is

FMMI(M) =

R
∑

r=1

log P (H
(r)
ref |O

(r),M) (2.38)

=
R
∑

r=1

log
p(O(r)|H

(r)
ref ,M)P (H

(r)
ref |M)

∑

H p(O
(r)|H,M)P (H|M)

=

R
∑

r=1

{

log p(O(r)|H
(r)
ref ,M)P (H

(r)
ref |M) − log

∑

H

p(O(r)|H,M)P (H|M)

}

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 18

where the sum in the denominator is over all possible word sequences.
In equation 2.39, the first, or numerator, term is simply the ML objective function. The

second, denominator, term is identical to the first, except it includes a sum over all possible
hypotheses. Auxiliary functions can be derived for both the numerator and denominator
terms, QML(M̂k,M̂k+1) and Qden(M̂

k,M̂k+1), where the only difference is in the transcrip-
tion used to obtain the statistics. The possible competing hypotheses in the denominator
term can be represented by an N-best list, or a word lattice. Due to the negation in the
objective function, the extended Baum-Welch (EBW) algorithm discussed in section 2.4.2.4
is used for optimisation.

2.4.2.2 Minimum Bayes’ Risk Training

MMI training assumes that all sentence level misclassifications have equal weight. That is, an
utterance is either correct or incorrect. In practice, this is not ideal as some misclassifications
can be more important than others. Minimum Bayes’ risk (MBR) training allows for a
more informative definition of utterance correctness. L(H,Href) is a loss function which
defines the cost incurred when a system hypothesises the transcription H and the reference
transcription is Href . MBR training minimises the risk R, or expected loss, of a classifier,
and is approximated by the empirical loss

R = E [L(H,Href)]

=
∑

H

P (H|O,M)L(H,Href) (2.39)

The model parameters are estimated to minimise the risk over the R utterances in the
training set, and the objective function is

FMBR(M) =

R
∑

r=1

∑

H

P (H|O(r),M)L(H,H
(r)
ref) (2.40)

For clarity, the sum over all training set utterances is dropped below.
Minimum Bayes’ risk training is a general framework which encompasses many popular

discriminative criteria via the loss function. An utterance level loss function [113] is straight-
forward to implement

L1/0(H,Href) =

{

0 H = Href

1 H 6= Href
(2.41)

For a single utterance, it can be seen that this loss function is closely related to MMI
training above as it effectively maximises the posterior of the reference

FMBR−1/0(M) =
∑

H

P (H|O,M)L1/0(H,Href)

=
∑

H6=Href

P (H|O,M)

= 1 − P (Href |O,M) (2.42)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 19

Alternatively, the Levenshtein distance [32] can be used. This matches the training and
evaluation criteria, and the loss becomes a sum of word-level errors. Suppose the hypotheses

H and Href are aligned into a set of word pairs {W (k),W
(k)
ref}, as discussed in section 2.7,

then the sentence level loss is given by

Llev(H,Href) =

K
∑

k=1

llev(W
(k),W

(k)
ref) (2.43)

The word level loss function for the Levenshtein distance, llev(W,Wref), is given by

llev(W,Wref) =

{

0 W = Wref

1 W 6= Wref i.e. insertion, deletion or substitution
(2.44)

Another popular criterion, minimum phone error (MPE) training [122] fits within the
MBR framework. Now the hypotheses H and Href are aligned into a set of phone pairs

{P(k),P
(k)
ref}. The loss function is then calculated at the phone level

L(H,Href) =
K
∑

k=1

min
Pref

l(P,Pref) (2.45)

There may be multiple phone level pronunciations for the reference hypothesis, and the
reference phone Pref is chosen to minimise l(P,Pref). This is known as multiple pronunciation
MPE training. An alternative is to take the best single pronunciation of the reference given
the current model parameters, and use this one pronunciation as the reference. This is known
as single pronunciation MPE training. These two forms of training lead to systems which
perform similarly, but give improvements upon combination [49], and thus can be used in
addition to some other complementary training approaches to incorporate extra diversity.

Other discriminative criteria fall within the MBR framework. These include some varia-
tions on Minimum Classification Error (MCE) [101], Minimum Word Error (MWE) [65], and
other discriminative criteria [53, 123].

MPE, and other discriminative criteria, have been optimised using the EBW algorithm
discussed in section 2.4.2.4. The MPE criterion has also be used successfully to discrimina-
tively train a feature transform [125] and hence obtain a set of discriminative features. This
is known as fMPE.

2.4.2.3 Implementation Detail

Discriminative criteria typically involve a sum over all possible hypotheses, and so, in practice,
some approximations are needed to allow their implementation. As mentioned above for the
MMI objective function, it is impractical to consider a loss calculated over all competing
hypotheses. Thus the objective function is normally restricted to consider just the most
likely competing hypotheses, i.e. those in the evidence space He. The objective function
becomes

FMBR(M) =
∑

H∈He

P (H|O,M)L(H,Href) (2.46)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 20

Care must be taken to ensure that He is a good representation of the most likely competing
hypotheses so that the loss function can be calculated accurately. N-best lists [79], lattices
[159] or pinched lattices [32] offer a convenient representation. These are discussed in more
detail below, in section 2.7.

Secondly, the HTK implementation of MPE training [163] optimises the expected phone
accuracy of the training data [122]. Thus the loss L is replaced with an accuracy function A,
which is a sum of phone accuracies

A(H,Href) =

K
∑

k=1

max
Pref

a(P(k),P
(k)
ref) (2.47)

There may be multiple phone level pronunciations for the reference hypothesis, and the
reference phone Pref is chosen to maximise A. The phone-level accuracy, a(P,Pref) is given
by

a(P,Pref) =

1 P = Pref
0 P 6= Pref
−1 P is an insertion

(2.48)

The third issue that occurs in practice is alignment of the multiple competing hypotheses
in the evidence space to facilitate the loss calculation. With the exception of the 1/0 sentence
error loss function, an alignment of words or phones to the reference is needed for every
competing hypothesis in the evidence space. This is feasible for an N-best list, but becomes
computationally expensive when the evidence space is represented by a lattice, as the number
of competing hypotheses is large. Hence, other methods have been proposed to estimate the
loss.

For MPE training, each arc in the lattice is marked with phone-level time stamps, and
the following heuristic is used to estimate phone accuracy

a(P,Pref) =

{

−1 + 2e(P,Pref) if P = Pref
−1 + e(P,Pref) if P 6= Pref

(2.49)

where e(P,Pref) is the overlap between the two phones. From this approximation, a loss for
each phone in the lattice can be found without explicitly having to perform the alignment.

An alternative approach is to restrict the evidence space to make the alignment simpler.
For example, pinched lattices [32] and confusion networks [105] are more compact represen-
tations of multiple hypotheses are discussed in more detail in section 2.7.

2.4.2.4 Optimisation of Discriminative Criteria

The EM algorithm for optimising the ML criterion uses a strong-sense auxiliary function
[122], QML, which has the same gradient as the original ML criterion around the current
parameter estimates, and maximising the auxiliary function guarantees not to decrease the
original criterion. However, in this thesis, a a weak-sense auxiliary function is optimised for
discriminative training. A weak-sense auxiliary function relaxes the requirement of a strong-
sense function, and only shares the same gradient as the original criterion around the current

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 21

parameter estimates. It does not guarantee to increase the original criterion [122]. For MMI
training, a weak-sense auxiliary function is

QMMI(M
k,Mk+1) = Qnum(Mk,Mk+1) −Qden(M

k,Mk+1) + Qsm(Mk,Mk+1) (2.50)

where Q is the ML auxiliary function from section 2.4.1. The three terms correspond to
the numerator, Qnum, and denominator, Qden, terms of the MMI objective function, and
a smoothing term, Qsm, to ensure convergence. Optimisation of this auxiliary function is
performed [6, 118, 122]. The statistics for the denominator term are calculated using all
possible transcriptions, while the numerator statistics use just the reference transcription, so
for the jth state

γnumj (t) = P (ψt = θj|O,M,Href)

γdenj (t) =
∑

H

P (ψt = θj|O,M,H) (2.51)

The required numerator statistics for optimisation are

Γnumj =
T
∑

t=1

γnumj (t)

Γnumj (O) =

T
∑

t=1

γnumj (t)ot

Γnumj (O2) =
T
∑

t=1

γnumj (t)oto
T

t (2.52)

and the denominator statistics are

Γdenj =

T
∑

t=1

γdenj (t)

Γdenj (O) =
T
∑

t=1

γdenj (t)ot

Γdenj (O2) =

T
∑

t=1

γdenj (t)oto
T

t (2.53)

The update equations for the mean and variance are then

µ̂j =
Γnumj (O) − Γdenj (O) +Djµj

Γnumj − Γdenj +Dj
(2.54)

Σ̂j =
Γnumj (O2) − Γdenj (O2) +Dj(µjµ

T

j + Σj)

Γnumj − Γdenj +Dj
− µjµ

T

j (2.55)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 22

The constants Dj arise from the smoothing term in the auxiliary function, and in the
update equations are set to be large to ensure convergence. Typically, they are set at a
Gaussian specific level, and depend on the state occupation probability [159].

For MPE training, a different auxiliary function must be optimised. This has the same
update, but the required statistics are different.

γmpej =
∂FMPE(M)

∂ log p(O|M)

∣

∣

∣

∣

M=Mk

(2.56)

This quantity is the gradient of the MPE criterion with respect to the log likelihood of the
data and can be found from phone marked lattices. The accuracy of each phone arc P is first
calculated, and then a forward-backward pass is used to calculate the average phone accuracy
of every sentence passing through a phone arc, FMPE(M|P) [122]. The MPE statistics can
be rewritten as

γmpej = p(O|P) [a(P,Pref) −FMPE(M|P)] (2.57)

This form of the statistics allows MPE training to be carried out in the same framework
as MMI training, where γmpej = γnumj − γdenj . MBR training with any loss function can also
be implemented, by replacing the phone accuracy function with an appropriate loss.

2.4.2.5 Smoothing

One problem with discriminative training is the tendency to overtrain, and thus generalise
poorly to unseen data. For this reason, smoothing to a prior model is often performed as
part of the training, to prevent overtraining [124]. Smoothing with a static prior interpolates
the parameter estimates with the parameters of a fixed, well-trained model. Smoothing with
a dynamic prior interpolates the discriminative parameter estimates with a second estimate
of model parameters. For MPE training, an ML or an MMI prior can be used to obtain the
second set of estimates.

For the mean update, the discriminative estimate of the parameter is µ̂j , the smoothed
estimate is µ̃j, and the smoothing can be described as

µ̃j =
γjµ̂j + τγprj µ

pr
j

γj + τγprj
(2.58)

where γj is effective the state occupation count from the forward-backward algorithm

γj =
T
∑

t=1

γj(t) (2.59)

and µprj and γprj are the prior mean estimate and occupation count respectively. In the case

of a static prior, γprj is set to an arbitrary value. In the case of a dynamic prior, they are
obtained from the second model parameter estimates.

A value τ controls the degree of smoothing in both the static and dynamic prior cases.
When τ = 0, there is no contribution from the prior model. As τ → ∞, the final parameter
estimates approach those of the prior. Thus, a higher value of smoothing constrains the
parameter estimates to be close to the prior.

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 23

2.4.3 Active and Unsupervised Training
As speech recognition systems increase in complexity, there is a need to use more training data
to obtain good models. However, a large manual effort is needed to prepare and accurately
transcribe a speech database, and it becomes difficult to guarantee that the training set is
correctly labelled. Additionally, as the training database gets larger, adding more data leads to
increasingly smaller gains in performance [80], and it has been seen that training on the entire
set can give suboptimal performance [24, 129]. This could be due to overtraining, outliers, or
wrongly labelled data. It is impractical to do an exhaustive search to find the optimal subset
of training data, and so recent efforts have used active training [26] to automatically select
an optimal subset of data for training.

Active training [26] is so called because it alters the learning algorithm from a passive
one which has no control over its input to one which actively selects suitable portions of the
training data. The aim is to select the most informative examples for training. That is,
the examples which will give largest improvements in performance. There are many ways to
decide what the most informative examples are in any training set, and the approach depends
on the task.

Increasing the size of a training set often means including new examples which are similar
to examples already existing in the training set. In this case, it is not expected that the
new examples will improve the model performance. Thus, for improved performance, it is
better to concentrate the training in regions of uncertainty [26]. For ASR, this means focusing
the training on high error portions of the training set. If the correct labels, and hence the
utterance error, is known, then focusing on high error segments for training can outperform
using the entire data set, or just the low error portions [4, 81, 82].

It is relatively straightforward to obtain a large amount of untranscribed data, particu-
larly for a task like broadcast news. This has led to unsupervised training where the system is
trained on a large amount of unlabelled data [90, 153, 155]. Unsupervised training typically
involves automatically transcribing the data and selecting those utterances where the recog-
niser is confident to add to the training set. Active and unsupervised training are closely
linked as both are concerned with selecting suitable subsets of the training data.

For the case of unsupervised learning the correct labels and sentence error are unknown.
Thus it is not appropriate to train on utterances with low confidence as the automatic tran-
scription is likely to be wrong. There are two approaches to active training in an unsupervised
fashion. The first approach relies on some human intervention, and selects low confidence re-
gions of data to transcribe manually as these are more likely to improve the models [63, 128].
High confidence utterances are more likely to be correct, and the manual effort of transcrip-
tion is unlikely to improve the models. It might also be useful to exclude very low confidence
regions as these are likely to be outliers and hence not informative [129]. A second approach
requires no human intervention, and selects high confidence portions of data to add to the
training set, along with their automatic transcription [155].

An alternative use of active training is to build task dependent models by selecting appro-
priate utterances from a large database. For example, building infant and elderly specific [25],
or foreign accent models [4] from a larger database of more general speech. In this scenario,
the emphasis is on selecting data which is close to a small set of labelled task-dependent data,
and is an alternative to model adaptation.

In previous work, active learning has been used with ML training, typically with a weight-
ing at the utterance level. For word level active training, a method of weighting individual

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 24

words is needed. In [80, 83], the data is force-aligned and the observations for a particular
word are weighted.

For broadcast news transcription, closed captions are normally available. These are nor-
mally not an exact transcription of the speech and are coarsely aligned with the signal.
Lightly supervised training [90] makes use of these closed captions by aligning them with the
automatic transcription, and discarding segments where the two disagree.

Active and unsupervised training require an accurate confidence measure, and a suitable
method of applying a data weighting. These aspects are discussed further in chapter 5.

2.5 Language Modelling
The language model, P (H), gives the prior probability of a word sequence during decoding
[78]. A hypothesis is broken down into a series of words H = {W1 · · ·WK}, and it is assumed
that the language model probability can be written in terms of a word history

P (H) =
K
∏

k=1

P (Wk|Wk−1,Wk−2 · · ·W1) (2.60)

A commonly used language model is the N-gram. An N-gram language model restricts this
word history to the previous (N − 1) words

P (H) ≈
K
∏

k=1

P (Wk|Wk−1,Wk−2 · · ·Wk−N+1) (2.61)

N-gram language model probabilities are estimated by counting the occurrences of word
sequences in a large corpus of text. To obtain good coverage, a large corpus is required.
However, as the size of N increases, it is more likely that word sequences are not seen in the
corpus and so have an unknown probability. This can be addressed by discounting or backoff.
The former allocates a portion of the probability mass for unseen events, while the latter
backs off to smaller values of N if a word sequence is not allocated a probability in the more
complex language model.

N-gram language models are specific to the corpus on which they are trained. For a
particular task, there may only be a limited amount of domain specific text, and so a domain
specific language model can be interpolated with a more general background model.

2.6 Decoding
Decoding for automatic speech recognition is the process of finding the ‘best’ word sequence
or hypothesis, given an observation sequence. As stated in section 2.1, decoding uses Bayes’
decision rule to find the most likely hypothesis Ĥ given the model parameters M and obser-
vation sequence O. This can be written as

Ĥ = argmax
H

p(O|H,M)P (H) (2.62)

Two forms of decoding, Viterbi and minimum Bayes’ risk, are discussed below.

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 25

2.6.1 Viterbi Decoding
Viterbi decoding [75] finds the most likely state sequence through an HMM, given the ob-
servation sequence O. The most likely word sequence is recovered from the state sequence.
This corresponds to finding the most likely sentence. The algorithm involves a search over all
possible state sequences Ψ to find the most likely, ψ̂

ψ̂ = argmax
ψ∈Ψ

p(O,ψ|M)

= argmax
ψ∈Ψ

p(O|ψ,M)P (ψ|M) (2.63)

This most likely state sequence is mapped to the most likely hypothesis. Using an HMM
acoustic model, observations are conditionally independent given the state that generated
them, hence

p(O|ψ,M) =

T
∏

t=1

p(ot|ψt,M) (2.64)

Thus equation 2.63 becomes

ψ̂ = argmax
ψ∈Ψ

P (ψ|M)

T
∏

t=1

p(ot|ψt,M) (2.65)

It is impractical to perform an exhaustive search over all possible state sequences, and so
a recursive form is used. φj(t) is defined as the likelihood of the best partial path at time t
through the HMM to state ψt

φj(t) = p(o1 · · · ot, ψ1 · · ·ψt−1|M) (2.66)

This can be calculated recursively as, due to the conditional independence assumption,
φj(t) can be defined in terms of the likelihood of the partial path ending at the preceding
state ψt−1

φj(t) = aψt−1,jbj(ot)φψt−1(t− 1) (2.67)

The partial path at time t with maximum likelihood, φ
(ML)
j (t), can be found by a search over

preceding states to find the best

φ
(ML)
j (t) = bj(ot)max

i≤j
aijφ

(ML)
i (t− 1) (2.68)

The initial conditions for this recursion are:

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 26

φ
(ML)
1 (0) = 1

φ
(ML)
j (0) = 0 for j 6= 1 (2.69)

Unlike the forward probability in the forward-backward algorithm which is the likelihood
of all paths entering a state, decoding approximates the probability by the maximum likelihood
partial path to a particular state. In the final state N at time T , the maximum likelihood

path is given by φ
(ML)
N (T).

For continuous speech recognition, HMMs model subword units and must be concatenated
to form words and sentences. The token passing algorithm [163] is an implementation of the
Viterbi algorithm for continuous speech recognition. Each state of each HMM contains one
or more tokens which record the likelihood of the partial path up to and including that state,
and the time frame at which the token entered that model. At each time step, all tokens are
propagated in parallel according to the recursion in equation 2.68. The most likely token in
the exit state of a model is propagated back to the beginning of all models, and the language
model probabilities applied. At time T , the token with the highest likelihood can be used to
trace back the most likely path, and hence recover the most likely word sequence. Tracing
back the N most likely tokens at time T results in an N-best list of hypotheses, which can
then be used for further processing.

Typically, there is a large difference in the dynamic range of the acoustic and language
models due to modelling assumptions, and so an empirically determined grammar scale factor
η is normally applied to the language model probabilities [75]. Also, the decoding algorithm
has a tendency to insert short words. Short words are common in the corpora for language
model training, and so tend to have an increased likelihood. To address this, a word insertion
penalty ρ is often added to each path for every new word [75]. Due to numerical underflow,
log probabilities are used during decoding, and so for an utterance of length L, the most likely
word sequence maximises

Ĥ = argmax
H

{log p(O|M,H) + η log P (H) + ρL} (2.70)

The final consideration when using the Viterbi algorithm is that of search efficiency. The
use of complex acoustic and language models can increase the search space of the decoder and
significantly slow down the algorithm. For example, separate tokens are needed for paths with
distinct word histories, so a language model with a longer history can increase the number
of tokens needed. To alleviate this problem, low probability tokens can be pruned as part of
the decoding. Tokens with a low likelihood are deleted and those paths are not expanded
further. Pruning decreases the computational cost of decoding, but introduces search errors
where likely paths are pruned out before time T .

2.6.2 Minimum Bayes’ Risk Decoding
The Viterbi algorithm of the previous section finds the most likely state sequence through
the HMM. Thus, it finds the most likely sentence, and may be viewed as minimising the
expected sentence error rate (SER). However, the most common evaluation metric for speech

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 27

recognition systems is the word error rate (WER). This mismatch leads to suboptimal perfor-
mance in terms of word error rate, and may be addressed by minimum Bayes’ risk decoding
[57, 105, 141, 158] which allows the evaluation metric to be included as part of the decoding
algorithm. More specifically, MBR decoding aims to find the best word sequence using

Ĥ = argmin
H̃

∑

H

P (H|O,M)L(H, H̃) (2.71)

Equation 2.71 is comparable to equation 2.46 for MBR training. The difference in decoding
is that the reference hypothesis, Href , is unknown.

The loss function, L(H, H̃) can be matched to the evaluation measure of interest. For
example, as for MBR training, the Levenshtein distance can be used in MBR decoding to
match the decoding and evaluation criteria [57]. Or if the task is more specific, such as named
entity extraction, a more suitable error measure and loss function may be the F-measure [57]
which balances precision and recall.

As written above, the MBR criterion is too computationally expensive to implement
directly as it involves a search over all possible word sequences to find the true minimum.
Thus, the search is normally restricted to a subset of hypotheses. The hypothesis space Hh is
the space over which the decoder searches for the best hypothesis, and may be different from
the evidence space He which represents the most likely hypotheses. Thus, the best hypothesis
is approximated by

Ĥ = argmin
H̃∈Hh

∑

H∈He

P (H|O,M)L(H, H̃) (2.72)

Even when the hypothesis spaces are represented by recognition lattices, there may still
be too many hypotheses to perform a full search. Hence advanced search algorithms such as
A* search may be employed [57]. However, it is usually the case that the lattice is compressed
in some way to reduce the search space. For example, pinched lattices [32], N-best lists, [58,
141], and confusion networks [105] have a considerably smaller search space than recognition
lattices.

A popular approach to word error minimisation is to select the word sequence with the
highest sum of posterior probabilities [105, 156]. This can be done over an N-best list [141]
or a lattice. For word-error minimisation over lattices, a forward-backward pass over the
lattice is first done to obtain word posterior probabilities for each of the arcs in the lattice.
This posterior probability takes into account the language and acoustic score, and thus makes
further processing straightforward. [156] searches directly in the lattice for this best path,
while [105] first converts the lattice to a confusion network and thus makes the search for the
best word sequence trivial. This latter approach is described in more detail below.

2.6.2.1 Confusion Network Decoding

Confusion network (CN) decoding is a form of MBR decoding which aims to minimise word
error rate. A confusion network [104, 105] is derived from a word lattice by merging overlap-
ping links that correspond to the same word, and clustering links that correspond to different
words into confusion sets. An example lattice and confusion network are shown in figure 2.6.
Multiple lattice arcs for overlapping words are clustered and merged, such as the lattice arcs

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 28

for the words ‘IN’ in the example. Words representing confusions are aligned into a single
confusion set. For example, the words ‘BUT’ and ‘IN’ are aligned, as they are phonetically
similar and overlap in time.

ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

TO IN DIDN’TIT ELABORATE

!NULLA

BUT

!NULL

!NULL

Figure 2.6: CN generation from a lattice

To build a CN, it is necessary to obtain a complete alignment of all lattice arcs. It is
infeasible to do this directly as there are a large number of hypotheses, and hence an iterative
approach is used to cluster links and carry out the alignment. The algorithm is based on
heuristics which take into account lattice topology, time stamps and phonetic information.

First, lattice arc posteriors are calculated in a forward-backward pass and low posterior
links are pruned out as, in practice, these can affect the alignment. In the first stage of CN
generation, lattice arcs with the same word are merged based on their overlap. The arcs are
iteratively merged, where at each step the two sets of arcs with the highest similarity are
merged. The similarity for merging two clusters of lattice arcs, A1 and A2, is

sim(A1,A2) = max
W1∈A1,W2∈A2

e(W1,W2)P (W1|A1)P (W2|A2) (2.73)

where Wn is a word from the cluster An, P (W|A) is the posterior of a word W in the cluster
A, and the overlap between two word arcs, e(W1,W2), is normalised by the word length. In
this step, links for the same word are merged and so their posteriors are added.

The next step is to cluster sets of arcs with different words together, to give confusion
sets. Again, the process is an iterative one where the two clusters with the highest similarity
are aligned, until there are no more overlapping clusters. Now, the similarity function is the
expected phonetic similarity, simp(.), between two sets of lattice arcs

sim(A1,A2) = E [simp(A1,A2)]

= avg
W1∈A1,W2∈A2

simp(W1,W2)P (W1|A1)P (W2|A2) (2.74)

The resulting graph is known as a confusion network and has a linear structure. Competing
hypotheses in the confusion network are potential confusions made by the recogniser, and
words in a confusion set are annotated with posterior probabilities. The total posterior for a
confusion set can be less than 1, and so a !NULL arc is added to that confusion set to account
for the remaining probability mass. Thus, confusion networks can introduce deletions.

The confusion network preserves the order of words in the original lattice, but allows
hypotheses to exist which were not present in the original lattice. The final hypothesis is
obtained by selecting, for each confusion set, the word which has the highest posterior.

There is a bias in the posteriors due to the incomplete representation of the hypothesis
space and the accuracy of the posterior probabilities obtained from the particular model set.

figures/word_lattice.eps
figures/cn_lattice.eps

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 29

Depending on the task, this bias may need to be accounted for, [34, 67]. A fast CN generation
algorithm has also been proposed [160].

2.7 Aligning Multiple Hypotheses
Sections 2.4.2.2 and 2.6.2 described training and decoding algorithms which require the use
of multiple hypotheses. Chapter 3 describes approaches to combining multiple hypotheses.
Thus, it is often necessary in LVCSR to align multiple hypotheses both against each other or
against a reference transcription.

This section first discusses the representations of multiple hypotheses. Then, the simple
case of string alignment is discussed, before its extension to aligning multiple hypotheses.

2.7.1 N-best Lists and Word Lattices
In the token passing algorithm of section 2.6.1, it is possible to trace back the N most likely
paths through the HMM and obtain a list of the N most likely hypotheses. However, the
hypotheses in N-best lists tend not to differ significantly, and a more compact representation
of multiple hypotheses is a word lattice [121].

Word lattices are directed graphs where arcs correspond to words, each with a start and
end time. Multiple hypotheses can share word arcs, hence reducing the memory requirements
for storing multiple hypotheses. Arcs are typically annotated with acoustic and language
model probabilities. Word lattices are useful as they provide a compact representation of the
most likely hypotheses, and can easily be used for further processing.

One useful step is to convert the acoustic and language model scores in the lattice into
posterior probabilities [157]. This can be done using a forward-backward pass, as discussed
in section 2.3.2, but at the word level rather than the frame level.

2.7.2 Levenshtein Alignment
The alignment of two strings can be done using a dynamic programming algorithm. The
Levenshtein, or edit, distance [96] is the number of insertions, substitutions and deletions
required to transform one string into another. For example, in figure 2.7, to transform string
S1 into string S0 requires one deletion (‘a’), one insertion (‘it’), and one substitution (‘didn’t’
for ‘would’). The optimal alignment of two strings is that which minimises the Levenhshtein
distance.

S0: !NULL but it didn’t elaborate
S1: a but !NULL would elaborate

Figure 2.7: Levenshtein alignment of two transcriptions, S0 and S1

Calculation of the optimal alignment between two strings is done using dynamic pro-
gramming. The algorithm may associate different penalty scores with insertions, deletions
and substitutions, and !NULL arcs are added to hypotheses to handle the insertions and
deletions, as in figure 2.7 to align the words ‘a’ and ‘it’.

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 30

The alignment of two or more strings gives a set of word correspondences. After alignment,
each string consists of a set of K words, H = {W (1) · · ·W(K)}, which may include !NULL
arcs to enable the alignment. The kth words in each hypothesis are aligned, to give a set of
aligned words W = {W (1,k) · · ·W(S,k)} from hypotheses H(1) to H(S).

2.7.3 Aligning Multiple Hypotheses
Alignment of multiple hypotheses is used throughout this thesis, for example, in minimum
Bayes’ risk training and decoding in sections 2.4.2.2 and 2.6.2 above. Thus, the problem of
aligning multiple hypotheses must be considered.

One algorithm which aligns a small number of hypotheses is ROVER, discussed in section
3.3.1.2 below. In this algorithm, the strings are iteratively aligned using the dynamic align-
ment multiple times [36]. Thus, if there are S systems yielding S hypotheses, the dynamic
programming alignment is performed S − 1 times. To align a small number of confusion
networks the same process is performed, but the substitution cost in the dynamic alignment
is altered [34]. For the ROVER alignment, the cost of aligning two words is 0 if they are
identical, and 1 if they are different. For CNC, the probability that two sets of words, W

(1)

and W
(2) are identical, P (W (1) = W

(2)|M(1),M(2),O), can be calculated as

P (W (1) = W
(2)|M(1),M(2),O) =

∑

W∈W

λP (W|M(1),O) + (1 − λ)P (W|M(2),O) (2.75)

where W = W
(1) ∩ W

(2) is the intersection of the two sets of words, and λ is a weight
on the first system. Then, the cost of aligning the two sets of words is 1 − P (W (1) =
W

(2)|M(1),M(2),O). Thus, sets of words which are identical have an alignment cost of 0,
and as the similarity between the sets of words decreases, the cost increases to 1. The cost of
insertion and deletion remains the same.

The dynamic programming alignment is suitable if there are a small number of hypotheses
to be aligned. However, when there are many thousands of hypotheses, such as in a word
lattice, it becomes impractical to explicitly perform all the alignments. Hence, an approximate
alignment can be used instead.

Confusion network generation, discussed above in section 2.6.2.1 is one approach to gen-
erating an approximate alignment of multiple hypotheses. The input lattices contain time-
stamps, and CN generation uses heuristics based on both a phonetic similarity measure and
the overlap between words. This similarity measure is used to decide whether two words are
competing, and should be aligned or not.

A second approach is to somehow compact the multiple hypotheses to make alignment
easier. For example, pinched lattices [32] are a more compact representation of likely com-
peting hypotheses. Lattices are ‘pinched’ at regions of high confidence, removing the low
confidence competing words, and thus segmented into smaller chunks where it is much less
computationally expensive to perform the multiple dynamic alignments.

2.8 Decision Trees for Parameter Tying
It is widely known that the realisation of a phoneme depends on its context, and hence it is
desirable to model this context dependency as part of an ASR system. However, modelling

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 31

context leads to a dramatic increase in the number of model parameters to train, and also
the memory needed to store the models. For example, in an ASR system with 50 phones,
modelling triphone context, i.e. the preceding and following phones, results in 503 models.
Obtaining enough training data to adequately model these is difficult, even with thousands
of hours of data, as there are many contexts which appear infrequently or not at all. For
these reasons, it is normal to share parameters between components of an ASR system, hence
reducing the total number of parameters to train. The clustering can be done at many levels,
for example at the phone (HMM) level [7], by clustering state output distributions [119] or
covariance matrices [84].

Left unvoiced consonant?

Right context nasal?

Left liquid?

Left nasal?x−i+n[2]
c−i+m[2]

m−i+m[2]
n−i+m[2]

r−i+m[2]

r−i+t[2]
y−i+sh[2]

f−i+c[2]
p−i+t[2]

y−i+t[2]

Figure 2.8: Example decision tree to cluster second state of phone i

In this thesis, decision trees are used to cluster states of HMMs for parameter tying.
Decision trees contain questions at their nodes, and states are clustered at their leaves. The
questions typically concern triphone context, but any form of knowledge can be incorporated.
An example decision tree is shown in figure 2.8, to cluster the triphone contexts of the second
state of phone i. In this figure, the notation a-i+b[2] denotes the second state of the triphone
for the vowel i, where the previous context is a, and the following context is b. There are
five clusters in the tree, defined by the four questions at the nodes of the tree. For example,
the triphone contexts x-i+n and c-i+m are clustered together, and thus share an output
distribution. One tree is built for each state of each phone, to cluster the corresponding
triphone contexts. Thus, for a system with 50 phones and 3 emitting states per HMM, 150
decision trees are built.

Decision trees are widely used as they provide an elegant way to cluster unseen contexts,
they allow expert knowledge to be incorporated via the questions, and their size can be
dependent on the amount of training data available. Decision tree clustering is a top-down
clustering algorithm which maximises the likelihood of the data. As the decision tree is grown,
the states clustered at each node are split according to the question which gives the best local
increase in data likelihood. This is continued recursively until the total data likelihood falls
below a threshold. Additionally, when splitting a node, it is necessary that there are enough
examples in the new clusters to accurately estimate the parameters. Hence, there is a second
threshold on minimum occupancy which must be satisfied.

figures/dectree.eps

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 32

In order to perform this clustering, it is assumed that the alignment of observations to
states is not altered by the clustering. This simplifies the calculation of the data log-likelihood.
Due to this assumption, the effect of the transition probabilities can also be ignored as they
would only be significant if the state alignments changed. The log-likelihood of the data is
assumed to be the average of the state log-likelihoods, weighted by their state occupancy.
If the state output distributions are Gaussian, the total likelihood of the data, L, being
generated by a set of A tied states, Θ = {θ1 · · · θA}, is approximated by

LΘ =

T
∑

t=1

A
∑

j=1

γj(t) logN (ot;µΘ,ΣΘ)

=
A
∑

j=1

T
∑

t=1

−
1

2

(

log
[

(2π)D|ΣΘ|
]

+D
)

γj(t)

= −
1

2

(

log
[

(2π)D|ΣΘ|
]

+D
)

T
∑

t=1

A
∑

j=1

γj(t)

= −
1

2
γΘ
(

log
[

(2π)D|ΣΘ|
]

+D
)

(2.76)

where it is assumed that all the states in Θ are tied, and so share a common mean µΘ and
variance ΣΘ, and D is the dimensionality of the data [119]. The cluster parameters can be
found from

γΘ =

T
∑

t=1

γΘ(t) =

T
∑

t=1

A
∑

j=1

γj(t) (2.77)

µΘ =

∑T
t=1 γΘ(t)ot
γΘ

(2.78)

ΣΘ =

∑T
t=1 γΘ(ot − µΘ)(ot − µΘ)T

γΘ
(2.79)

To obtain the initial state alignments, a forward-backward pass of the data is performed
with a well-trained system. The sufficient statistics needed to calculate the quantities in
equations 2.77 to 2.79 are the means µj , variances Σj and occupation counts γj of all states
in the system.

As splitting a cluster of states is assumed to have a local effect only, i.e. no effect on other
clusters, only the local change in log likelihood must be maximised to grow the tree. The
change in likelihood, δL when splitting a parent cluster, Θ, into a set of descendant nodes,
D, is

δL = −
∑

d∈D

{

1

2
log |Σd|

T
∑

t=1

γd(t)

}

+
1

2
log |ΣΘ|

T
∑

t=1

γΘ(t)

= −
∑

d∈D

{

1

2
γd log |Σd|

}

+
1

2
γΘ log |ΣΘ| (2.80)

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 33

where γd is the total occupancy of the descendant cluster. For a binary tree, D contains just
two descendants. Constructing a decision tree is thus a top-down clustering process, with
three stages:

1. Statistics

• Obtain statistics for all seen triphone contexts using the forward-backward algo-
rithm

2. Question Selection

• Recursively build the tree by selecting the question which gives the change in
highest data likelihood, provided the occupancy count of each new cluster is above
a threshold

3. Stopping criterion

• Stop building the tree when the data likelihood falls below a threshold

The effect of the algorithm is to cluster states which are close in acoustic space, as these
are likely to be well modelled by a shared distribution. A disadvantage of parameter sharing
is that only contextual and linguistic information is available to distinguish clustered states,
as they share an output distribution. This is not ideal if clustered states are confusable and
lead to errors. The decision tree algorithm does not consider whether states are confusable
or not when performing the clustering, and so it is possible that confusable states will be
clustered.

As the decision tree algorithm is locally optimal, slightly altering any stage of the process
can lead to very different decision trees being built. For this reason, the decision tree algorithm
is a good stage to focus on for complementary system generation. A further advantage of
altering the decision tree algorithm is that no changes need to be made to the HMM training
algorithm. However, the decision tree generation stage typically occurs early in the process
of building a speech recognition system, and so it is time-consuming to build and evaluate
many systems with different decision trees.

2.9 Adaptation
The feature transforms and normalisation schemes discussed in section 2.2.2 partially ad-
dress speaker and environment variations in the input. However, these are global approaches
and therefore limited in addressing differences caused, for example, by differing speakers or
environments. Adaptation techniques have been proposed which address this mismatch. Al-
though adaptation is discussed here in the context of speakers, the techniques can also be
applied to task and environment adaptation. Adaptation can either be supervised, where the
transcription of the adaptation data is known, or unsupervised, where an initial transcription
must first be found.

Adaptation techniques typically transform an initial, speaker independent, model into
a speaker dependent model. This can be done by interpolating models, transforming the
features or model parameters, or by further training. Normally, there is much less speaker-
dependent data available for adaptation than there is in the training set used to train the

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 34

initial speaker independent models. Hence, adaptation techniques must work well with limited
data.

MLLR is the most common technique for adaptation [42, 46, 95]. MLLR linearly trans-
forms the mean [95] and/or variance [42] of a model to better represent a particular speaker.

Transforms are normally tied across a number of model components, using a regression
class tree [41]. Regression class trees tie components of HMMs which are close in acoustic
space, in order to apply a single transform over a number of components. This has some
similarity to decision trees for parameter tying, but typically there are far fewer classes for
adaptation.

The adapted mean µ̃j is a transform of the speaker independent mean µj

µ̃j = Hrjµj + grj (2.81)

where Hrj is an n×n transform associated with state θj , and grj is an n×1 bias. rj refers to
the regression class which state θj belongs to, over which transforms are shared. The variance
transform, an n× n transform, Jrj , is given by

Σ̃j = JrjΣjJ
T

rj (2.82)

When the mean and variance transforms are restricted to be identical, the transform can
be applied directly to the features and is known as CMLLR [42].

The transform parameters, T , are the transforms Hrj , grj and Jrj , and are estimated

using maximum likelihood and the EM algorithm. µ̃j and Σ̃j of equations 2.81 and 2.82 can

be substituted into the auxiliary function in equation 2.32, and the transform parameters T̂
can be estimated by optimising

QMLLR(T̂ k, T̂ k+1) =

T
∑

t=1

N
∑

j=1

γkj (t)
[

logN (ot; µ̂
k+1
j , Σ̂k+1

j)
]

(2.83)

The above approach requires an initial speaker independent model which is typically
trained on multiple speakers, and so captures both the inter-speaker and intra-speaker vari-
ability. MLLR can be used as part of training, interleaving transform and model parameter
estimates, to train a speaker-independent model which captures just the intra-speaker vari-
ability and a transform set which captures the inter-speaker variability. The resulting model
set should be more compact, i.e. have smaller variances, than the original speaker independent
model. This is known as speaker adaptive training (SAT) [3].

Another speaker adaptation approach is MAP adaptation [50] which performs an update
of the model parameters, interpolating between a prior estimate of model parameters and the
ML update from the adaptation data. The prior estimate is often the speaker independent
model parameters, and the influence of the prior can be controlled via a parameter τ . When
a small amount of adaptation data is available, the update tends towards the prior. When
a large amount of data is available, the update tends towards the ML estimate. This form
of adaptation is closely related to the parameter smoothing for discriminative training, in
section 2.4.2.5. MAP adaptation tends to perform worse than MLLR on small amounts of
adaptation data, but outperform MLLR on large amounts of data.

CHAPTER 2. HMM-BASED STATISTICAL SPEECH RECOGNITION 35

2.10 Summary
This chapter has summarised the current state-of-the-art for large vocabulary automatic
speech recognition. The statistical approach to ASR was first presented, and then each of the
modules was discussed in more detail. These include frontend processing, language modelling,
acoustic modelling, and decoding. Additionally, several techniques were discussed that are
an important part of a large vocabulary recogniser, including the use of multiple hypotheses,
feature normalisation and transformations, parameter tying, discriminative training, speaker
adaptation and minimum Bayes’ risk decoding.

CHAPTER 3
System Combination

When the final hypothesis is to be obtained from multiple systems, the method of system
combination is an important consideration. This chapter first introduces the multi-

pass framework for large vocabulary continuous speech recognition used at Cambridge. Then,
existing methods for efficiently combining multiple classifiers and their application to ASR
are discussed. Different forms of system combination are discussed in this chapter, where the
combination is performed at the hypothesis level, by combining distributions during decoding,
or where the combination is implicitly performed. Methods for training the corresponding
models are presented in the following chapter. Finally, an ideal form of combination is dis-
cussed.

3.1 Multi-pass Combination Framework for LVCSR
In recent years, as computational power has increased, there has been an interest in large
vocabulary continuous speech recognition (LVCSR) on found data. That is, real-life data
which is plentiful and easy to collect, though not necessarily labelled. For example, television
news broadcasts, meetings and lectures all provide a convenient and plentiful source of real-life
unlabelled speech data. Using such sources together with the unsupervised training techniques
discussed in section 2.4.3 avoids the cost of collecting and transcribing large amounts of clean
data, but the nature of the data introduces additional complexities.

Typically, data of this sort can contain an unknown number of different speakers, with
different languages, noise sources and non-speech sounds. It is usual to automatically segment
the input speech into single utterances and remove non-speech. Speaker clustering can also
be performed to identify individual speakers. Additionally, the sound quality can vary sig-
nificantly throughout the database, and often the speech is spontaneous and ungrammatical,

36

CHAPTER 3. SYSTEM COMBINATION 37

so complex acoustic and language models are needed for decoding. Typically, 4 and 5-gram
language models are used, and acoustic models may be discriminatively trained with speaker
adaptation and normalisation techniques such as VTLN, HLDA and CMN/CVN.

Examples of recent LVCSR tasks are: broadcast news transcription in English [86], Arabic
[1, 49, 107, 140] and Mandarin [48, 76, 137], lecture transcription [56], meeting transcription
[62, 74], conversational telephone speech [47] and transcription of European Parliamentary
speeches [100, 126].

The direct use of complex models can prove too slow to be useful in practice due to the
increased search effort required. Hence, it is important to design a system that can efficiently
make use of complex models for decoding. Typically, a multi-pass architecture is used for
LVCSR [35, 51, 114], where simple models are used in initial passes to refine the hypothesis
space, and complex models act on this reduced hypothesis space. Word lattices, as discussed
in section 2.7.1, are often used to represent the refined search space as they provide a compact
representation of competing hypotheses.

A multi-pass framework is necessary if unsupervised speaker adaptation, discussed in
section 2.9, is performed. First an approximate hypothesis is needed in order to perform the
adaptation, and this is obtained from an initial model. The final hypothesis is then obtained
by decoding with the adapted models.

In developing the models for use in such a framework, it is normal to train a variety of
systems to find the best performance. Experiments have shown that rather than just using
one system, gains can be obtained from combining multiple systems [114]. Hence, multi-pass
architectures often make use of multiple models in the final pass, which are combined in some
way.

Lattices

Lattice generation − P2

Initial transcription − P1

P3a P3x

1−best output
Lattices
Confusion Networks

Segmentation and speaker clustering

Normalisation
Adaptation

CNC

Figure 3.1: A multi-pass combination framework for ASR

An example of a multi-pass combination framework for ASR decoding is shown in figure
3.1. This framework is used for broadcast news transcription at Cambridge. First, utterance

figures/multipassthesis_bw.eps

CHAPTER 3. SYSTEM COMBINATION 38

segmentation and speaker clustering are performed. Then, there are three passes for decoding;
the first, P1, obtains an initial transcription for adaptation and normalisation, the second pass,
P2, performs the adaptation and generates lattices, while the third pass, P3a to P3x, rescores
these lattices using multiple models, and combines their outputs together using confusion
network combination (CNC), detailed in section 3.3.1.3 below.

It is only sensible to use multiple models in the final pass if they are complementary. That
is, if they make different errors. An ad-hoc approach to generating complementary systems
is to train a number of different systems and select the ones which combine to give the best
results. It is not possible to predict which systems are complementary based on individual
performance alone, so many possible combinations must be performed to find the best. Also,
it is not guaranteed that any independently trained systems will in fact be complementary
and, as the number of individual systems increases, it becomes increasingly time-consuming
to evaluate the different combinations. Experiments have shown that gains are normally only
seen if the systems being combined have comparable individual performance [48]. In previous
work, examples of this ad-hoc approach have used individual systems with different

• segmentations [48, 126]

• frontends, i.e. features and normalisation [62, 73, 76, 98, 100, 110, 137, 143]

• covariance modelling [98]

• training algorithms [49, 100, 137]

• decision trees [74, 126]

• microphones [74]

• phone sets [143]

• dictionaries [48]

• adaptation [62, 98]

In figure 3.1, the hypotheses estimated by systems P3a to P3x are explicitly combined
using confusion network combination, although any of the hypothesis combination schemes
described in section 3.3.1 could instead be used. The framework also allows for an implicit
combination approach, as discussed in section 3.3.4 below, where different systems are used in
the individual passes, P1 to P3. The remainder of this chapter considers existing approaches to
system combination, and chapter 4 discusses existing methods for generating complementary
systems that could be used in the final pass.

3.2 General Combination Methods
Before discussing combination methods for ASR, a simple multiclass classification task is
first considered. A labelled set of N pairs, {oi,Hi}, form the data set, where there are
V classes and thus Hi ∈ {C1 · · ·CV }. For the observation o, an ensemble of S classifiers,
M(1) · · ·M(S), make S decisions about the class which the observation belongs to. From these
S hypotheses, the best hypothesis, Ĥ, must be selected. An example of this kind of task is

CHAPTER 3. SYSTEM COMBINATION 39

phone classification, where an observation is classified according to the phone which generated
that observation. Combination methods for this simpler task are discussed below. There are
two levels at which the combination can be performed. First, the individual hypotheses can be
combined, as in voting and posterior combination. Second, the individual model distributions
can be combined, as is done for mixtures and products of experts.

This static task is simple and the algorithms described below are not easily applied directly
to LVCSR. However, they form the basis of several combination algorithms for ASR, discussed
below in section 3.3.

3.2.1 Majority and Weighted Voting
Suppose each classifier, M(s), makes a hard decision about which class an observation belongs
to, H(s). The simplest way of combining independent classifier outputs is to implement a
majority voting scheme. Such a scheme counts how many classifiers allocated the observation
to each class, and selects the class which has the highest frequency of occurrence. Thus, to
select the best hypothesis, Ĥ, the decision rule has the form

Ĥ = argmax
H∈{C1 ···CV }

{

S
∑

s=1

δ(H(s),H)

}

(3.1)

where δ(H(s),H) = 1 when H = H(s) and 0 otherwise.
There are a number of problems with this simple voting process. It is common for the

voting to result in ties, in which case, without further information, an arbitrary choice must
be made. With a large number of classes, it is less likely that two classifiers will yield the
same hypothesis and ties are more likely. Also, poor classifiers are given the same weight as
good classifiers and so will have the same influence on the final choice of class. To overcome
these problems, a weighted majority voting scheme can be used. Here, each of the S classifiers
is assigned a weight, λs. These weights should be adjusted to reflect the performance of the
classifiers, and typically sum to 1. The weighted voting scheme selects the final hypothesis as

Ĥ = argmax
H∈{C1 ···CV }

{

S
∑

s=1

λsδ(H
(s),H)

}

(3.2)

Although this form of voting is not appropriate for continuous speech recognition tasks,
it may be of use for phone, or digit, recognition style tasks where the number of classes is
small.

3.2.2 Posterior Combination
The voting schemes in the previous section assume that individual classifiers make hard deci-
sions about class membership, i.e. the effective posterior probability of a particular hypothesis
is either 1 or 0. However, rather than simply output the 1-best hypothesis, many classifiers
output posterior probabilities or confidence in class membership, P (H|o,M(s)). It is possible
to modify the simple majority voting scheme in the previous section to reflect the use of
posteriors. Now the decision is based on

CHAPTER 3. SYSTEM COMBINATION 40

Ĥ = argmax
H∈{C1···CV }

{

S
∑

s=1

λsP (H|o,M(s))

}

(3.3)

where again a weight, λs, has been introduced to allow the performance of the individual
classifiers to be reflected and the posterior probability of class membership P (H|o,M(s))
replaces the hard decision δ(H(s),H) in the previous section. A standard scheme that makes
use of this form of weighted voting is AdaBoost [37], discussed in more detail in section 4.1.2.

3.2.3 Mixtures and Products of Experts
Majority voting and posterior combination are schemes for selecting the best from a set of
hypotheses. Alternatively, individual model distributions can be combined to obtain a single
score for each class, for use in further processing stages. Mixtures [11] and products of experts
[70] are commonly used for combining scores, where each expert is a probability distribution.

The likelihood of an observation given all models, p(o|H,M(1) · · ·M(S)), can be a weighted
sum of likelihoods from a set of experts

p(o|H,M(1) · · ·M(S)) =

S
∑

s=1

λsp(o|H,M
(s)) (3.4)

or a weighted product of likelihoods from the experts

p(o|H,M(1) · · ·M(S)) =
1

Z

S
∏

s=1

λsp(o|H,M
(s)) (3.5)

where

Z =

∫

RD

S
∏

s=1

λsp(o|H,M
(s))do (3.6)

The normalisation term Z ensures that the result is a valid probability distribution. In
practice, this term can only be calculated analytically for a few forms of expert, and must be
approximated in other cases. In contrast, it is trivial to normalise a mixture of experts by
enforcing a sum-to-one constraint on the weights,

∑S
s=1 λs = 1.

One commonly used mixture for automatic speech recognition is the Gaussian Mixture
Model, previously described in section 2.3.1 as the HMM state output distribution

p(o) =

M
∑

m=1

cmN (o;µm,Σm) (3.7)

where there are M Gaussian experts in the mixture, and cm is the weight associated with
each Gaussian. cm replaces the classifier weight, λs, for a Gaussian mixture model as it is

CHAPTER 3. SYSTEM COMBINATION 41

possible to use mixtures or products of GMMs, particularly when combining multiple HMM
states. A product of Gaussians can also be used

p(o) =
1

Z

M
∏

m=1

N (o;µm,Σm) (3.8)

As the product of multiple Gaussians is also Gaussian, the normalisation term Z can be
calculated analytically [45], and so equation 3.8 becomes

p(o) = N (o;µ,Σ) (3.9)

where

µ = Σ

(

M
∑

m=1

Σ-1

mµm

)

(3.10)

Σ =

(

M
∑

m=1

Σ-1

m

)

-1

(3.11)

The mixture and product frameworks for Gaussians can be extended to handle mixtures
and products of GMMs, as the normalisation quantities can be calculated analytically. Mix-
tures and products of Gaussians allow the modelling of more complex distributions, while still
retaining the analytic properties of Gaussian distributions. A mixture of experts typically
yields a high likelihood where one or more of the components have a high likelihood, and thus
a mixture model tends to be broader than the individual components alone. A product of
experts, on the other hand, typically yields a high likelihood only where all the components
have a high likelihood. Thus, products model sharper distributions than their individual
components.

3.3 Combination for Automatic Speech Recognition
An ASR system typically outputs a multiple word hypothesis or a lattice, often with associated
confidence scores. Hence, due to the large number of potential output hypotheses, the methods
discussed above are not appropriate for combining the output hypotheses of ASR systems.

In this section, existing methods for combining speech recognisers are discussed. These
fall into three classes - hypothesis, or posterior, combination; distributional, or likelihood,
combination; and implicit combination. In the first scheme, the data is decoded independently
using multiple systems, and posteriors are combined. In the second, likelihoods from multiple
systems are combined as part of the decoding process. In the final scheme, the output from
one system is used, or refined, by a second system.

CHAPTER 3. SYSTEM COMBINATION 42

3.3.1 Hypothesis Combination Schemes
A straightforward way to combine multiple ASR systems is to decode the data independently
using each system, and somehow combine the output hypotheses. This can be done by
directly combining the output hypothesis spaces, in the form of lattices or N-best lists, or by
first aligning the most likely hypotheses and then selecting the best. ROVER and CNC are
word-level examples of the latter approach, presented in sections 3.3.1.2 and 3.3.1.3, although
with an appropriate alignment stage they could be applied at other levels.

Combination of hypotheses is often done within the minimum Bayes’ risk decoding frame-
work, although sections 3.3.1.5 and 3.3.1.6 discuss two more general forms of posterior com-
bination.

The schemes discussed in this section are based on posterior combination, and hence a
reliable confidence measure or posterior probability is needed to perform the combination, as
in section 5.1. Additionally, the combination can be done at any level, but in practice is often
done at the word or utterance level.

3.3.1.1 Minimum Bayes’ Risk Decoding

The minimum Bayes’ risk (MBR) decoding scheme presented in section 2.6.2 also provides a
framework for model combination. MBR decoding uses

Ĥ = argmin
H̃

∑

H

P (H|O,M)L(H, H̃) (3.12)

Although MBR decoding was originally applied to N-best lists [141] and recognition lat-
tices from just one system, the the values of P (H|O,M) and L(H, H̃) in equation 3.12 may
be calculated from a single recogniser, or from a combination of multiple recognisers. Hence,
MBR decoding can be used as a method for combining multiple systems.

ROVER and CNC are two popular word-level combination schemes which fall into this
framework, and are discussed in the sections below. They rely on a word-level alignment of
multiple hypotheses, as discussed in section 2.7. An alternative to aligning hypotheses is to
directly integrate the multiple output hypothesis spaces, e.g. lattices, before rescoring and
searching for the best hypothesis. The lattices from multiple systems can be combined, and
arcs with the same time stamps and words merged to give a single lattice [21]. From this
lattice, the best path is found. This approach has the advantage that timing information
from the lattices is not lost, as happens with the word level alignment schemes. Acoustic and
language model scores are not easily merged, so a straightforward approach is to first calculate
a posterior probability for each lattice arc, as in section 2.7.1, and merge corresponding arcs
by adding the posteriors together.

The best, or most probable, path can be found directly using posteriors from the merged
lattice. Alternatively the arcs can be rescored and the best path found using a different
function. For example, the time frame word error (fWER) [21, 71, 72] or the expected phone
accuracy [21]. The fWER criterion is a smoothed estimate of the word error

fWER(H, H̃) =
∑

W∈H

∑tend

t=tstart
1 − δt(W, H̃)

1 + α(tend − tstart − 1)
(3.13)

CHAPTER 3. SYSTEM COMBINATION 43

tstart and tend are the start and end times of word W. δt(W, H̃) is the Kronecker delta function
between the word W and hypothesis H̃ at time t. fWER correlates with word error rate, and
so finding the path with the minimum fWER score is expected to minimise word error rate.

A second approach is to use scores from the hypothesis space of one system to drive the
search of another [93, 120].

These approaches are an extension of MBR decoding where the decoding is performed
over an integrated hypothesis space. As such, they perform the combination at the utterance
level, and do not allow for hypotheses that did not exist in the original hypothesis spaces.

3.3.1.2 ROVER

The ROVER algorithm [36] was devised at NIST to allow voting methods to be used for
word-level system combination within large vocabulary speech recognition tasks. This scheme
makes use of the one-best hypothesis from a set of speech recognisers, with optional confi-
dence associated for each output. ROVER first breaks each 1-best hypothesis, H(s), into its
constituent words:

H(s) =
{

W
(s)
1 , . . . ,W

(s)

K(s)

}

(3.14)

where K(s) is the length of the hypothesis from system S. The S hypotheses are aligned at
the word level, as discussed in section 2.7, and !NULL links can be added to align hypotheses
of differing lengths. Voting can now be done at the word level, which significantly reduces
the number of classes over voting at the sentence level.

Thus, ROVER has two distinct stages. First, the algorithm begins by iteratively aligning
the hypotheses from the component systems to create a Word Transition Network (WTN).
The alignment algorithm is similar to the one used to score recognition results. It is worth
noting that iteratively combining system outputs does not necessarily guarantee an optimal
WTN and the final WTN is sensitive to the order of combination. Once the WTN has
been created, a simple voting module is used to decide upon the best word from a set of
correspondences in a similar fashion to that described in the majority voting scheme in section
3.2.1. If there is a tie between words, and no further information is available, a random choice
must be made. This algorithm is shown in figure 3.2, where four systems S0 · · · S3 are aligned.
For each of the five sets of aligned words, the most frequent is chosen yielding a final hypothesis
‘but it didn’t elaborate’. Due to the word level combination, this final hypothesis does not
necessarily exist in the hypotheses that are combined.

S0: to but it didn’t elaborate
S1: a but did not elaborate
S2: !NULL but !NULL didn’t elaborate
S3: !NULL in it didn’t elaborate

ROVER: !NULL but it didn’t elaborate

Figure 3.2: ROVER Combination of four systems, S0-S3, without confidence scores

To alleviate the problem of ties between words, it is possible to incorporate confidence
scores or word posteriors from the outputs into the voting process, to make a more refined

CHAPTER 3. SYSTEM COMBINATION 44

choice. One possible voting form applies the following classification for each set of confusions
in the WTN

Ŵ = argmax
W

{

β
N(W)

S
+ (1 − β)P (W|O,M(s))

}

(3.15)

where β is a tuning parameter, N(W) is the number of times that word W occurs and
P (W|O,M(s)) is the posterior probability of word W. This form of voting is an interpolation
between the majority voting scheme of equation 3.1 and an unweighted posterior combination
scheme, similar to that in equation 3.3.

ROVER combination for two systems reduces to picking the word with the highest con-
fidence where the two disagree. Hence, if the recogniser confidence scores are not reliable,
then ROVER between two systems often does not perform well. For example, if one system
consistently overestimates the confidence scores, then that system is likely to be chosen when
there is a disagreement between the two systems. The final performance is likely to be similar
to the single system alone. It is possible to alleviate this problem somewhat by mapping the
confidence scores to more representational values. As more systems are combined, ROVER
becomes more robust to the confidence scores.

One limitation of ROVER is that only the 1-best hypothesis from each component system
is used. N-best ROVER [59] uses an N-best list from each recogniser in place of the 1-best to
better model the hypothesis space. Other refinements have used machine learning techniques
in place of voting to select the best word [68, 168] and incorporated other constraints into the
voting, such as language model information [136]. Machine learning techniques are discussed
in more detail in section 5.1.3, in the context of confidence scoring.

ROVER is typically performed at the word-level, as this matches the word-level error rate
which is used as an evaluation metric for speech recognition systems. Additionally, performing
ROVER at a finer granularity, such as phone, frame, or state, may lead to problems in mapping
the final best hypothesis at this level back to a valid word sequence.

3.3.1.3 Confusion Network Combination

Rather than use the 1-best output from each system, CNC begins with lattice outputs and
first converts these to confusion networks, as in section 2.6.2.1. The confusion networks for
all systems are aligned, as discussed in section 2.7, and the best word for each segment is
chosen. The word-level voting scheme for confusion network combination uses the posterior
combination scheme of equation 3.3:

Ŵ = argmax
W

1

S

S
∑

s=1

λsP (W|O,M(s)) (3.16)

where the set of possible classes in equation 3.3 is replaced by the set of possible words. Thus,
like ROVER, CNC is a word-level combination scheme, although it makes use of multiple hy-
potheses from each component system in the form of lattices. With an appropriate alignment
stage, CNC could be applied at any level, but is normally applied at the word level.

Unweighted confusion network combination of two systems, S0+S1, is shown in figure 3.3.
The final hypothesis obtained is ‘but it didn’t elaborate’. As for ROVER, the final hypothesis
can differ from the existing hypotheses of the systems being combined.

CHAPTER 3. SYSTEM COMBINATION 45

!NULL BUT IT DIDN’T ELABORATE

TO IN
P=0.5 P=0.4

P=0.2
!NULL

P=0.4
BUT

P=0.4
IT

P=1.0
DIDN’T

P=1.0
ELABORATE

A
P=0.3

!NULL
P=0.2

!NULL
P=0.6

DID !NULL
P=0.8

P=1.0
!NULL

P=0.2
!NULL

BUT
P=0.8

!NULL
P=0.1

IT
P=0.8

P=0.1
BIT

P=0.2
DIDN’T

P=0.7
ELABORATE

P=0.3

CNC:

S1:

S0:

Figure 3.3: Confusion Network Combination of two systems

Like ROVER, CNC relies on accurate confidence scores and can perform poorly when
these aren’t reliable. However, it tends to be more robust than ROVER to poor confidence
scores when there are few systems as multiple lattice words are used in combination.

Both ROVER and CNC may be viewed as schemes for generalising the majority voting
and the posterior combination approaches to continuous speech recognition. Neither of the
schemes are guaranteed to be optimal. In both cases, the alignment step, i.e. the generation
of the WTN or confusion network, is not necessarily optimal. The order in which systems are
combined is important for both ROVER and CNC, and previous experiments have suggested
that systems should be combined in increasing order of word error rate [71]. Both ROVER
and CNC align hypotheses at the word level and so the alignments of words to frames become
unreliable. A further post-processing step is required to obtain accurate alignments from the
final hypothesis.

Despite these limitations, ROVER and CNC are the dominant form of system combination
for state-of-the-art speech recognition systems. However, it has been found that ROVER and
CNC normally only perform well when the systems to be combined have comparable error
rates [142], which limits the types of system that can be combined in practice. Word-level
confusion network combination is used for combining multiple systems throughout this thesis,
and also forms the basis of the new combination techniques investigated in chapter 11.

3.3.1.4 Weighted Combination

ROVER and CNC use a combination of the confidence scores output by multiple recognisers
to determine the best hypothesis. However, poor confidence scores can skew the results
obtained from combination. Hence it is useful to use information about the reliability of the
classifiers when doing the combination, and weight each hypothesis accordingly. Weights can
be based on classifier performance, or estimated on a held-out data set.

An alternative approach is to derive classifier weights using Bayesian decision theory,
for example BAYCOM [131]. Here, a number of classifiers are assumed to output both a
hypothesis and a feature vector x which may be multidimensional. In total, the S systems

figures/cnc_scores.eps

CHAPTER 3. SYSTEM COMBINATION 46

are assumed to outputN unique hypotheses. Then, assuming the individual model hypotheses
are independent of each other, the best hypothesis is chosen as

Ĥ = argmax
H

P (H|O,H1 · · · HS,x1 · · ·xS)

= argmax
H

P (H|O)

S
∑

s=1

P (xs|O,Hs,H)P (Hs|O,H) (3.17)

The conditional dependence on the S models, {M(1) · · ·M(S)}, is dropped, for clarity.
Hypotheses belong to two classes: Cc if they are correct, and Ce if not. Then it is assumed
that

P (xs|O,Hs,H) =

{

P (xs|Cc) if Hs correct
P (xs|Ce) otherwise

(3.18)

The distributions of the feature vectors for both correct and incorrect words P (xs|Cc)
and P (xs|Ce) are are modelled by a histogram, and are estimated on a held-out set. Finally,
it is assumed that the prior probability of being correct for each model is independent of the
hypothesis and that the probability of being incorrect is equally distributed

P (Hs|O,H) =

{

P (Cc|M
(s)) if Hs correct

P (Ce|M
(s))/(N − 1) otherwise

(3.19)

and these scores can also be calculated from the held-out set. This is a form of the posterior
voting scheme defined in equation 3.3, where the system weights are given by

λs = P (xs|O,Hs,H)P (Hs|O,H) (3.20)

BAYCOM describes a scheme for finding optimal weights, which makes no assumptions
about the nature of the recogniser scores x, and does not require classifiers to have similar
performances. Although it is defined here at the hypothesis level, it could easily be applied at
the word level. However, BAYCOM does not address the underlying issue of poor confidence
scores from the individual recognisers.

3.3.1.5 Frame-level Posterior Combination

The schemes described above combine posterior probabilities at the word or utterance level
using a minimum Bayes’ risk scheme. In general, combining posteriors at other levels is not
normally carried out for ASR within the HMM framework of section 2.1. An alternative
framework, the hybrid HMM/neural-network framework [112] allows posteriors to be easily
combined at the frame level. In this framework, a number of neural networks are first trained
to output frame level posteriors for each of the phones in the system. These phone posterior
probabilities are then used as input to an HMM decoder. Hence, there is the possibility
to combine the outputs from multiple neural networks before they are used as input to the
HMM stage. One example of this form of posterior combination at the frame level is described

CHAPTER 3. SYSTEM COMBINATION 47

in [109]. In this system, multiple neural networks are used, each corresponding to different
feature streams. A weighted combination of the posterior probabilities from the individual
neural networks, as in equation 3.3, are then used as input to the HMM decoder. The weights
are calculated using an inverse entropy measure; this measure is motivated because neural
networks with high entropy have less discriminative power, and therefore should have a lower
weighting. Other forms of posterior combination, such as discriminative model combination
below, could also be used.

3.3.1.6 Discriminative Model Combination

Discriminative Model combination is a framework for weighted log-linear combination of
models in a speech recognition system [9]. This framework generalises the posterior probability
to a log-linear distribution. For combination of acoustic model log posteriors at the hypothesis
level, the combined posterior becomes

P (H|O,M(1) · · ·M(S)) =
exp

{

−
∑S

s=1 −λs logP (H|O,M(s))
}

∑

H̃ exp
{

−
∑S

s=1 −λs log P (H̃|O,M(s))
} (3.21)

For a combination of language model or acoustic likelihood scores, the acoustic model
posterior P (H|O,M) is replaced by the language model score P (H) or the acoustic likelihood
P (O|H,M), and the combination can be done at any level, e.g. sentence, word, phone.
The weights, λs are estimated on a held-out set using a discriminative criterion to minimise
word error rate. This form of combination could be used instead of the weighted posterior
combination in equation 3.3, for example in word-level combination with CNC. However,
difficulties arise when the probabilities to be combined are zero, as the log score becomes
negative infinity. To avoid this problem, probabilities can be floored.

Discriminative model combination has previously been used for combining language mod-
els [10, 87] and acoustic models based on different feature sets [110, 169] and model topolo-
gies [10].

3.3.2 Distributional Combination Schemes
The previous section detailed various approaches to combining systems at the hypothesis
level. An alternative approach is to consider combining distributions, either by combining
likelihoods or by combining distribution parameters. The products and mixtures of experts
discussed in section 3.2.3 are general examples of this form of combination. This section
discusses synchronous and asynchronous combination, which are the general forms of model
for combining distributions within an HMM-based ASR framework. Section 3.3.3 discusses
forms of distributional combination where the approach is motivated by the nature of the
likelihood combination.

The first form of combination process is a synchronous stream system, where at time t the
multiple HMMs are constrained to be in the same state. The dynamic Bayesian network for a
two stream synchronous system is shown in figure 3.4(a), and the likelihood of the observation
is determined from the parameters of the individual state distributions.

p(ot|θj ,M
(1) · · ·M(S)) = p(ot|θ

(1)
j · · · θ

(S)
j ,M(1) · · ·M(S)) (3.22)

CHAPTER 3. SYSTEM COMBINATION 48

so the meta-state of the effective HMM, θj , is defined by the corresponding states of the

individual systems θj = {θ
(1)
j · · · θ

(S)
j }.

For the asynchronous system, shown in figure 3.4(b), there are two independent switching
state processes. That is, the two HMMs are not restricted to be in the same state at time t.

The meta-state ψt is defined by the hidden states of the individual systems, {ψ
(1)
t · · ·ψ

(S)
t }.

The transition probability from one meta-state to another is determined by

P (ψt|ψt−1) =
S
∏

s=1

P (ψ
(s)
t |ψ

(s)
t−1,M

(s)) (3.23)

as the multiple state switching processes are assumed to be independent. Also, the likelihood

is now a function of the parameters of ψ
(1)
t · · ·ψ

(S)
t , where each independent state sequence is

hidden

p(ot|ψt,M
(1) · · ·M(S)) = p(ot|ψ

(1)
t · · ·ψ

(S)
t ,M) (3.24)

ψtψt−1

ψtψt−1

ψtψt−1

o o tt−1

(2)(2)

(1)(1)

ψtψt−1

ψtψt−1

o o tt−1

(1)

(2)(2)

(1)

(a) Synchronous System (b) Asynchronous System

Figure 3.4: Dynamic Bayesian Network Representation of an HMM

Any combination of model parameters or likelihoods can be used, provided the resulting
distribution is normalised to be a valid probability distribution. For a synchronous combina-
tion process, where the combination is done at the state level, the resulting output distribution
must be valid

∫

Rd

p(ot|θj ,M
(1) · · ·M(S))dot = 1 (3.25)

and for an asynchronous combination, the condition to be satisfied is
∫

RTd

p(O|M(1) · · ·M(S))dO = 1 (3.26)

where O = {o1 · · · oT }.

figures/synch.eps
figures/unsynch.eps

CHAPTER 3. SYSTEM COMBINATION 49

The factorial HMM [52] is an asynchronous combination of models where the mean of
a meta-state is the sum of means of the individual model states. When each state output
distribution is a single Gaussian, the likelihood becomes

p(ot|ψt,M
(1) · · ·M(S)) = N (ot;

S
∑

s=1

µ
ψ

(s)
t

,Σ) (3.27)

where the covariance matrix is constrained to be the same for all components. The factorial
HMM has the same problem as the multiple asynchronous stream systems of section 3.3.3.3,
where the size of the meta-state space increases exponentially with the number of experts,
thus complicating the training and decoding.

Other forms of synchronous and asynchronous combination may use interpolations be-
tween the state parameters. For example, using interpolation weights determined by the
state of the first stream [40]. The following section details synchronous and asynchronous
likelihood combination schemes in more detail.

3.3.3 Likelihood Combination Schemes
The distribution combination framework of the previous section is a general approach to
combining distributions in an HMM-based system. However, many of the approaches which
fall into this category were motivated by the form of likelihood combination. Two standard
approaches are to use a mixture, or union, of the likelihoods [106, 144], and a product, or
intersection, of the likelihoods [44, 70]. Finally, multiple stream systems are described in
this likelihood combination framework. While these schemes are motivated from a likelihood
combination perspective, they can also be described as parameter combination schemes, as
the meta-component means and variances are simply functions of the individual expert means
and variances.

3.3.3.1 Mixture Models for ASR

As previously discussed in section 3.2.3, a simple form of model combination is to use a
mixture of distributions. This is extensively used for ASR in the form of a GMM for the
HMM state output distributions, but can be used for the combination of arbitrary experts
during decoding. For example, the weighted mixture of two experts at the state level is

p(ot|θj ,M
(1),M(2)) = (1 − λ)p(ot|θj,M

(1)) + λp(ot|θj,M
(2)) (3.28)

where M(1) and M(2) are the individual models to be combined. This is referred to as a union
of the two distributions. Any form of valid probability density function may be used, and
the form of the two distributions need not be the same as long as they are valid probability
distributions. Equation 3.25 will be satisfied if the individual mixture weights sum to one.

The extension of this form of model to the combination at the the HMM level is trivial
and, provided the HMMs are valid probability models, the combined model will itself be
valid. However, when using this union model for recognition, there are significant difficulties
when combining at the HMM level. For the state level union, it is possible to directly use the
Viterbi algorithm associated with the standard HMM recognition and combine likelihoods

CHAPTER 3. SYSTEM COMBINATION 50

from corresponding states in the multiple HMMs. When combining models at the HMM level
the combination is complicated as there are multiple sets of hidden state sequences through
the HMM. This could be addressed by expanding the recognition network so that it considers
all possible state combinations between the models, and then performs recognition in that
expanded space. This is similar to the generalised Viterbi decoding in [151].

3.3.3.2 Products of Experts

An alternative to the mixture model is to use the product of experts framework [45, 69]. Here
the likelihoods from the models are producted together, effectively forming an intersection of
the distributions. Again, considering the simplest case of only two experts and taking the
product at the state observation level, the combination may be written as

p(ot|θj,M
(1),M(2)) =

1

Zθj

(

p(ot|θj ,M
(1))p(ot|θj,M

(2))
)

(3.29)

where the normalisation term, Zθj
, ensures that the resulting distribution is valid and equation

3.25 is satisfied. In general it may not be possible to find an analytical expression for Zθj
as

the integral over the product of arbitrary experts is likely to be intractable. However, as the
product of two Gaussians is itself a Gaussian, and consequently the product of GMMs is also
a GMM. It is then possible to find Zθj

analytically for products of Gaussians and products
of GMMs [44]. The product of GMM experts is itself a GMM, but now it is necessary to
sum over all meta-components. These meta-components are created by taking all possible
component pairings between the base GMM components, and leading to are M (1)M (2) meta-
components. The advantage of a product framework is that a more complex distribution can
be modelled with fewer parameters. For the GMM, M (1)M (2) components can be modelled
with O(M (1) +M (2)) parameters. For S GMM experts:

p(ot|θj ,M) =
1

Zθj

S
∏

s=1

p(ot|θj ,M
(s)) (3.30)

=
1

Zθj

∑

m

cmKmN (ot;µm,Σm) (3.31)

where the summation is over all possible meta-components, m specifies the combination of
components from each expert, and

Km =
(2π)

D
2 |Σm|

1
2

∏S
s=1(2π)

D
2 |Σ

(s)
jm|

1
2

exp

(

1

2

(

µT

mΣ−1
m µm −

S
∑

s=1

(µ
(s)T

jm Σ
(s)
jmµ

(s)
jm)

))

(3.32)

µm = Σm

(

S
∑

s=1

Σ
(s)−1
jm µ

(s)
jm

)

, Σm =

(

S
∑

s=1

Σ
(s)−1
jm

)−1

, cm =

S
∏

s=1

c
(s)
jm (3.33)

The normalisation term, Zθj
, is then:

Zθj
=
∑

m

cmKm (3.34)

CHAPTER 3. SYSTEM COMBINATION 51

Extending the framework from a product at the state distribution level to a product at
the HMM level is complicated [18]. For the product at the model level it is necessary to write

p(O|M(1) · · ·M(S)) =
1

Z(T)

S
∏

s=1

p(O|M(s)) (3.35)

where now the normalisation term is dependent on the sequence length, T , and thus is com-
plicated to calculate.

3.3.3.3 Multiple Streams and the Mixed Memory Model

Closely related to the product of HMM framework is the multiple stream framework [163].
Here at a state level, each of the streams of the observation vector are modelled separately.
The separate streams can consist of different sources of information, including static and
dynamic parameters [163], frequency bands [12, 146] or multiple sources of information such
as speech and visual information [145]. The original feature vector may be rewritten as a
concatenation of the feature vectors from each of the S streams:

ot =

o
(1)
t
...

o
(S)
t

(3.36)

where o
(s)
t is the feature vector associated with stream s. If each of the streams are assumed

to be conditionally independent given the state, then the state likelihood may be expressed
as

p(ot|θj ,M
(1) · · ·M(S)) =

S
∏

s=1

p(o
(s)
t |θ

(s)
j ,M(s)) (3.37)

For these multiple stream systems it is not necessary to include a normalisation term
provided that each of the stream distributions is a valid distribution, as each stream is as-
sumed to be independent. Multiple streams can also be used at the model level, yielding
asynchronous multiple stream systems [116]. In this case there is again the issue of a more
complex decoding scheme, but the generalised Viterbi decoding scheme in [151] may be used
as there is no normalisation term. The use of this multiple stream framework has not yielded
gains for speech recognition systems [44] due to the independence assumption.

A generalisation of the multiple streams for combining HMMs is the mixed memory model
[117, 133]. A number of meta-states are composed of the individual states of the HMMs.

Considering a particular meta-state at time t, ψt =
{

ψ
(1)
t , . . . , ψ

(S)
t

}

where ψ
(s)
t is the state

of stream s at time time, the mixed memory model likelihood is given by

p(ot|ψt,M
(1) · · ·M(S)) =

S
∏

s=1

(

S
∑

u=1

λ(s)
u p(o

(s)
t |ψ

(u)
t ,M(u))

)

(3.38)

CHAPTER 3. SYSTEM COMBINATION 52

where the stream weights, λ
(s)
u , satisfy

S
∑

u=1

λ(s)
u = 1, λ(s)

u ≥ 0 (3.39)

ensuring that the constraints in equation 3.26 are satisfied. The independent stream system

is the specific case where λ
(u)
u = 1. This form of representation allows a coupling between the

streams, but has not yielded gains for speech recognition [117].

3.3.4 Implicit Combination Schemes
One final class of combination scheme for ASR is an implicit combination, where multiple
models are used in turn, with later models refining the output from previous models. This
form of combination can easily be incorporated into the multi-pass framework of section 3.1.
An example of this combination is acoustic codebreaking, discussed in section 4.2.4, where a
second model is used to correct potential confusions made by the first. For example, [152]
uses support vector machines to correct potential binary confusions. Other forms of implicit
decoding, N-best and lattice rescoring, and cross-adaptation, are discussed in this section.

3.3.4.1 N-best and Lattice Rescoring

One form of combination which arises in the multi-pass decoding framework is N-best or
lattice rescoring. For example, in figure 3.1, the second pass, P2, generates lattices which are
rescored by multiple systems in passes P3a to P3x. Lattice rescoring can be done for either or
both of the language and acoustic model scores, using different acoustic and language models.
N-best [1, 76] and lattice [48, 62, 100, 126] rescoring are commonly used for LVCSR multi-pass
decoding.

The advantage of N-best and lattice rescoring is that it is much faster than standard
decoding, as there is no need to search over all possible hypotheses. Thus, it is possible to
use complex models for rescoring, provided the N-best list or lattice is a good representation
of the most likely hypotheses.

However, there are issues with this form of combination. The initial lattices generated
must be representative of the most likely hypotheses, otherwise the rescoring from the second
system is poor. This can be problematic if the two systems are very different, so the output
lattice from the first system is not representative of the hypothesis space of the second.
Additionally, a larger lattice slows rescoring, and so the level of word errors introduced by a
small lattice must be balanced against the speed of rescoring.

3.3.4.2 Cross Adaptation

Another, more indirect, approach to system combination is cross-adaptation [48, 62, 126, 142].
This is a scheme which naturally arises in the multi-pass adaptive framework from section 3.1,
where the output transcriptions from one system are used in the subsequent pass as the input
hypothesis to perform unsupervised speaker adaptation of a second system. For example, in
figure 3.1, different models can be used to obtain an initial transcription in the P2 pass, and
to do the final rescoring stage in the P3 pass.

CHAPTER 3. SYSTEM COMBINATION 53

In practice, this form of system combination has led to improvements in performance.
Cross-adaptation can be used in addition to any of the system combination methods discussed
above, and with any form of model.

3.4 IDEAL combination
The output from system combination is one measure of how complementary two systems are,
but it relies on the effectiveness of the combination method as well as the diversity of the
systems. It is useful to consider a measure of potential performance in combination, to better
judge whether two systems are complementary, independently of the combination algorithm
used. This section discusses such a measure, although its use of confusion networks means it
is not entirely independent of the combination algorithm.

A typical measure for potential performance is the oracle performance, which makes use
of the reference labels to calculate a lower bound on performance. For CNC, this would
align the confusion networks with the reference transcription and return the best possible
transcription, regardless of the word posteriors. However, this may make use of words with
very low posteriors. Furthermore, the oracle performance will improve as pruning is decreased
during the CN generation, and more words are retained in the confusion network. Hence, an
oracle combination is not appropriate for assessing potential performance for CNC.

If it is possible to accurately predict when a classifier is correct, that is if an accurate
and reliable confidence measure exists, then it is possible to only combine with a second
system for confusion segments when the first system is incorrect. IDEAL combination uses
the reference transcription to identify word errors, and hence calculate a measure of potential
performance. This form of combination is necessarily biased towards the reference, but shows
the potential gains that could be achieved from CNC if it were possible to detect all the word
errors accurately.

Figure 3.5 shows this combination in more detail. The confusion networks from two
systems S0 and S1 are aligned with the reference transcription, and the bold words indicate
those with highest posterior probability. For the segments where the best word corresponds
with the reference, the second system is ignored, as shown by the dashed arcs in the confusion
network for system S1. It is only for the remaining words that the combination is performed.
Thus, in figure 3.5, only two of the confusion segments from the second system are combined
with the first.

This combination scheme is not ideal in the sense of selecting the best possible hypothesis
from the output hypotheses of the two systems, S0 and S1. Instead, it selects the best possible
hypothesis from the first system and the combination of the two systems, S0 and S0+S1. This
better matches the training approach used in this thesis, where the second system is trained
for combination with the first. Also, the IDEAL combination gives a lower bound on error
rate that could be achieved from combining the two systems, if it is possible to accurately
detect word errors in decoding, as is done in training.

IDEAL combination can easily be extended to more than two systems. The multiple
confusion networks are first aligned against each other and the reference. For a particular
confusion segment, if the first system is correct then any later systems are ignored. If the
first system is incorrect, then combination with the second system is performed and the new
hypothesis compared against the reference. If this is correct, then the subsequent systems are
ignored, or else combination with the third system is performed. This process is continued for

CHAPTER 3. SYSTEM COMBINATION 54

IN ELABORATE

!NULL

!NULL

THE

BIT

IT

TO IN IT ELABORATE

!NULLA !NULL

!NULL

DIDN’T

DID

DID

S0

S1

REF
!NULL BUT IT DIDN’T ELABORATE

BIT

!NULL

BUT

Figure 3.5: IDEAL combination, only the solid CN arcs from system S1 are used in combi-
nation as these correspond to segments where the first system is incorrect

any number of systems. However, as the number of systems increases, the IDEAL combination
is likely to improve due to the additional diversity.

In practice, if a confidence measure is used to identify word errors rather than the reference
transcription, then some segments will be falsely identified as errors. Of these, performing
the combination may change the best word and introduce an error where there was none
previously. Also, of those confusion segments correctly identified as errors, not all will be
corrected by combining with the second system. Hence, for combination, there are only
a subset of words or confusion segments where correctly identifying errors is important in
terms of effect on the final word error rate. This is discussed in more detail in section
7.3.2 for the combination of complementary systems. This form of combination is related to
acoustic codebreaking, discussed in section 4.2.4, as a second model is used to resolve only
the confusions in the first.

3.5 Summary
This chapter has considered the task of combining multiple systems for ASR. First, a multi-
pass combination framework for large vocabulary speech recognition was introduced, before
general methods for combining arbitrary posteriors and likelihoods were presented. Next,
approaches for combining recognition hypotheses, likelihoods, and model parameters for ASR
were discussed. These approaches combine posteriors or distributions from decoding, or else
an implicit combination can be performed where a second system refines the output from the
first. To conclude, a discussion of an ideal combination scheme was presented, with respect
to word-level confusion network combination.

In general, the distributional combination schemes require more complex decoding, and
as seen in the following chapter, training algorithms. In contrast, the hypothesis combina-
tion schemes require an independent decoding pass for each system, before the outputs are
combined. Thus, they need little change to the standard decoding procedure, and fit easily
within the multi-pass combination framework described at the beginning of the chapter.

figures/ideal.eps

CHAPTER 4
Generating

Complementary Systems

The previous chapter discussed several methods for combining systems, both in the general
case and specifically for ASR. However, the combination of multiple systems is not useful

unless they are complementary, i.e. make different errors. There are many approaches to
building complementary systems, but, as for the combination of systems, many approaches
are not directly applicable to ASR. This chapter reviews some of the existing approaches to
generating complementary systems, for general tasks and also for ASR.

4.1 General Approaches
Ensembles of models for machine learning tasks has been a focus of research for several years
[29], and approaches to building complementary systems fall broadly into two categories.
First, diverse systems are somehow generated, and it is hoped they will have different errors.
For ASR, examples of this approach are given in section 3.1, and include altering the train-
ing algorithm, frontend, and covariance modelling. Second, complementary systems can be
explicitly trained. This can be done either by iteratively building multiple complementary
systems, or by training the complementary systems in parallel. Approaches to generating
complementary systems for a general task are discussed in this section.

55

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 56

4.1.1 Injecting Randomness
Aside from differences in the training approach, such as different forms of classifier, features or
training algorithm, a straightforward way to build diverse systems is to introduce randomness
into the training algorithm [29]. This can be done, for example, by adding noise onto the
training data, initialising the parameters randomly, or by selecting random subsets of the
training data. The latter method is known as bagging [14]. These are all general methods
that can be used regardless of the system being built and the training algorithm.

If the specific classifier in question is a decision tree, then another approach to inject
randomness is to grow the tree in a random manner, by randomly choosing a split from the
top N , rather than grow the tree by choosing the best split each time. Repeated application
of this algorithm builds a random forest [13]. The method works well as the splitting in a
decision tree is a locally optimal split, and so very different decision trees can be built by
small changes in the algorithm.

Injecting randomness has the advantage that any number of diverse systems can be built,
although the process isn’t deterministic and hence not repeatable. Some control over the
degree of randomness can allow for building systems that are close to, or very different from,
the starting system.

When diverse systems are built independently of each other, either by introducing ran-
domness or by using alternative training approaches, any algorithm can be used for combining
the systems. This differs from the training algorithms discussed below, where the combination
scheme is specified by the training algorithm. Furthermore, existing classifiers and training
algorithms do not need to be significantly altered, and the only additional cost is that of model
combination. However, it is not guaranteed that the diverse systems will be complementary.

4.1.2 Boosting
Boosting, or leveraging, is a standard machine learning approach that allows complementary
systems to be generated for a binary classification task, and has been extended to multiclass
problems. It takes advantage of the fact that a combination of weak classifiers, i.e. those which
perform slightly better than random, can perform as well as a single strong classifier [134]. In
its strict definition, boosting defines a training procedure for building a set of weak classifiers,
each of which perform slightly better than random, and a final classification for combining
these classifiers using a weighted voting scheme, similar to those described in section 3.2.

AdaBoost [37, 38] is the most widely used boosting algorithm, and a multiclass version,
known as AdaBoost.M2, is given in figure 4.1. This algorithm assumes a finite number of
classes {C1 · · ·CV }, and a model which generates posterior probabilities of class membership
P (Cv|o,M). If these posteriors are equal for all classes, then the model is uninformative. If,
however, the posteriors are not equal, then the model M performs better than random and
hence can be used as a weak learner in the boosting algorithm.

A distribution over all the training samples is maintained, d = {d1 · · · dN}. For those
regions of space that are correctly classified the distribution weight is reduced, and for those
that are incorrectly classified the weight is increased. As training progresses, this distribution
evolves to make later classifiers focus on “difficult” training examples, i.e. data that the
previous classifiers classified incorrectly. As part of this process the classifier importance, βs
for each classifier s is also computed.

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 57

Input:
A set of N labelled training sample pairs {oi,Hi} where Hi ∈ {C1 · · ·CV }

Initialise:

Set the initial distribution weights d(1) so d
(1)
i = 1

N

For: s= 1:S

Train the classifier parameters, M(s), with respect to the distribution d(s)

Obtain the posterior probabilities P (Cv |oi,M
(s))

Calculate the pseudo-loss, εs, for the model M(s)

εs = 1
2

∑N
i=1 d

(s)
i

(

1 − P (Ci|oi,M
(s)) +

∑V
v=1,v 6=i P (Cv|oi,M

(s))
)

Set the classifier importance parameters, βs,

βs = εs
1−εs

Update the weight distribution function, d(s+1)

d
(s+1)
i =

d
(s)
i

Zs
β

1
2(1−P (Ci|oi,M(s))+P (Cv |oi,M(s)))
s

where Zs is a normalisation term so that the weights sum to one

Zs =
∑N

i=1 d
(s)
i

Output: the final hypothesis

Ĥ = argmaxH

{

∑S
s=1 log

(

1
βs

)

P (H|o,M(s))
}

Figure 4.1: The multiclass AdaBoost.M2 algorithm

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 58

The pseudo-loss, εs, is a discriminative measure of error which takes into account all classes
C1 · · ·CV . An additional class weighting can be included in the third term of the pseudo-loss,
to assign differing weights to different misclassifications, but is ignored here for clarity.

In the final step, AdaBoost combines the individual classifiers by summing their proba-
bilistic predictions, using a weighting based on the classifier importance. This weighted voting
scheme is the weighted posterior combination scheme described in section 3.2.2, where the
classifier weights, λs, are given by

λs = log

(

1

βs

)

(4.1)

Training the model parameters M(s) with respect to the distribution can be be done in
two ways. Either the weighting can be taken into account directly as part of the training
algorithm, or a subset of training data can be sampled using the distribution and used for
estimating the parameters. In the former, the modifications to the training algorithm depend
on the form of classifier. The latter approach to data weighting differs from bagging, discussed
above in section 4.1.1, as the subsets of training data are selected according to the distribution
d(s), not randomly.

Boosting is an algorithm where classifiers are trained iteratively, and hypotheses from ex-
isting classifiers are used to train later systems. Thus, the scheme naturally uses a hypothesis
combination scheme in the final stage, rather than likelihood or parameter combination.

Where there is low classification noise on the training set, i.e. the training labels Hi are
accurate, boosting outperforms randomisation as a method for generating complementary
systems. In high classification noise however, the reverse is true as the later classifiers built
by the boosting algorithm begin to focus on labelling errors rather than on data which is
truly hard to classify. In contrast, bagging and randomisation perform much better in this
situation because the randomness overcomes the classification noise [30].

4.1.3 Simultaneously Training Multiple Systems
In cases where there are few classifiers, the task is small or the classifiers are simple, it can
be possible to simultaneously train an ensemble of complementary classifiers. For example,
mixtures of experts, such as a GMM, can easily be trained using the EM algorithm or gradient
descent to optimise the log-likelihood of the data.

Products of experts can also be trained in parallel. To maximise the log-likelihood using
gradient descent, the gradient of the log-likelihood function is needed

∂FML(M)

∂M
=

∂

∂M

{

log
1

Z

S
∏

s=1

λsp(o|H,M)

}

=
∂

∂M

{

log
1

Z

}

+

S
∑

s=1

∂

∂M
log λsp(o|H,M) (4.2)

The second term of this gradient can be found analytically, so the main complication is
in estimating the first term, which involves the differential of Z with respect to the model
parameters. Z is the integral to ensure that the product of experts is a valid distribution

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 59

Z =

∫

RD

S
∏

s=1

λsp(o|H,M
(s))do (4.3)

For training products of GMMs, this normalisation term can be found analytically, as
discussed in section 3.3.3.2. Their training is discussed below in section 4.2.3.1. In general,
for products of arbitrary experts, it is not possible to analytically find this term and so an
approximation must be used. One approach is to use numerical integration to estimate Z and
its gradient, while a second approach is to estimate the gradient using sampling techniques
such as Gibbs or Monte Carlo Markov Chain sampling [103]. However, these methods can
be slow to converge and require many samples. Contrastive divergence training [20, 69]
approximates the estimate of the gradient after many MCMC samples with the estimate
after just one sample.

Contrastive divergence can be used for estimating the parameters of products of HMMs
[18, 102]. However, as the normalisation term is needed in decoding for ASR, and is not
calculated as part of the contrastive divergence optimisation, this method is not applicable
to ASR.

A different approach to training models in parallel is to hypothesise an objective function
which includes the parameters from multiple systems. For example, [115] proposes to train
multiple classifiers by minimising the correlation between their errors. If the errors made
by two classifiers are independent, they are more likely to be complementary. The training
minimises the covariance between the expected errors of two classifiers over the training set.

Simultaneously training multiple systems typically involves a combination at the likelihood
or parameter level during training, and hence this is the form of combination which naturally
arises when these systems are used in practice.

4.2 Methods in Automatic Speech Recognition
The methods described above for building complementary systems are not directly applicable
to the task of ASR due to the dynamic nature of the data. Section 3.1 discussed an ad-
hoc approach for generating complementary systems for ASR, by independently building a
number of systems and selecting the ones which combine well together. This section discusses
existing approaches to explicitly building complementary speech recognisers.

First, randomness and boosting-like algorithms for ASR are discussed. Next, methods for
simultaneously building multiple systems for ASR are introduced. As these methods typi-
cally build multiple distributions, they naturally make use of the distributional combination
schemes of the previous chapter. To conclude, a third approach is considered, acoustic code-
breaking. This approach builds a second system for resolving specific confusions, and hence
makes use of an implicit combination scheme.

4.2.1 Random Decision Trees
There are several options for introducing randomness into the training of an ASR system, such
as those discussed above in section 4.1.1. However, HMM parameter estimation algorithms
are reasonably robust to randomness, so an alternative is to introduce randomness into the
decision tree algorithm by altering the question selection stage in the same way as when

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 60

building random forests [138, 162]. Instead of selecting the single best question, the tree
is grown by randomly choosing a question from the best N questions [138] or by randomly
selecting a subset of all available questions to build each random tree [162]. The difference
between random trees for ASR and for general purpose classification is that the trees for ASR
are used for clustering HMM states, and not for classification itself. Hence random decision
trees for ASR are an indirect way to introduce randomness into the training.

Likelihood
[70.1]
[69.6]
[69.5]
[68.8]
[67.5]

RANDOM

[65.4]
[64.3]

Left front fricative?
Right back fricative?
Right nasal?
Left vowel central?
Right liquid?

Left unvoiced fricative?

BEST

Question

Left nasal?

(N=5)

Figure 4.2: Random tree question selection

An example of the random tree question selection in [138] compared to the standard
approach is given in figure 4.2. Rather than select the locally optimal question “Left front
fricative?”, a random choice from the top 5 is made. Thus the decision tree algorithm becomes:

1. Statistics

• Obtain statistics for seen triphone contexts using the forward-backward algorithm

2. Question Selection

• Recursively build the tree by randomly selecting from the top N questions which
give the highest change in data likelihood

3. Stopping criterion

• Stop building the tree when the data likelihood falls below a threshold

A randomised decision tree does not guarantee that the resulting systems are complemen-
tary, but using multiple systems built on random trees makes it more likely that confusable
states will be separated in at least some of the trees. Hence, it is anticipated that the systems
will make different errors and a combination of outputs from systems built on random trees
will give improvements. The problem that systems should have comparable error rates is
no longer an issue as altering the value of N provides some control over individual system
performances. A larger value of N will tend to lead to trees being very different from the best
tree, and it is likely that system performance will degrade. However, as there is no guarantee
of obtaining complementary systems, random decision tree systems suffer from the problem
that the optimal order of combination cannot be predicted and hence all system combinations
must be performed in order to find the best. This is typically addressed by building many
systems based on random trees and combining them all together [74, 126].

When training complementary systems, a form of system combination is often used in
the training algorithm. Thus, it is expected that the same form of combination is used in

figures/ran_tree_pr.eps

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 61

decoding for combining the systems, to obtain the best match between training and testing.
When building random decision trees, no form of system combination is used, and hence any
of the methods from chapter 3 are appropriate for combination. Systems built with random
trees have previously been combined using hypothesis combination schemes within a multi-
pass framework, such as ROVER or CNC [74, 126], or by combining acoustic scores during
decoding [162].

4.2.2 Boosting for Automatic Speech Recognition
There are a number of issues with applying boosting, or boosting-like, algorithms to speech
recognition. Speech has a large number of classes, the forms of classifier used are highly
complex, the data is dynamic and, finally, the simple weighted voting scheme is not directly
applicable. Much of the previous work on boosting for speech recognition has recast the
problem as a phone classification task, and hence avoided some of the problems outlined
above. For example, [170] builds GMMs for each phone and performs boosting at the frame
level, [135] applies boosting to the Neural Network part of a hybrid HMM/NN system, and
[31] applies boosting to whole-phone HMMs. For classification at the phone level, the models
can be combined using a straightforward voting scheme. For the model combination in [31],
the boosted HMMs are recombined by effectively treating them as different pronunciations of
the same phone in decoding, with transition probabilities based on the classifier importance,
βs, of each model.

If the task is triphone classification, it may still be time consuming to calculate the pseudo-
loss, but approximations can be used instead. For example, in [170], where boosting is applied
to the task of frame level triphone classification, two approximations to the pseudo-loss are
used. One restricts the number of phones over which the pseudo-loss is calculated to be a
small set of most likely phones. The second partitions the phones into clusters, and only
uses boosting within the clusters, thus limiting the number of alternatives in the pseudo-loss
calculation.

Boosting-like algorithms for continuous speech recognition can be applied at different
levels, for example at the speaker, utterance, frame, or word level. Previous work has imple-
mented boosting at the utterance [108, 166], and at the frame level [167].

There are a number of issues which must be addressed before boosting-like schemes can
be applied to continuous speech recognition. First, for these schemes, the pseudo-loss must be
approximated. This can easily be done using utterance or frame level posterior probabilities,
which are obtained from normalising the scores in an N-best list or a lattice. The restricted
hypothesis space allows fast computation of the pseudo-loss by considering only the most
likely alternative hypotheses. This will give an underestimate of the pseudo-loss, but should
be a good approximation if the hypothesis space is representative.

Also, as boosting weights the training data to reflect previous errors, a weighted training
scheme must be implemented such as that used for active training. In practice, provided the
data can be weighted appropriately, it is trivial to modify the EM algorithm to take into
account a weighting over the training data, whether it is at the utterance or the frame level.
Data weighting is described in more detail for ASR in chapter 5.

Finally, the combination scheme must be considered as the simple voting scheme used
by AdaBoost is not applicable to continuous speech recognition. [108] treats the models as
pronunciation variants during decoding, with pronunciation probabilities derived from the
model weights calculated during boosting. However, this approach increases the search space

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 62

for decoding, and can significantly slow the system down. Alternatively, a voting scheme for
word-level combination like ROVER, as in [166], or CNC could be used, and this reflects the
posterior voting scheme used for standard boosting in section 4.1.2.

The previous work on boosting for ASR has mainly used the AdaBoost algorithm in [37].
A generalised boosting algorithm, AnyBoost, was used with minimum classification error
(MCE) in [168]. This algorithm allows an arbitrary loss function to be used in the training
of ensembles.

4.2.3 Simultaneously Training Multiple Systems for ASR
Due to the complex nature of HMMs and speech data, it is not common for multiple systems
to be trained in parallel, as for the general case in section 4.1.3. In particular, for the
asynchronous decoding scheme discussed in section 3.3.2, the extended state space complicates
the training. With a synchronous decoding scheme however, the state space does not increase
exponentially and so it is possible to train distributions that are combined at the state or
HMM level. This section discusses a state level product of experts, and the approximations
needed for training an asynchronous system.

4.2.3.1 Products of GMMs

Mixtures of GMMs are commonly used as HMM state output distributions, and are trained
using the EM algorithm. It is simple to extend this algorithm for training products of GMMs

p(o|H,M(1) · · ·M(S)) =
1

Z

S
∏

s=1

{

M
∑

m=1

c(s)m N (o;µ(s)
m ,Σ(s)

m)

}

(4.4)

where µ
(s)
m , Σ

(s)
m and c

(s)
m are the parameters of the mth component of the Sth GMM.

As mentioned in section 4.1.3, the normalisation term Z of an arbitrary product of experts
is necessary for training and decoding in ASR. For the specific case of products of GMMs, it
is possible to find an analytical expression for the normalisation term [44, 45], as discussed in
section 3.3.3.2. Hence, it is possible to extend the EM algorithm described in section 2.4.1 to
estimate the parameters of the product model. The E-step of the EM algorithm remains the
same, while the M-step is altered to estimate the parameters of the product model.

4.2.3.2 Factorial HMMs

For the factorial HMM, and the other asynchronous likelihood combination schemes discussed
in section 3.3.2, the naive EM algorithm requires translating the combined HMM into a
single model where the effective number of states is

∏S
s=1M

(s). For large models, as this
effective number of states increases, the E-step in the EM algorithm becomes intractable.
To overcome this problem, approximate inference schemes based on sampling and variational
approaches have been proposed [52, 103] to estimate the state posteriors, γj . Sampling
methods can converge arbitrarily close to the exact values, although convergence can be
slow. Variational schemes instead optimise a lower bound on the likelihood. Provided the
state output distributions are of a form that can be optimised, such as Gaussians, GMMs or
products of GMMs, then the exact M-step of the EM algorithm for asynchronous combination
schemes is tractable.

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 63

Although it is possible to approximate the training for asynchronous models, the nor-
malisation term is still required for decoding. Additionally, the extended state space slows
decoding, and so these models are typically not used in practice.

4.2.4 Acoustic Code Breaking
With standard training and decoding, a single model is required to discriminate between all
possible hypotheses. A typical speech recogniser is normally able to discriminate more easily
between certain classes of hypothesis than others and hence it may be difficult to robustly
train a system to correctly classify all data. However, a well-trained speech recogniser is
normally able to handle the majority of the data. Rather than addressing this using boosting
style approaches described above, a form of minimum Bayes decoding may be used. Here, a
first pass with a general model is used to obtain an initial hypothesis, and a second pass is
used only to resolve potential confusions in this hypothesis [152].

In this framework, it is now possible to use a distinct model to resolve each confusion.
For example, one model might resolve confusions between the words ‘has’ and ‘had’, while
another model might resolve confusions between ‘had’ and ‘have’. Any number of models can
be built to resolve common confusions.

TO IN DIDN’TIT ELABORATE

!NULLA

BUT

!NULL

!NULL

DIDN’T ELABORATE

!NULLIN

BUT IT

TO

!NULL

(a) Confusion Network (b) Binary confusion network

Figure 4.3: Pruning the Confusion Network for Acoustic Codebreaking

Various implementations of acoustic codebreaking have been investigated. Typically, these
use a confusion network to identify potential confusions, and the confusion networks are often
pruned to leave only binary confusions, as shown in figure 4.3. In this figure, the words
‘A’ and ‘!NULL’ are pruned from the first two confusion segments, so that the maximum
number of words left in a segment is two. Different forms of classifier have been used to do
the acoustic codebreaking. In [33] whole word HMMs were used as the second pass classifier,
discriminatively trained for each of the confusion pairs. In [152] a support vector machine
using a generative score-space [139] was used. Finally in [92], an augmented statistical model
[92, 139] was used as the second pass classifier.

The next consideration is how to combine the second classifier with the first. For the
application of these systems to LVCSR, the posteriors from the initial pass can be combined
with those from the second pass to obtain the final score [92]. This form of combination is
closely linked with the weighted posterior combination and confusion network combination. If
the second classifier is a binary classifier, such as a support vector machine, in [152], then the
second pass classifier can select the best word from the confusion set. Acoustic code-breaking
is thus similar to the implicit combination schemes discussed in section 3.3.4, and can be
incorporated into a multi-pass framework.

figures/cn_lattice.eps
figures/binary_lattice.eps

CHAPTER 4. GENERATING COMPLEMENTARY SYSTEMS 64

The posteriors and other statistics from the first system can be used directly in training
the second pass model, as in [92, 152], or the confusion sets could be used to segment the
training set and extract the relevant observations for training the second system [33].

A problem with this acoustic code-breaking framework is that, for LVCSR systems, the
number of confusable pairs is very large, but corresponds to a small fraction of the training
set. Hence, there is limited impact on the final word error rate. For example in [92] this form
of acoustic code-breaking was applied to a Conversational Telephone Speech task. Using the
fifteen most commonly confused pairs less than 3% of the hypothesised words were rescored.
To increase this percentage, the number of classifier pairs needs to be dramatically increased,
but then there is the problem of little training data for robustly estimating the second pass
models. However, for smaller vocabulary tasks, such as digit string recognition, this is a
powerful framework for building complementary classifiers.

4.3 Summary
This chapter has discussed general methods for building complementary systems, and their
application to ASR. These methods include building diverse systems by injecting randomness,
iteratively training complementary systems within a boosting-like framework, simultaneous
training of multiple systems, for example products of GMMs, and training classifiers to be used
in an implicit combination scheme. For many of these schemes, the combination approach
used in the training algorithm specifies the appropriate combination algorithm for combining
the final systems.

Of the algorithms discussed in this chapter, boosting and acoustic codebreaking require
an approach for identifying poorly classified portions of data. This can be done with an
appropriate data weighting, as is discussed in the following chapter.

CHAPTER 5
Data Weighting for ASR

The previous two chapters reviewed existing approaches for combining and generating
complementary systems for ASR. This chapter discusses previous work on confidence

measures and existing schemes for applying a data weighting during training for ASR. Con-
fidence measures are used for combining multiple systems, and data weighting is important
in schemes like boosting and active training, where the training takes into account the errors
made by existing systems.

This chapter also presents a new form of data weighting which is used as the basis for
building complementary systems in this thesis. This is a generic word-level weighting, which
is obtained from the posterior probabilities in multiple confusion networks. The weighting
is independent of the individual model topologies, and its application does not rely on an
alignment of words to frames.

5.1 Confidence Measures
The output from a speech recogniser normally contains errors, and there are many appli-
cations, including system combination, where it is useful to identify incorrectly recognised
portions of data. For this purpose, the use of a confidence measure has been proposed [77].
Confidence measures are typically real-valued numbers in the range 0 to 1, and measure the
recogniser’s certainty in its hypothesis. Often they can be interpreted as the posterior prob-
ability that a word is correct, P (W|M,O). Confidence measures can be calculated at any
level, but word and sentence level confidences are most often used.

For example, in dialogue systems, the user may be asked to clarify responses where the
recogniser was uncertain, thus improving performance without asking the user to repeat
themselves unnecessarily. For an ASR task, specific models might be used to resolve potential

65

CHAPTER 5. DATA WEIGHTING FOR ASR 66

errors, such as acoustic codebreaking discussed in section 4.2.4. Confidence measures can also
be used in training, for example active training in section 2.4.3, to identify poorly modelled
portions of training data. Accurate confidence measures are important when weighting data,
both for combination of multiple systems and also for building complementary systems.

This section summarises existing work on confidence measures. These largely fall into three
categories - estimating posterior probability, alternative confidence scores, and combining
multiple scores to predict confidence. Of these, the posterior probability is most widely used
in practice.

5.1.1 Estimating Posterior Probability
A natural measure of word or hypothesis confidence is the posterior probability. For the best
word, Ŵ , this is P (Ŵ|M,O). Speech recognisers typically output acoustic and language
model likelihoods which can be used for comparing competing word sequences, but cannot
be used for assessment of whether a hypothesis is correct. Likelihoods are also not easily
compared across different model sets. Hence, likelihoods should be normalised before use
as a confidence measure. Again, it is not possible to consider every alternative hypothesis,
so a subset of hypotheses are used to perform the normalisation, in the form of an N-best
list or a lattice [157]. Alternatively, a filler model can be used to account for the competing
hypotheses [164].

Likelihoods in a lattice can be converted to posteriors using the forward-backward algo-
rithm [157]. This allocates each lattice arc a posterior, which takes into account both the
acoustic and language model score. In a lattice, there are many arcs corresponding to the same
word that overlap in time, and so using the word arc posterior probability will underestimate
the word confidence. A better measure of posterior probability might take all overlapping
word arcs into account. For example, confusion networks [105] cluster overlapping arcs, and
the time frame word error [158] takes multiple overlapping lattice arcs into consideration.

The accuracy of the posterior probability depends whether the lattice or N-best list is a
good representation of the competing hypotheses, and also on the particular bias of the model
set. Posterior probabilities are often unreliable due to the incorrect models used to estimate
them, and different model sets can estimate posteriors with different distributions, making
comparison of posterior probabilities across different systems difficult.

5.1.2 Alternative Confidence Scores
The posterior probability has proved successful as a confidence measure, though other ap-
proaches have been proposed. One alternative is to use the likelihoods directly in a word or
utterance verification framework [130]. This is a likelihood ratio test LRT (Ŵ), in which the
likelihood of the best hypothesis is tested against the likelihood of all competing hypotheses

LRT (Ŵ) =
p(O|Ŵ,M)P (Ŵ)

∑

W̃∈W
p(O|W̃,M)P (Ŵ)

(5.1)

where W is the set of competing words. In [130], a filler model was used to model competing
hypotheses.

Another measure which makes use of the posterior probabilities and takes into account
all competing words is the entropy H

CHAPTER 5. DATA WEIGHTING FOR ASR 67

H = −
∑

W̃∈W

P (W̃|M) log P (W̃|M) (5.2)

where again W is the set of competing words from a lattice or a confusion network. The en-
tropy measures the ‘disorder’ in the probability distribution over words. While the likelihood
ratio test score and the entropy cannot be interpreted as probabilities, they can be mapped
to a confidence measure which lies between zero and one.

Other measures extracted from a lattice include the hypothesis density and acoustic sta-
bility [85]. The former assumes that high confidence regions in the lattice have fewer arcs,
while the latter measures the stability of the hypothesis as the weighting between language
and acoustic model is changed.

A different approach is to consider the correlation or agreement between multiple models
as a measure of confidence. If two models agree on the output, then it is more likely to be
correct than if two models disagree. In [147], precision and recall are calculated for the words
on which two classifiers agree, and found to be a reliable indicator of confidence.

5.1.3 Combining Multiple Scores
The measures discussed above make use of a single feature extracted directly from the recog-
niser output to estimate confidence. A final class of algorithm for confidence estimation
extracts a number of features from various knowledge sources, and combines them together
with a classifier to predict a confidence. The final task may be the binary classification task of
word error detection [2, 64], the regression task of confidence or posterior estimation [55, 154],
or the problem of optimal system combination [68, 147, 148], though the approach used is
the same. A number of different classifiers have been considered, including:

• Linear discrimination [64]

• Logistic regression [2, 55]

• Decision trees [85, 111, 161, 165]

• Support vector machines (SVMs) [111, 147, 148, 165]

• Neural networks [85, 154, 165]

A feature vector x is extracted for each word or utterance. The individual features which
make up x are extracted as part of the decoding, or in a post-processing step, and can
combine multiple knowledge sources. The only restriction is that the features should have
different distributions for correct and incorrect words. Many features have previously been
tried, including

• Posterior probability [2, 111, 161]

• Entropy [2]

• Number of alternative words in the CN segment [2]

• Duration of word [2, 55, 111]

CHAPTER 5. DATA WEIGHTING FOR ASR 68

• Acoustic and language model scores [55, 64, 111, 154, 161, 165]

• Language model backoff mode [154, 161, 165]

• Contextual information [2]

• Part-of-speech of word [147, 148]

These machine learning techniques to combine multiple scores have not proven more useful
than the posterior probability alone. [165] suggests this is because the features are highly
correlated, and the posterior probability is typically calculated by using many of the individual
features. Thus, the information contained in these features is somehow already encoded in the
posterior probability. Some success was seen in [165] with features from a parser, though these
features may not work as well in spontaneous speech due to the less grammatical utterances.

Chapter 11 investigates these techniques for combining complementary systems using
logistic regression as a binary classifier. Logistic regression was used rather than more com-
plicated classifiers such as support vector machines [150], as initial experiments showed it to
perform better.

5.1.3.1 Logistic Regression

Logistic regression is a commonly used classifier for the case when there are two classes. It
is a particular form of a generalised linear model where the data is assumed to be binomially
distributed. For word error detection, the two classes are those of a word being correct Cc
or incorrect Ce. Logistic regression then can be used to estimate P (Cc|x), the posterior
probability that a word is correct given the extracted feature vector, x.

−5 −2.5 0 2.5 5
0

1

P
(C

c |
x)

β ⋅ x

Figure 5.1: Logistic Regression

If the log odds, logit(P), is modelled as a linear function of the feature vector

logitP (Cc|x) = log

(

P (Cc|x)

1 − P (Cc|x)

)

= β · x (5.3)

then

P (Cc|x) =
1

1 + exp(−β · x)
(5.4)

graphs/logistic.eps

CHAPTER 5. DATA WEIGHTING FOR ASR 69

This function is a smoothly varying function of β · x between 0 and 1, as shown in figure
5.1. The function is differentiable, and allows the values of β to be trained via maximum
likelihood. Once β has been trained, it is straightforward to predict the posterior probability
of any new vector. For classification, a threshold Pthresh is chosen and x is classified according
to

C(x) =

{

Cc if β · x > Pthresh
Ce otherwise

(5.5)

The values of β indicate weights for each of the corresponding individual features in x.

5.2 Existing Approaches to Data Weighting for ASR
The confidence measures discussed above can be used to weight data in situations where a
reference transcription is not available. For example, in unsupervised training and in decoding.
This thesis has also discussed several applications where a data weighting is used as part of
training, such as active training in section 2.4.3, discriminative training in section 2.4.2, and
boosting in section 4.1.2. In these applications the training data is weighted to reflect errors
made by existing systems, and so it is appropriate to make use of the correct transcriptions
if available. Chapters 6 and 7 introduce two new approaches to generating complementary
systems which rely on an appropriate weighting of the training data. This section discusses
existing approaches to data weighting with both ML and discriminative training, and section
5.3 below presents a new approach to data weighting based on confusion network combination.

When applying a data weighting, it is first necessary to decide the level at which to
weight the data. The most straightforward approach is to use an utterance-level selection
scheme, as utterances are segmented manually or automatically and hence are clearly defined.
For example, lightly supervised training (section 2.4.3) selects utterances which align with
the closed caption subtitles; bagging (section 4.1.1) randomly selects utterances; and one
implementation of boosting (section 4.1.2) is to select utterances according to a probability
distribution [37, 166]. This form of data weighting effectively selects a subset of training data,
and thus is appropriate for use with both ML and discriminative training. However, this may
not be ideal in practice as a smaller training set could lead to issues with overtraining, but
the selection method does allow control over the size of the subset to be used. For other forms
of weighting discussed below, there is a dependence on the training scheme.

5.2.1 ML Training
Applying a data weighting with ML training is straightforward. The EM algorithm of section
2.4.1 can be altered to take into account a loss function lj(t) [4] and, for example, the mean
update of equation 2.35 becomes

µ̂j =

∑T
t=1 lj(t)γj(t)ot
∑T

t=1 lj(t)γj(t)
(5.6)

CHAPTER 5. DATA WEIGHTING FOR ASR 70

The loss function can be calculated at any level, such as frame, state, phone, word or
utterance, allowing for flexibility in the level at which the weighting is both calculated and
applied.

Applying a weighting at the utterance level is straightforward as utterances are clearly
defined. Examples of this include utterance level boosting [108, 166] and utterance-level active
training [63]. With an utterance-level weighting scheme, the loss function lj(t) is constant for
each utterance. The weight can also be applied at the frame level, where lj(t) is calculated
for each frame. For example, boosting at the frame level is performed in [167].

Applying the weight at a different granularity, such as the word [80] or phone level, may
require some further processing. One commonly used approach is to force-align the training
data to obtain an alignment of words or phones to frames, and hence directly weight the
observations, e.g. [80, 167]. Then, the weighting in equation 5.6 can be applied at the frame
level, where each frame weight is obtained from the word or phone it is aligned with. However,
this provides a hard assignment of frames to lexical units, and may lead to errors at the
boundaries. This approach also has the disadvantage that the alignments may change during
training, or if a very different model set is used, and so it may be necessary to recompute the
alignment.

The second consideration is the form of the loss function or weighting to be used. One
possibility is to use a confidence measure as a weighting, to identify correctly recognised
portions of the training data. For example, the hypothesised word posterior probability [77]
or likelihood-ratio [4] have previously been used. The drawback of this approach is that
confidence measures are not always reliable, and the decoder output is not used to identify
errors. Alternatively, the loss could be based on a high recognition error criterion [81] or word
and utterance posterior probabilities [83]. For boosting [37], in figure 4.1, the data is weighted
using the distribution over training samples d(s), which is calculated from the pseudo-loss, εs.
This is a discriminative measure which takes into account the classification of the training
examples. Section 4.2.2 discussed approximations to this criterion suitable for ASR.

The purpose of the loss function is application specific, and high losses can be assigned to
different portions of training data depending on the aim of the training. For example, boosting
[37] applies a high loss to high error portions of the data in order to build complementary
systems, while unsupervised training applies the weighting to focus the training on high
confidence segments which are more likely to be correct. Thus, the form of the loss function
is important in determining the overall effect of the training.

5.2.2 Discriminative Training
When using discriminative training, the application of a data weighting is complicated by
the use of the reference and competing hypotheses as part of the training algorithm. Thus, a
simple weighting is not applicable as for the ML training algorithm. Instead, an implicit data
weighting is used as part of the discriminative training. For minimum Bayes’ risk training, in
section 2.4.2.2, the data weighting is defined by the loss function, L(H,Href), in the objective
function

F(M) =
∑

H

P (H|O,M)L(H,Href) (5.7)

which is the equation previously given in 2.40.

CHAPTER 5. DATA WEIGHTING FOR ASR 71

L(H,Href) is a sentence level loss function, but is often a sum of losses calculated at
a smaller level. For example, MMI training assigns each hypothesis a loss of 0 or 1 [6],
depending on whether it is correct or not, and MPE training weights each phone arc in a
lattice according to an estimate of its accuracy when compared against the reference [122].
MWE and MCE apply similar weightings at the word level. In order to calculate the loss for
all competing hypotheses, an alignment of multiple hypotheses to the reference is required,
as discussed in section 2.7.

5.3 A New Approach to Data Weighting for ASR
This thesis proposes two approaches for generating complementary systems, via the decision
tree generation and the training algorithm. Both rely on an appropriate weighting of the
training data, in order to focus on errors made by a number of previous systems. This section
presents the form of word-level data weighting used with these algorithms for the experiments
in chapters 9 and 10. A word-level weighting is used to reflect the word-level confusion network
combination used for combining the multiple systems.

The two approaches are based on a boosting-like, or leveraging, approach to building
complementary systems. An initial baseline system is first trained, and used as the starting
point for complementary system training. Then, subsequent systems are trained using the
data weighting described below. A second system is trained to focus on the errors made by
the first, before a third system is trained to focus on the errors made by the combination of
the first and second systems. This iterative approach allows any number of systems to be
built by focusing on the errors made by the combination of all the previous systems.

!NULL BUT IT DIDN’T ELABORATE
REF

IN
ELABORATE

P=0.2
P=1.0

!NULL
P=0.2

!NULL
P=0.4

P=0.8

S1

P=0.2

P=0.6

P=0.6
BUT

TO IN
ELABORATE

P=0.3

P=0.5

P=0.3
P=0.6 P=1.0
!NULL

IT!NULL
P=0.2

A
P=0.6

BUT

!NULL
P=0.1 P=0.4

P=1.0

S0

DID

DIDN’T

DID!NULL
P=1.0

A

Figure 5.2: Confusion Networks for systems S0 and S1 aligned with a reference transcription

In this thesis, the data weighting is calculated using confusion networks for each train-
ing set utterance aligned with the reference transcription, as in figure 5.2. This makes it
straightforward to see whether a word is correctly modelled or not. Figure 5.2 shows an

figures/mbrl_align.eps

CHAPTER 5. DATA WEIGHTING FOR ASR 72

example alignment of two confusion networks with the reference. The confusion networks
obtained from two systems, S0 and S1, are aligned against the reference transcription using
the dynamic alignment algorithm discussed in section 2.7. This alignment makes it easy to
see where the combination of previous models performs well, and where it is poor, based on
the word posterior probabilities in the confusion networks. For example, in figure 5.2, the
word ‘ELABORATE’ is modelled well by both S0 and S1, while the word ‘IT’ is not modelled
well by either system. Any number of confusion networks can be aligned with the reference,
allowing the weighting to make use of information from multiple systems using the average
word posterior

P (Wref |O,M
(0)...M(S−1)) =

1

S

S−1
∑

s=0

P (Wref |O,M
(s)) (5.8)

This is an unweighted version of the posterior combination in equation 3.3, and is the standard,
unweighted, CNC posterior combination used in decoding.

The first step in the loss function calculation is to generate confusion networks for the
training data. Due to the large amount of data, it is impractical to fully decode the data
for every model. Alternatively, a set of lattices may be rescored by the multiple systems, as
in section 3.3.4.1. The lattices must be representative of the hypothesis space to adequately
represent all the confusions, and for this reason, the lattices for standard MPE training are
used. These are generated using a pruned bigram language model, to increase the confusions
that are modelled in the lattice. The lattices are then rescored, and converted to confu-
sion networks using the algorithm in section 3.3.1.3. The use of the discriminative training
lattices also has the advantage of a direct correspondence between the lattices and the con-
fusion networks used in training, which simplifies the loss function calculation in the case of
discriminative training.

The training data confusion networks are then aligned with the reference transcription
using a dynamic alignment algorithm. Hence it is not necessary to use any time-stamp
information in the alignment. This is advantageous as the confusion networks do not have
reliable time stamps, and avoids the need to force-align the reference transcription.

For MPE training, a reference lattice is used to model multiple alignments of the reference
transcription, and thus calculate the minimum phone loss, as in equation 2.45. However,
when calculating a word-level loss function, it is not clear that using a lattice over a simple
transcription would lead to improved results as multiple word-level pronunciations do not
exist in the same way as there are multiple phone level pronunciations. Hence, for the loss
function calculation in this work, the confusion networks are aligned with a single reference
transcription.

The dynamic algorithm for aligning the reference transcription, discussed in section 2.7,
naturally handles substitutions in the confusion network. For example, the substitution of
reference word ‘DIDN’T’ for the word ‘DID’ in both confusion networks in figure 5.2. The
alignment also handles insertions and deletions by inserting !NULL arcs into the appropriate
transcription or confusion network. For example, the first CN segment in figure 5.2 is an
insertion, while the third is a deletion. In the case of some deletions, such as with system S0,
a CN segment exists that should be aligned with the reference word, though the reference
word has low posterior in the segment. However, in other cases, such as with system S1, there
is a true deletion and a CN segment must be inserted to perform the alignment.

CHAPTER 5. DATA WEIGHTING FOR ASR 73

In figure 5.2, !NULL links are inserted into both the reference and the confusion networks
to allow the alignment of one reference word with one confusion segment, which simplifies
the loss function calculation. Alternatively, CN segments could be aligned with the reference
so that they span more than one reference word. Hence, insertions and deletions could be
handled without the inclusion of additional !NULL links. However, it is not clear that this
would provide an advantage in terms of a more accurate loss calculation, and would complicate
the alignment algorithm.

When rescoring the lattices and converting to confusion networks, there is the problem
that some lattice arcs are pruned and do not appear in the confusion networks. It is likely that
these arcs have low posterior, and hence can be ignored when calculating the loss function.
Additionally, the confusion segments do not include silence, and so do not allow a loss to be
assigned to silence. Thus, the loss for silence models must be set appropriately. In this thesis,
the loss of a silence model is set to zero, as this has the effect of not updating the model and
it is assumed that a complementary silence model is not necessary.

As mentioned above, the form of the loss function is an important consideration. For
building complementary models, the loss function should focus on the errors made by previous
models. At the same time, it can ignore previously well modelled portions of data. For
example, in figure 5.2 the words ‘BUT’ and ‘ELABORATE’ are well modelled by both S0 and
S1. In contrast, the words ‘DIDN’T’ and ‘IT’ are not well modelled. Hence, complementary
model training should focus on the latter two words at the expense of introducing errors
where S0 and S1 are correct. The forms of loss function proposed below reflect this goal.
This contrasts to previous applications of a data weighting, where the aim is to maintain a
good model over all the training data.

For the directed decision tree and the ML word-level active training, it is necessary to
weight reference words appropriately, to reflect the errors made by a number of previous
models. For the discriminative MBRL training, it is necessary to weight arcs in the lattices
used for training. These two tasks are related, and are both discussed in below.

5.3.1 Weighting Reference Words
For the directed decision tree algorithm in chapter 6, and the word-level active training
algorithm discussed in section 7.1, it is necessary to apply a data weighting to reference

words. Each word, W
(k)
ref , in the reference hypothesis, Href is assigned a loss, l(W

(k)
ref).

The alterations to the EM algorithm are as in section 5.2.1, and equation 5.6 is repeated
here

µ̂j =

∑T
t=1 lj(t)γj(t)ot
∑T

t=1 lj(t)γj(t)
(5.9)

The weighting is applied in the forward-backward pass by multiplying each state occu-
pancy count, γj(t), by the weight of the word it belongs to. When ot is the observation at
time t, the accumulated statistics change from

∑

t

γj(t)ot (5.10)

CHAPTER 5. DATA WEIGHTING FOR ASR 74

to

∑

t

lj(t)γj(t)ot (5.11)

Section 5.2 above discussed existing approaches to weighting training data, where the
transcription is force-aligned to obtain a mapping from words to frames. An alternative
application of the loss, used in this thesis, is to obtain a state level weighting from the
corresponding word. Thus the loss lj(t) comes from the word level loss l(Wref), where state j
forms part of word Wref . This is in contrast to the previous approaches, where the loss lj(t)
is associated with a frame ot, via a forced-alignment.

This state-based approach to applying the loss function has the advantage that it links
more closely with CNC as words are weighted rather than frames. It also allows for more
flexibility as the effective weight for each frame may change as training progresses and the
alignment of states to frames is altered. Furthermore, weighting at the state level easily allows
the application of a weight obtained with one system to multiple different systems without the
need to recompute the state alignment, and the application is independent of the particular
model topologies.

From the training data CN aligned with the reference, as in figure 5.2, it is straightforward
to implement a loss function for each reference word based on the posterior probability of the
reference word in the aligned confusion segment. If the reference word does not appear in the
confusion segment, then it is assumed the word has a posterior probability of 0.

There are many variants of the loss function which are suitable for performing the data
weighting. Options for the loss function, l(Wref), considered in this thesis are a sum

l(Wref) = 1 −
1

S

S−1
∑

s=0

P (Wref |O,M
(s))α (5.12)

and a threshold

l(Wref) = 1 if
1

S

S−1
∑

s=0

P (Wref |O,M
(s)) < β

= 0 otherwise (5.13)

where P (Wref |O,M
(s)) is the posterior of the reference word Wref according to system s.

Hence, the summation in these two functions calculates the average posterior of the reference
word with respect to the previous systems M(0) · · ·M(S−1), in order to apply the weighting
and train system S. The posterior probabilities are obtained directly from confusion networks.

In the sum function, the effect of increasing α is to reduce the proportional influence
of well modelled words and increase the influence of poorly modelled words. This in turn
leads the algorithm to focus more and more on the very poorly modelled training data. If
a particular model leads to a large number of reference words with posterior close to 1, it
may be useful to increase α and so decrease the influence of these words. In the threshold
function, decreasing β also decreases the proportion of words which are assigned a loss of 1,
leading the training to focus more on the errors.

CHAPTER 5. DATA WEIGHTING FOR ASR 75

Reference Threshold loss Sum loss
word β = 0.5 α = 1.0

BUT 0.0 0.45
IT 1.0 0.80
DIDN’T 1.0 0.90
ELABORATE 0.0 0.00

Table 5.1: Values of ML loss function for the alignment in figure 5.2

With these two loss functions, the values of loss for figure 5.2 are given in table 5.1. The
loss function focuses the weight on the words ‘IT’ and ‘DIDN’T’, which are not well modelled
by S0 and S1. The threshold function effectively gives well modelled words a weight of 0, and
poorly modelled words a weight of 1. The sum function assigns a continuous loss between 0
and 1.

When weighting reference words, it is only possible to assign a loss to a word which
appears in the reference transcription. Hence, in figure 5.2, it is not possible to assign any
weight to the insertion of the word ‘A’ in the first confusion segment. Thus, the training can
only implicitly focus on insertions, by increasing the likelihood of the surrounding, correct,
words. Deletions and substitutions can be assigned a weight, and hence their likelihood can
directly be optimised.

5.3.2 Weighting Lattice Arcs
For discriminative training using a minimum Bayes’ risk criterion, the hypothesis space is
represented by a word lattice. Thus, the arcs in these training data lattices must be ap-
propriately weighted. This form of weighting is used in section 7.2 to discriminatively train
complementary systems.

In order to weight the lattice arcs, it is necessary to keep track of which lattice arcs are
clustered to obtain each of the confusion network arcs. For example, in figure 5.3, the solid
lattice arcs for the word ‘IT’ are clustered to give the solid CN arc ‘IT’. Some lattice arcs will
be pruned out as part of the confusion network generation, but these have low posterior and
should so make little difference to the loss calculation overall.

ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

TO IN DIDN’TIT ELABORATE

!NULLA

BUT

!NULL

!NULL

!NULL BUT IT DIDN’T ELABORATE

IT

Figure 5.3: Tracking lattice arcs in CN generation

A loss must now be assigned to each word in the confusion network, and hence to each
arc in the lattice. This is in contrast to the previous section where a loss was assigned only

figures/mbrl_weight.eps

CHAPTER 5. DATA WEIGHTING FOR ASR 76

to each reference word. The loss function can take any form but, as for weighting reference
words above, in this thesis the average posterior probability of the reference word is used

P (Wref |O,M
(0)...M(S−1)) =

1

S

S−1
∑

s=0

P (Wref |O,M
(s)) (5.14)

This is an unweighted version of the posterior combination in equation 3.3. If the reference
word does not appear in the aligned confusion network segment, it is assumed to have a
posterior of zero. The loss functions considered in this thesis are then a sum

l(W(k),W
(k)
ref) =

{

0 if W(k) = W
(k)
ref

1 − P (W
(k)
ref |O,M

(0)...M(S−1)) otherwise
(5.15)

and a threshold function

l(W(k),W
(k)
ref) =

0 if W(k) = W
(k)
ref

0 if P (W
(k)
ref |O,M

(0)...M(S−1)) ≥ β

1 if P (W
(k)
ref |O,M

(0)...M(S−1)) < β

(5.16)

both based on the average posterior of the reference word in the segment here the word W (k) is

aligned with the reference word W
(k)
ref in the confusion network. Thus the overall loss function

for the hypothesis is given by

L(H,Href) =

K
∑

k=1

l(W(k),W
(k)
ref) (5.17)

These loss functions differ from existing discriminative loss functions, such as MPE, as
their aim is to assign a low loss to correct words, a low loss to incorrect words where the
corresponding reference word has a high posterior, and a high loss to incorrect words where
the corresponding reference word has a low posterior. In contrast, MPE assigns a high loss
to all errorful portions of data.

The corresponding values of word loss for these two functions are given in table 5.2 for the
CN alignment in figure 5.2. The words ‘A’ and ‘TO’ in the first segment are assigned a loss as
they are incorrect, and the word ‘DID’ is assigned a loss as the corresponding reference word
for this segment, ‘DIDN’T’, has a low posterior. The remainder of the words are considered
correct, and so have a low value of loss. This is because they are either correct themselves, or
the corresponding reference word in the segment has a high posterior. Hence the loss focuses
on the words which are poorly modelled, and ignores those which are incorrect yet have low
posterior. For the purpose of loss function calculation, the !NULL arc is considered as a single
word, though this may lead to overestimation of the loss.

Unlike the approach to weighting reference words discussed previously, it is now possible
to directly weight words which correspond to insertions by weighting the corresponding lattice
arcs. Hence, the training does not rely on improving the modelling of surrounding words to
correct insertions, and can more directly focus on these errors.

CHAPTER 5. DATA WEIGHTING FOR ASR 77

Reference CN Threshold loss Sum loss
word word β = 0.5 α = 1.0

!NULL A 1.0 0.75
TO 1.0 0.75

BUT BUT 0.0 0.00
IN 0.0 0.00

IT IT 0.0 0.00

DIDN’T DID 1.0 0.90
DIDN’T 0.0 0.00

ELABORATE ELABORATE 0.0 0.00

Table 5.2: Values of loss function for the alignment in figure 5.2

Again, the loss calculation relies on an alignment of CN segments with the reference
transcription. This allows a one-to-one correspondence between reference and hypothesis
words. Other alignments of the confusion network, or the original lattice, with the reference
may give an improved loss function, but it is not clear that this would impact significantly
on the training.

5.3.3 Alternative to Confusion Networks
The approaches described above have relied on confusion network combination of training data
confusion networks with the reference transcription, to obtain a loss function for training.
However, confusion networks may not be the optimal method with which to encode and
identify the confusions made by a recogniser.

An alternative approach would be to force-align the reference transcription and use a
measure of performance based directly on the overlap between lattice arcs and reference
words. This is the approach used for estimating the loss in MPE training in [122]. However,
this approach doesn’t make full use of the posterior information available, as the posterior
probability of a word consists of contributions from multiple paths. Confusion networks
address this by clustering overlapping words and hence obtaining a better estimate of word
posterior probabilities.

Other possible approaches include the pinched lattices in [60], or the frame-based posterior
estimation in [71]. The former elegantly handles insertions and deletions by allowing sub-
lattices to align with reference words, while the latter calculates a frame-based word posterior.

Alternative representations like these could easily be aligned with a reference transcription
in training, and hence used with the MBRL algorithm to identify confusions and assign a loss
to lattice arcs or reference words. The loss function calculation would be altered to reflect the
form of combination, then these methods could easily be used within the MBRL framework,
and for combining the final systems in decoding.

For this work, however, confusion networks are used as a representation of recogniser
confusions. They are straightforward to compute, and allow a simple interpretation of loss
which can easily be applied in both the word-level active training and the discriminative
MBRL training, regardless of the form of systems being trained. Confusion networks also
allow for easy system combination, and thus allow the training to be embedded within an
iterative leveraging framework for building multiple complementary systems.

CHAPTER 5. DATA WEIGHTING FOR ASR 78

5.4 Summary
This chapter first discussed confidence measures, which are used in this thesis for combination
during testing and training. In particular, combination of complementary systems is examined
in detail in chapter 11.

Data weighting is an important aspect of building and combining complementary sys-
tems, as it is necessary to incorporate information about errors made by existing systems.
The algorithms presented in the following chapters make extensive use of a data weighting
algorithm. This chapter first discussed existing approaches to data weighting for ASR, before
presenting a new approach based on confusion network combination to identify errors made
by previous systems. This approach allows the loss function to be calculated independently
of the form of model, and is used with the directed decision tree and MBRL algorithms of
the next chapters.

CHAPTER 6
Directed Decision Trees

Chapter 4 discussed existing approaches to generating complementary systems for ASR,
including a randomised decision tree for parameter tying. This section proposes a new

algorithm for generating complementary systems by altering the decision tree generation,
and a divergence measure for comparing decision trees. This approach makes use of the data
weighting proposed in the previous chapter.

If it were possible to obtain a well-trained triphone system without parameter tying,
each individual state would have a distinct output distribution. However, due to insufficient
training data and the memory requirements for building and using such a system, this is not
possible. Thus, there is no adequate measure for assessing the impact of the decision tree
state tying on recognition performance. In practice, the standard decision tree algorithm
discussed in section 2.8 takes no account of system performance and confusability of states
when building the tree, and so it is possible to cluster states which lead to confusions. This can
impact on recognition performance, as clustered states rely on language model and context
information to differentiate them in decoding. Thus, it is desirable to build decision trees in
such a way that confusable states are explicitly separated.

The directed decision tree algorithm presented in this chapter concentrates states in con-
texts which were previously confusable. In this way, previous errors may be resolved, though
new errors may be introduced by clustering states which were previously separate. If the
two systems make different errors they will be complementary, and hence lead to improved
performance when combined.

79

CHAPTER 6. DIRECTED DECISION TREES 80

6.1 Directed Decision Tree Algorithm
Directed decision trees [16, 17] aim to separate confusable states when performing the decision
tree clustering. This is done by using a second set of statistics when selecting the best question
in decision tree generation. This second set of statistics is weighted so as to reflect confusions
in the training set, so states which often lead to confusions are allocated a higher weight than
those which don’t. These weighted statistics are used in the question selection stage of the
decision tree generation, so that states with high weights are not clustered together. The
original statistics are used for the stopping criterion, to ensure that the trees are of a similar
size and to avoid having to tune a new stopping criterion threshold. The directed decision
tree algorithm from section 2.8 becomes

1. Statistics

• Obtain original statistics for all seen triphone contexts

• Obtain weighted statistics for all seen triphone contexts statistics

2. Question Selection

• Recursively build the tree by selecting the question which gives the highest change
in likelihood with respect to the weighted statistics

3. Stopping criterion

• Stop building the tree when the data likelihood falls below a threshold, with respect
to the original statistics

An example of this modified question selection is shown in figure 6.1. The question
‘Right liquid?’ is chosen as this gives the largest data likelihood with respect to the weighted
statistics, rather than the question ‘Left front fricative?’ which is optimal with respect to the
original statistics.

Question

Left front fricative?
Left vowel central?

Right liquid?
Right nasal?
Left nasal?

Right back fricative?
Left unvoiced fricative?

[69.6]

[70.1]
[68.8]

[67.5]
[69.5]
[65.4]

[64.3]

Original Weighted

[35.8]
[36.3]

[37.4]
[37.2]

[34.2]

[36.7]

[35.3]

DIRECTED

ORIGINAL

Figure 6.1: Directed decision tree question selection

The forward-backward algorithm in section 2.3.2 is used to estimate the state occupation
counts γj which, along with the means and variances of the Gaussian state distributions, are
the sufficient statistics needed for building the decision tree. The original set of statistics are

calculated as in section 2.8, and the cluster occupancy count, γ
(1)
Θ

, is found using equation
2.77, repeated here

figures/dir_tree_pr.eps

CHAPTER 6. DIRECTED DECISION TREES 81

γ
(1)
Θ

=

T
∑

t=1

P
∑

j=1

γj(t) (6.1)

where P is the number of clustered states. For the second set of statistics, γ
(2)
Θ

, equation 2.77
becomes

γ
(2)
Θ

=

T
∑

t=1

P
∑

j=1

lj(t)γj(t) (6.2)

The directed decision tree algorithm allows for any form of data weighting to be applied
via the loss function lj(t), which can be applied at the state or frame level. The experiments
in chapter 9 use the data weighting proposed in section 5.3.1 with the sum loss function of
equation 5.12 to weight the training data and obtain the second set of statistics.

6.2 Multiple Complementary Systems
The form of loss function calculation in section 5.3.1 allows the incorporation of information
from multiple previous systems. Hence, it is interesting to consider generating multiple com-
plementary systems in a boosting-like framework, as shown in figure 6.2 for building three
complementary systems. A baseline system, S0, is first trained in the usual way using un-
weighted statistics for the decision tree generation. Then, S0 is used to obtain confusion
networks for the training data, these are aligned with the reference and used to generate the
weighted statistics for building a second decision tree. Next, system D1 is built from this
decision tree, and so will be complementary to S0. Using confusion networks from both S0
and D1 allows a second set of weighted statistics to be obtained and a third decision tree to
be generated. This decision tree is then used to build D2, which is complementary to both
S0 and D1. The combination of multiple previous confusion networks is done using CNC, as
previously shown in figure 5.2.

This iterative method for building complementary systems has the advantage that the
final order of combination is simply determined by the order in which systems were trained.
The method of training and the system design for S0, D1 and D2 does not need to be the
same, and further diversity can be obtained by varying, for example, the training approach,
frontend or topology for each of the three systems. Experimental results in chapter 9 use a
different frontend and training algorithm to introduce additional diversity.

6.3 Decision Tree Cluster Divergence Measure
An important aspect of using multiple directed decision trees is generating systems that are
different. In this work, decision trees cluster states of triphones, and so they are built as a
first step in training a triphone system. It is computationally expensive to evaluate multiple
decision trees by training the multiple triphone systems and evaluating their performance.
Hence, it is useful to have a method for comparing the clustering in decision trees without

CHAPTER 6. DIRECTED DECISION TREES 82

Generate
statistics

Decision
tree training

HMM

Decision
tree training

HMM

Decision
tree training

HMM

Statistics

Statistics

CNs

CNs

S0

D1

D2

Figure 6.2: Framework for building multiple directed decision trees

having to fully train the corresponding system. This section describes a divergence measure
for this purpose, which evaluates the similarity between the clustering in two decision trees.

It is possible to compare the clusterings in decision trees directly using, for example,
a cluster similarity measure similar to that in [127]. However, these use many pairwise
comparisons between clustered elements and prove expensive in practice when there are many
thousands of states, so it is useful to make use of the properties of decision trees for ASR.
As states are clustered at the tree nodes, each node has an associated Gaussian distribution.
Hence each state has a Gaussian distribution in each of the two trees, which differs with the
clustering.

Rather than directly measure cluster similarity, the divergence measure proposed here
makes use of the fact that if two trees have similar clusterings then, for each state, the
corresponding state output distributions from the two trees will also be similar. Similarly, if
the clustering is very different, then it is expected that the state output distributions from
the two trees will differ too. The tree divergence D is calculated as an average over all states
of divergences between state output distributions from the two trees, weighted by the state
occupation count γj

D =
∑

j

γjKLsy(N (µ
(1)
j ,Σ

(1)
j),N (µ

(2)
j ,Σ

(2)
j)) (6.3)

where

KLsy(N
(1),N (2)) =

1

2

(

KL(N (1),N (2)) + KL(N (2),N (1))
)

(6.4)

figures/ddtframework.eps

CHAPTER 6. DIRECTED DECISION TREES 83

and N (µ
(s)
j ,Σ

(s)
j) is the distribution of state θj in the sth tree. The Kullback-Leibler divergence

KL(N ,N) [88] is used as a measure of divergence between Gaussians from the two trees, but
any suitable distance metric could be employed. The KL divergence between two Gaussians
is

KL(N (1),N (2)) =
1

2

{

log

(

|Σ(2)|

|Σ(1)|
+ trace

(

Σ(2)-1Σ(1)
)

)

+(µ(2) − µ(1))TΣ(2)(µ(2) − µ(1)) −D
}

(6.5)

Though this divergence measure does not indicate performance, it is useful in this work to
determine whether two trees are close together. If two trees are very similar then it is unlikely
that the resulting systems will differ enough for gains to be seen when combining them, and
so it is not worthwhile to build the system. In particular, the effect of α in equation 5.12
on the decision tree generation is interesting, so to avoid the computational cost of building
and decoding with many systems, the effect of α on decision tree divergence measure can be
examined rather than its effect on final word error rate.

6.4 Summary
This chapter has presented an algorithm for altering the decision tree algorithm, to bias
systems towards being complementary by separating confusable states in the decision tree.
This algorithm uses a second set of statistics, weighted to reflect errors in the training data,
to bias the decision tree generation against clustering confusable states.

Together with the loss function calculation discussed in section 5.3, this algorithm can be
embedded within an iterative boosting-like framework for building multiple complementary
systems. The statistics generation stage of the decision tree algorithm is altered to take this
loss into account, and the weighted statistics are used during question selection stage of the
decision tree generation.

To conclude, a divergence measure for comparing two decision trees was proposed. This
measure uses a symmetric Kullback-Leibler divergence, averaged over states in the trees, to
evaluate the diversity of the trees without having to build and evaluate the corresponding
systems.

CHAPTER 7
Minimum Bayes’ Risk

Leveraging

The previous chapter presented an approach for generating complementary systems by
altering the decision tree generation. This chapter presents two approaches for explic-

itly generating complementary systems through the training algorithm, based on both the
maximum likelihood and minimum Bayes’ risk criteria.

Standard training schemes, such as maximum likelihood and discriminative training, aim
to build a single system with optimal performance. An alternative aim in training is to
build an ensemble of systems which do not perform optimally individually, but have optimal
performance in combination. One approach to achieve this is to alter the training algorithm
to explicitly build complementary systems.

This chapter describes how confusion network combination and standard training algo-
rithms can be used together in a boosting-like, or leveraging, scheme to allow the generation of
complementary systems. The approaches described here differ from existing training criteria
in their goal of building multiple complementary systems.

Modifications to the ML and MBR criteria of sections 2.4.1 and 2.4.2.2 are presented
below, to explicitly generate complementary systems. Complementary systems make different
errors, and so explicitly training one system to be complementary to another needs to take
into account the errors made by the first. The algorithms presented in this chapter make
use of confusion network combination to incorporate information about the performance of
multiple previous systems into the training algorithm. First, the alterations to the training
algorithms are presented, followed by a discussion of the potential issues with decoding using
the complementary systems.

84

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 85

7.1 Word-level Active Training
Active training, described in section 2.4.3, alters the ML training algorithm to focus on subsets
of training data. One application of active training is to focus on the errors made by a system
in order to improve system performance. In the meantime, new errors may be introduced on
previously well modelled data and it is hoped that the two systems will be complementary,
particularly if the active training focuses extremely on the errors.

The ML objective function in equation 2.28 is altered to incorporate a loss function for
each utterance L(Href), where the loss models how well the utterance is modelled by the
previous systems M(0) · · ·M(s−1). Hence, the objective function becomes

F(M(s)) =

R
∑

r=1

L(H
(r)
ref |O,M

(0) · · ·M(s−1)) log p(O(r)|H
(r)
ref ,M

(s)) (7.1)

As discussed in section 5.3, the loss function in this work reflects the word errors made by
a number of previous systems, to focus the training on the corresponding portions of data.

By incorporating multiple previous systems into the loss function, it is possible to build a
series of complementary systems in an iterative fashion, similar to the boosting framework in
section 4.1.2 and the directed decision tree approach in section 6.2. The individual systems
can differ, for example in the frontend or model topology, provided the loss function reflects
the errors made. Introducing extra diversity in this way may give additional gains. The
multiple systems are combined in the training using confusion network combination.

Equation 7.1 specifies a loss at the utterance level. However, it is possible to calculate
a loss at any level. In this work, the loss is calculated at the word level as this corresponds
to the word level combination in CNC. During training, the loss is applied at the state level.
The state occupation probability γj(t) is multiplied by a state level loss lj(t), which is part of
the corresponding reference word l(Wref). That is,

∑

t γj(t)ot becomes
∑

t lj(t)γj(t)ot where
state θj is derived from the word Wref . This is the same as the data weighting in section
5.3.1, and the sum and threshold loss functions in equations 5.12 and 5.13 are used in chapter
10 for building complementary systems, as they focus the training on previous errors.

Given this application of the loss in training, the changes to the standard EM parameter
update equations are trivial. For example, the mean estimation becomes

µ̂j =

∑T
t=1 lj(t)γj(t)ot
∑T

t=1 lj(t)γj(t)
(7.2)

In decoding, the systems are used to independently decode the data, and then the outputs
are combined. The order of combination, using CNC, is given by the order in which the
systems were built. This allows the flexibility to change the loss function, the level at which
the loss is applied, and the forms of the model being built, without having to alter the decoding
process. Much of the discussion in the following section concerning discriminative training is
also applicable to this word-level ML active training approach to generating complementary
systems.

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 86

7.2 Minimum Bayes’ Risk Leveraging Algorithm
The previous section described how the ML criterion can be modified to generate comple-
mentary systems. This section considers the changes needed to discriminative training, and
makes use of the minimum Bayes’ risk criterion, which optimises

M̂ = argmax
M

∑

H

P (H|O,M)L(H,Href) (7.3)

This objective function depends only on the existing model, M. To build complementary
systems it is necessary to take into account the performance of all previous recognisers. This
can be done by altering the objective function in one of two ways. First, the other models
can be taken into account via the posterior probability

F(M(s)) =
∑

H

P (H|O,M(0) · · ·M(s−1))L(H,Href) (7.4)

This form of objective function is complicated to model due to extra dependencies, and
proves difficult to optimise in practice. Hence, a second approach is proposed whereby the
dependency on previous systems is introduced via the loss function

F(M(s)) =
∑

H

P (H|O,M)L(H,Href |O,M
(0) · · ·M(s−1)) (7.5)

This objective function can be used to train a system M(s) that is complementary to a
number of previous systems, and hence can be embedded inside an iterative training scheme
to train a number of systems, each complementary to the previous. This is called Minimum
Bayes’ Risk Leveraging (MBRL). In this thesis, the loss function for MBRL training is calcu-
lated by aligning confusion networks with the reference transcription, and calculating a loss
for each word based on its posterior probability in the confusion network. This is described
in more detail in section 5.3.2 above. Experimental results in chapter 10 use the threshold
and sum loss functions of equations 5.16 and 5.15.

An outline for the scheme is given in figure 7.1, and is again similar to the boosting, or
leveraging, schemes discussed in sections 4.1.2 and 4.2.2. It has many of the attributes of
boosting, but without the theoretical aspects of setting the weights, calculating the pseudo-
loss and maintaining a distribution over the training samples. The loss function L(H,Href)
takes the place of the probability distribution, d, over the training data, and allows a more
general form of weighting to be applied than is used in boosting. Additionally, there is
no need to approximate or estimate the discriminative pseudo-loss metric which is used in
boosting. The overall algorithm, with the appropriate objective function and loss function,
is also applicable to the ML active training described in the previous section.

For the discriminative MBR training, the loss function is a sentence level function. For
MBRL, this function measures how well all previous classifiers perform. As word-level CNC is
used for combination in the final decoding stage, a loss function is calculated at the word level
to match the combination schemes in test and training. In general, the MBRL loss function
is a sum of loss functions at a word level. When each competing hypothesis is aligned with

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 87

Input:

An initial model, M(0)

Initialise:

Using M(0), generate initial set of training data CNs

For: s= 1:S

Combine training data CNs for systems M(0) · · ·M(s−1)

Align the combined CN with the reference, and calculate the word loss

Train M(s) to minimise a cost function based on

F(M(s)) =
∑

H P (H|O,M(s))L(H,Href |O,M
(0) · · ·M(s−1)))

Decode the training data with model M(s) to obtain CNs

Output:

Test data independently decoded with each M(s) to give hypothesis H(s)

The final hypothesis is based on CNC of hypotheses H(0) . . .H(S)

Figure 7.1: Minimum Bayes Risk Leveraging Algorithm for estimating and decoding with a
baseline system M(0) and S − 1 complementary systems, M(1) · · ·M(S)

the reference to give a set of word pairs, {W (k),W
(k)
ref}, as in section 2.7, the loss function

becomes:

L(H,Href) =
L
∑

k=1

l(W(k),W
(k)
ref) (7.6)

This sentence level loss function as a sum of losses is analagous to MPE training in equation
2.45, where the sentence loss is a sum of phone errors. MBRL differs from MPE training as
it takes the performance of multiple classifiers into account. In contrast to the ML scheme
described in the previous section, the loss function now assigns a loss to all words, whether
they appear in the reference hypothesis or in a competing, incorrect, hypothesis. As for the
ML algorithm, the loss should reflect which words are well modelled, and which are not. Each
iteration of the MBRL training will then have a memory of all previous classifiers through
the loss function. It is hoped that, while training in this way will not lead to a single best
classifier, the resulting set of classifiers will give improved results when they are combined.
MBRL differs from [168], a boosting algorithm for ASR with a general loss function, as it
moves away from the strict boosting framework, and allows for more flexibility in the types
of system that can be built and combined.

Parameter estimation with MBRL is straightforward and can be implemented in the same
way as for MPE or other discriminative training schemes, simply by changing the loss function
calculation.

Standard discriminative training schemes such as MPE and MWE effectively weight the
data to reflect errors made by the current system. During training, they aim to reduce the

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 88

overall average word error rate, but in doing this, they may introduce errors in portions of
the training data where the recogniser previously had good performance. Hence, the systems
trained using standard discriminative training may be complementary. However, to improve
overall performance, the discriminative training must keep a good model over data which is
currently well recognised, thus restricting its ability to focus on the errors.

In contrast, MBRL and the ML active training in the previous section allow this re-
quirement to be relaxed, by training systems that perform optimally in combination. The
current system need not perform well on data which the previous systems recognise well, as
the combination with previous systems should address any newly introduced errors. That
is, by training explicitly for optimal performance in combination, the MBRL training can
focus specifically on the harder portions of the training data, without losing the advantage of
recognising easier portions, as these are already well recognised by existing systems.

The straightforward application of the MBRL scheme is to treat it as a standard discrim-
inative training scheme, such as MPE training in section 2.4.2.2, where the model M(s−1) is
used as the starting point for training M(s). This form of the algorithm may be susceptible
to overtraining as many iterations of discriminative training are performed and successive
models will drift further from the initial model. However, the weighting to focus the training
on different areas of the training set may alleviate this problem, and smoothing, as discussed
in section 2.4.2.5 can be used to prevent the models drifting too far.

A more general application of MBRL is to relax this requirement, and allow M(s) to be
trained from a system that differs from M(s−1). This allows extra diversity to be incorporated
into the training, which may give further gains. For example, M(s) and M(s−1) may differ in
their frontend, decision tree, phone set, covariance modelling or topology. However, in contrast
to the directed decision tree approach, the schemes in this chapter directly affect the training
algorithm and so it is not possible to incorporate additional diversity by using complementary
training algorithms. The use of CNC as the combination method in testing and training
makes it straightforward to include very different models in the training algorithm, as the
combination method can be used independently of the form of model.

7.3 Issues with Training Complementary Systems
The word-level active training and MBRL algorithms above offer a number of approaches
that allow multiple complementary systems to be generated, and it is expected that they
will perform well if the systems are not overtrained and if the word posteriors for use in
combination are well estimated. However, there are some potential issues which arise from
the mismatch of the training and the decoding algorithms.

When performing the word-level active training, some portions of the training data are
weighted highly, while other portions have low weight. Initial experiments showed a tendency
for the ML training to increase the state occupation posteriors on portions of the training
data with low weight, and decrease the state occupation posteriors on portions with high
weight. To avoid this, for the experiments in chapter 10, the state alignments were fixed in
training using a second model set. Issues with the discriminative MBRL algorithm, including
poor alignments in decoding adversely affecting the performance and a mismatch between the
combination method used in testing and in training, are discussed in more detail below.

The directed decision tree approach of chapter 6 is not expected to suffer from the same
issues as, although the data is weighted for the decision tree statistics generation, the training

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 89

still builds a model which performs well over all data. Hence it does not directly focus the
training on specific portions of the training data in the same way as the approaches presented
in this chapter.

7.3.1 Alignment
The MBRL training algorithm focuses on specific portions of the training set, and so the
resulting systems are not expected to perform well on those portions that are not the focus
of training. This is expected to be reflected in decoding, with the MBRL trained systems
performing poorly on data where the original system may perform well. On these portions
of the test data where the MBRL system performs badly, poor performance, and hence poor
word alignments, may impact on the decoding in other segments of the utterance where the
MBRL trained system performs well. This is due to the language model causing issues beyond
the regions of data which are well modelled.

In order to restrict the impact of this potential misalignment, a restricted form of decoding
is proposed. In training, the reference transcription is used to identify the errors. However, in
decoding, the reference transcription is not available, and so it is interesting to consider a form
of decoding which addresses the issue of poor alignments by only using the complementary
system to decode segments where it is believed that the baseline system performs badly.

To perform decoding in this manner, the confusion networks obtained from decoding with
the first system are used. Where it is believed that the first system is correct, the competing
words are pruned out of the confusion network. Where it is believed that the first system is
incorrect, the competing words remain in the confusion network. The potentially correct and
incorrect words can be identified by a confidence measure, such as those discussed in section
5.1. This pruned confusion network is converted to a word lattice, and !NULL arcs in the
confusion networks are treated as meaning the competing words in that segment are optional.
The lattice is then expanded using a language model and rescored by the complementary
system. Thus, only words where the first system is unsure are rescored by the second. The
rescored lattices are then converted to confusion networks, for confusion network decoding.
This approach is similar to the lattice rescoring and acoustic codebreaking approaches in
sections 3.3.4.1 and 4.2.4.

This procedure allows paths in the lattice which were not present in the original decoding
lattices, though the simple lattices allow for fast rescoring. Additionally, this form of decoding
is more closely related to the threshold loss function in training and is similar to the acoustic
codebreaking discussed in section 4.2.4 by its use of a second system to resolve confusions
made by the first.

The posterior probability can be used as a confidence measure to identify those segments
where the first system performs badly. An example of the confusion network pruning with
a posterior threshold of 0.5 is shown in figure 7.2, and the corresponding lattice is shown in
figure 7.3. For example, in the first segment of the confusion network, the best word (‘OH’)
has a posterior of 0.8 and so the competing words (‘TO’ and ‘A’) are pruned out. In the
second segment, the best word (‘BUT’) has a posterior of 0.4, and so the competing words
are retained.

The use of a confidence measure to do this pruning means that some confusion segments
will be incorrectly identified as errors, while some incorrect words will be falsely labelled as
correct. In the first case, this could lead to previously correct words being made worse by
the restricted decoding and degrading the word error rate. In the latter case however, the

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 90

IN

AND

P=0.8

DIDN’T ELABORATEIT

BUT

P=1.0P=0.7P=0.7

P=0.4
OH

!NULL

TO IN

!NULLA AND

P=0.8

DIDN’T ELABORATEIT

BUT

P=1.0P=0.7

P=0.4
OH

!NULL

P=0.7

Figure 7.2: Pruning the Confusion Network with a posterior threshold of 0.5

OH
IN

BUT

AND

IT DIDN’T ELABORATE

Figure 7.3: Word graph resulting from the CN pruning in figure 7.2

incorrect words are not able to be corrected, but this will have no impact on the word error
rate.

The reduced lattices that are obtained from the pruned confusion networks are no longer a
good representation of the hypothesis space. Words are pruned out based on the posterior of
the corresponding best word, not the posterior of the word itself. Also, many low probability
paths and words are pruned out. Hence, the posteriors which are calculated from this reduced
lattice are no longer reliable. This means that confusion network combination using the final
confusion networks is not appropriate. Thus, this scheme is an implicit combination scheme,
where the output from the first system is rescored by the second.

7.3.2 Combination as a Binary Classification Task
A second issue with the complementary training algorithms presented in sections 7.1 and 7.2
is the mismatch between the combination algorithm in training and that used in decoding,
when the threshold function in equation 5.13 is used in training. CNC in decoding uses the
posterior combination in equation 3.3, while the threshold loss function makes a hard decision
about the correctness of a word.

Hence, it may be necessary to alter the combination algorithm in decoding to more closely
match that used in training. The threshold loss function effectively gives words a weight of
1 or 0, depending on whether they are correct or not. For this reason, it is interesting to
consider the combination of two systems as a binary classification task, as in section 5.1.3.
Confusion networks from two systems are aligned against each other. Then, for each segment,
the binary choice is whether to use the output from the first system, or to combine the outputs
from both the first and second systems. Thus, each segment in the second system is effectively
assigned a weight of 1 or 0 in the combination, reflecting the threshold in training.

When considering the alignment of two confusion networks with a reference transcription,
as shown in figure 7.4, it is possible that either or both of S0 and S1 are correct. However, for
the task of combination to match the threshold loss function in training, it is not necessary
to consider the errors made by S1, but to consider the errors made by S0 and the combina-
tion S0+S1. Thus, there are four outcomes from the word level combination that must be

figures/align_cn.eps
figures/align_lat.eps

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 91

IN ELABORATE

!NULL

IT

IN

IN

!NULL

BUT IT DIDN’T ELABORATE

BUT

!NULL

BIT

REF

S0

S1

S0+S1
ITBIT DID ELABORATE

DID

DIDN’T

DID ELABORATEIN

CLASS 0 1 2 3

IT

Figure 7.4: Classes for Combination as a Binary Classification Task

considered. These are illustrated in figure 7.4, where two systems S0 and S1 are combined.
The reference transcription is shown alongside the confusion networks, and the four classes
in this figure are

• Class 0: S0 is correct but the output from combination S0+S1 is not

• Class 1: S0 is incorrect but the combination of S0+S1 is correct

• Class 2: both S0 and the combination are incorrect

• Class 3: both S0 and the combination are correct

In the first confusion segment of figure 7.4, the best word from system S0, ‘BUT’, is altered
to ‘BIT‘ by combination of S0+S1, and performance is degraded. The second confusion
segment shows the opposite case, where the word ‘IN’ is corrected to ‘IT’ by the combination.
The third and fourth segments show the cases where both the first and second systems have
the same hypothesis word, and so their combination has no effect on the final word error rate.
Thus, it is only the first two cases which are important for the task of combination. Class
2 also includes the possibility of S0 and S1 both having different best hypothesis words, but
both incorrect, as this outcome does not alter the combination.

Along with the confusion networks for each system, it is trivial to obtain a force-aligned
transcription and language model information for the best hypothesis. These three sources of
information may be used to obtain a feature vector for each confusion segment, as in figure
7.5, and hence train a binary classifier to detect the errors, as in section 5.1.3. Examples
of previously used features, such as duration, acoustic model scores and word posteriors, are
also given in section 5.1.3. If the best word in a confusion network is !NULL, then some of
the features, such as word duration, may not be available.

First, a general error detection algorithm can be used. Such an algorithm aims to identify
errors made by the first system, and hence combine segments only when the first system is
incorrect. In this case, classes 1 and 2 are merged to give the class containing errors, and

figures/binary.eps

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 92

classes 0 and 3 are merged to contain those words which are correct. However, an algorithm
which detects errors reasonably well may not have a noticeable effect on the final word error
rate after combination if it only performs well on those examples from classes 2 and 3.

Ideally, the error detection algorithm could be applied to just those examples in classes 0
and 1, in figure 7.5, although it is expected that these classes have far fewer examples than
classes 2 and 3, possibly leading to data insufficiency if examples from classes 2 and 3 are
discarded.

BIT DIDN’T ELABORATE<silence>

<silence> BUT ELABORATEDIDIT

DIDN’TIT!NULL !NULL

!NULLBUT

ELABORATE

DID!NULL

S0

BIT

DID

ELABORATE

D1

!NULL

THE

A BUT IT DIDN’T

!NULL!NULL

Feature vector = x

Figure 7.5: Combination as a Binary Classification Task

The IDEAL combination discussed in section 3.4 is a form of this scheme where the
reference transcription is used to accurately identify the errors. That is, it uses an ideal
confidence score to identify word errors. If the first system is correct, then its output is used.
If the first system is incorrect, then the combination of the two systems is used.

Chapter 11 evaluates these approaches using logistic regression as the binary classifier.
Word error detection using a classifier has had limited success in previous work [165]. However,
the subset of words which affect the combination is much smaller than the entire test set, and
training a classifier to perform well on this smaller task may prove effective. Additionally,
as it is expected the decoding with the second system will perform differently depending
on the errors made by the first system, these techniques may prove useful for combining
complementary systems where the training algorithm is directly related to the errors.

7.4 Summary
This chapter has presented two algorithms for training complementary systems, based on
the Maximum Likelihood and minimum Bayes’ risk criteria. These use confusion network
combination in both training and testing, to identify errors made by the previous systems
and weight the data appropriately to focus on these portions of data. At the same time, the
training may degrade performance on portions of the training set where the previous systems
made no errors. In this way, the training aims to build systems which are optimal when
combined, not individually.

figures/svm_combination.eps

CHAPTER 7. MINIMUM BAYES’ RISK LEVERAGING 93

The training is embedded within an iterative leveraging framework for building multiple
complementary systems. The framework allows extra diversity to be incorporated by varying
the multiple systems, for example in their frontend, decision tree, or dictionary.

To conclude, potential issues with the training algorithm are discussed, including poor
alignments affecting the performance of the decoding algorithm and combination as a binary
classification task to better match the training.

CHAPTER 8
Experimental Setup

The directed decision tree, word-level active training, and MBRL algorithms presented in
the two previous chapters were evaluated on LVCSR broadcast news tasks in English,

Mandarin and Arabic. Historically, much research for ASR has been carried out on English
tasks. In recent years however, other languages have become more popular. Mandarin and
Arabic have very different characteristics to English, which can affect the training algorithm,
and so it is interesting to perform experiments on these three languages. The following three
chapters present and discuss the results, but this chapter first details the experimental setup
for the three tasks.

8.1 Broadcast News Training and Decoding
The training and decoding approaches for the three languages have some similarities. The
common attributes of building a cross-word triphone system and two forms of decoding are
discussed in this section, while language specific details are discussed below.

8.1.1 Training Approach
The overall training approach for building systems was the same for all three languages.
The first step in building the systems is to perform the decision tree clustering, using an
unclustered triphone model to generate the statistics. This decision tree was used as the
basis for building an acoustic model with 16 components per state using a 39 dimensional
feature vector with 12 PLP coefficients and energy, plus first and second derivatives. Cepstral
mean normalisation was also used. This system, denoted by ‘PLP’ in the experimental results,
was used for initial experiments with the directed and random decision trees in sections 9.2

94

CHAPTER 8. EXPERIMENTAL SETUP 95

and 9.3 as the quick development time made it easy to generate multiple systems based on
multiple decision trees.

Next, the feature vector was increased to 52 dimensions by the addition of the 3rd deriva-
tives, and an HLDA transform estimated to project back to 39 dimensions. For the Mandarin
task only, the pitch and its first and second derivatives were then appended to the feature vec-
tor to give 42 dimensions. Then, the number of Gaussian components per state was reordered
to be proportional to the state occupancy count, maintaining an average of 16 components
per state. This more complex system, denoted by ‘HLDA’, was used as the ML baseline for
experiments with the word-level active training in section 10.1.

MPE training was then performed. Phone-marked lattices were first generated using a
pruned bigram language model to increase confusions, and these were used as the hypothesis
space for MPE training. Eight iterations of training were performed and the smoothing, as
described in section 2.4.2.5, was done using a dynamic MMI prior. This system, denoted
‘MPE’, was used as the baseline for experiments with the directed decision trees in sections
9.4 and 9.5, and the discriminative MBRL training in section 10.2.

Finally, gender dependent models were built using three iterations of MPE training to
update only the means and variances, with the gender independent model as a static prior.
These models were used for decoding in the multi-pass framework described below for exper-
iments in section 9.6.

8.1.2 Single-pass Decoding
Results are first obtained using gender independent models in a single-pass decoding frame-
work, without speaker adaptation. This decoding framework is the same for all three lan-
guages. First, lattices were obtained using a bigram language model. The bigram lattices
were then expanded with a trigram language model, before being converted to confusion net-
works for confusion network decoding. All individual system results given are for confusion
network decoding, as this allows the gains from combination to easily be seen. Combination
was performed using confusion network combination. For all statistical significance tests, the
matched-pairs test was used [54].

8.1.3 Multi-Pass Decoding Framework
Along with the singlepass unadapted framework, decoding was also performed in a multi-
pass framework similar to that discussed in section 3.1. This allows for the use of complex
acoustic and language models, and also additional techniques such as cross-adaptation and
unsupervised speaker adaptation.

Decoding was performed in two multi-pass frameworks both shown in figure 8.1. In these
frameworks, an initial transcription was generated using gender independent models and
a trigram language model so that normalisation and adaptation could be performed, and
lattices generated using gender dependent models and a fourgram language model. These
lattices were then rescored, using multiple models, and the outputs combined using confusion
network combination. Both MLLR mean and variance adaptation were used in the final pass,
along with lattice-based adaptation, as in [48]. The first framework in figure 8.1(a) uses a
common adaptation and lattice generation stage, using the S0 model, while the second in 8.1
(b) uses separate passes for each of the systems. Thus the framework in figure 8.1(a) includes
cross-adaptation, while that in 8.1(b) does not.

CHAPTER 8. EXPERIMENTAL SETUP 96

Lattices

generation
Lattice

transcription
Initial

generation
Lattice

transcription
Initial

DX

Lattices

S0

Lattices

generation
Lattice

transcription
Initial

S0 DX

Normalisation
Adaptation

CNC

...

Adaptation
Normalisation

...

Normalisation
Adaptation

CNC

...

Figure 8.1: Multi-Pass framework with (a) common lattice generation, (b) separate lattice
generation passes

As for the singlepass framework, all individual system results are for CN decoding, and the
combination is done using CNC. The matched-pairs test was used for statistical significance
testing.

8.2 Broadcast News English
The acoustic models for the English task were trained using approximately 144 hours of data
recorded by the LDC in 1997 and 1998. The standard decision tree for state clustering had
6976 unique states. Additionally, MPE trained 4 and 8 component systems were built in
the same way as the 16 component system. The three systems were trained using separate
HLDA transforms and lattices for discriminative training, though the decision tree remained
the same.

A trigram language model with a 59k wordlist was used for singlepass decoding. The
language models were trained on approximately 1000M words, 4M from the acoustic training
data, and the remainder from newswire articles.

Results are given on the dev03 and eval98 test sets, which are 2.7 and 2.9 hours respec-
tively. The dev03 set was collected in 2001 and the eval98 set in 1998. Additionally, a 10 hour
subset of training data was used for examining the effect of the algorithms on the training
set. This subset of training data was not held-out, and so performance on this set is expected
to be better than for the independent test sets. The baseline results for the English systems
are given in table 8.1. On the dev03 set, the simpler PLP system gave an error of 19.5%, the
introduction of HLDA and the reordering of Gaussian components improved performance to
18.1%, and the MPE training further improved performance to 14.7%. This system is similar
to that used in [86].

figures/arabicsetups.eps

CHAPTER 8. EXPERIMENTAL SETUP 97

dev03 eval98 train subset

PLP 19.5 18.4 20.9
HLDA 18.1 16.6 19.3
MPE 14.7 13.2 12.0

Table 8.1: Singlepass BN English baseline WER (%) results on the dev03 and eval98 test sets
and the 10 hour training data subset

8.3 Broadcast News Mandarin
Mandarin is spoken across much of mainland China, and is the official language for the
Chinese media. It is a tonal language, with four different tones. Thus, along with the
phonetic sound, the tone of a word distinguishes it. Hence, automatic speech recognition
for Mandarin must take the tone of the speech into consideration along with the phonetic
transcription. In practice, this requires the pitch of speech to be included in an ASR system,
in the frontend and in the models, and tonal questions can be used in the decision tree for
parameter tying. Mandarin is also a character based language, with words consisting of a
number of characters, each character representing a syllable. Characters can be grouped in
many ways to make words, which means in practice, an extra step is required in processing
to automatically segment characters into words. Additionally, the metric used for evaluation
is the character error rate, rather than the word error rate.

The baseline acoustic models for the Mandarin task were trained using 148 hours of data;
28 hours of Hub-4 data released by the Linguistic Data Consortium (LDC) with accurate
transcriptions, and 120 hours of TDT4 data with only closed-caption references provided.
Light supervision techniques were used on the latter portion. The baseline systems used
a standard decision tree for state clustering, where there are 6070 unique states. Tonal
questions were used in the decision tree clustering. The incorporation of tonal information
into the models slows both training and decoding due to the increased number of tonal
phones. The HLDA system was also used to generate statistics for Gaussianisation, discussed
in section 2.2.2.2. The Gaussian frontend was used in addition to the complementary training
algorithms of the previous chapters.

A trigram language model with a 50k wordlist was used for singlepass decoding. The
language models were trained on approximately 366M words released by the LDC. These are
the correct acoustic transcripts for the Hub-4 data, China radio, Mandarin TDT4 data, the
Gigaword corpus, and People’s daily. For the multipass decoding, the trigram and fourgram
language models were built using a 58k word list, on a total of 20 Chinese text sources with
1.1G words, including acoustic transcriptions, LDC text releases and web data.

Results are given on the bnm-dev06 test set, which is a combination of dev04f (0.5 hours of
CCTV data from shows broadcast in November 2003), eval04 (1 hour of data from CCTV,
RFA and NTDTV broadcast in April 2004), eval03m (0.6 hours of mainland shows from
February 2001) and y1q1 (3 hours of data from October 2005). Baseline performance for de-
coding in the singlepass framework is given in table 8.2. As for the English task, performance
improves as the system becomes more complex, with the MPE system yielding a character
error rate of 18.4%.

For decoding in a multi-pass framework, a fourgram language model was used, and base-
line performance is given in table 8.3 for both the P1+P2 and P3 passes. Performance is

CHAPTER 8. EXPERIMENTAL SETUP 98

bnmdev06

PLP 23.4
HLDA 23.0
MPE 18.4

Table 8.2: Singlepass BN Mandarin baseline CER (%) results on the bnmdev06 test set

improved by using the multipass framework with gains achieved from the speaker adapta-
tion and complex language models, and gender dependent acoustic models, yielding a best
performance of 14.9%.

Pass bnmdev06

MPE
P1+P2 15.7

P3 14.9

Table 8.3: BN Mandarin baseline CER (%) results on the bnmdev06 test set in the multipass
framework

8.4 Broadcast News Arabic
Arabic has many dialects, but Modern Standard Arabic is spoken across much of north
Africa and the Middle East, and is the standard dialect for use in the media. Arabic has
the property that short vowels are missed from the words in transcription, and thus each
grapheme has more pronunciations than, say, a word in English. Word pronunciations for
Arabic can be generated, often by using a set of rules [19]. This leads to a large number of
pronunciations per word - on average 4.3 compared to 1.1 for English. This issue needs to be
addressed when building an Arabic system, and suggestions have included graphemic systems
[1], general purpose ‘short vowel’ models [91], or variations on training to take the multiple
pronunciations into account [49].

The MPE training criterion makes use of the phonetic transcription in training [49], and
can be adjusted to take the multiple pronunciations into account. Section 2.4.2.2 discusses
single and multiple pronunciation variants of MPE training which perform similarly but give
improvements upon combination [49]. Thus they can be used in addition to the directed tree
approach to incorporate extra diversity. However, as the MPE training criterion is directly
altered, they cannot be used in addition to the explicit training schemes of chapter 7.

The baseline system for the Arabic task used in this thesis is a phonetic system, trained
using 102 hours of data. 43 hours of this data is the FBIS data for which detailed transcriptions
are available, and 59 hours is TDT4 data which was used in a lightly supervised fashion. MPE
training was done using the single pronunciation criterion, but a second system was trained
using the multiple pronunciation criterion. Decision tree state clustering was performed, with
3976 unique states in the standard tree.

The language models for decoding in both the single and multi pass frameworks were
trained on approximately 435M words. Of this, approximately 1M was from the acoustic

CHAPTER 8. EXPERIMENTAL SETUP 99

training data, 77M from web data, and the remainder from the Gigaword corpus released by
the LDC.

bnad06 bcat06 bcad06 bnat06 average

PLP 38.3 48.3 46.6 41.1 43.5
HLDA 36.2 47.4 45.5 39.5 42.1
MPE 33.0 44.9 42.9 36.6 39.3

Table 8.4: Singlepass BN Arabic baseline WER (%) results on the bnat06, bnad06, bcat06 and
bcad06 test sets

Results are given on four test sets, each around 3 hours long: bnat06 and bnad06 are
broadcast news data while bcat06 and bcad06 consist of broadcast conversation shows, and
hence are less closely matched to the training data. bnat06 consists of data from November
2005 and January 2006, bnad06 from November and December 2005, and January 2006,
and bcat06 and bcad06 were collected in January 2006. Table 8.4 gives performance of the
single pronunciation MPE trained baseline system. As for the English and Mandarin tasks,
performance improves as training progresses.

Decoding was performed in the multi-pass framework described above. A fourgram lan-
guage model was used. In this framework, the large number of Arabic pronunciations are
handled in decoding by using pronunciation probabilities. The results obtained for decod-
ing in the multipass framework are given in table 8.5. Again, gains are seen from the more
complex decoding.

Pass bnad06 bcat06 bcad06 bnat06 average

MPE
P1+P2 31.8 43.9 41.3 35.0 38.0

P3 30.8 43.6 40.6 33.9 37.2

Table 8.5: BN Arabic baseline WER (%) results on the bnat06, bnad06, bcat06 and bcad06
test sets in the multipass framework

CHAPTER 9
Experimental Results

with Directed Decision
Trees

This chapter presents experimental results for the directed decision tree discussed in chap-
ter 6. First, the decision tree divergence measure is evaluated, and the effect of the data

weighting on the resulting decision trees is seen. Next, initial experiments on an ML trained
Mandarin system compare the random tree and the directed tree algorithms.

The effect of MPE training and the directed decision tree is then investigated for the
Mandarin, Arabic and English tasks, followed by the combination of Gaussianisation and the
directed tree algorithm for the Mandarin task.

The second half of this chapter uses the multi-pass combination framework introduced in
the previous chapter for decoding. Results are obtained on both the Mandarin and Arabic
tasks. Finally, the combination of directed and random decision trees with single and multiple
pronunciation training for extra diversity is presented for Arabic.

9.1 Decision Tree Divergence
To begin, the divergence measure of section 6.3 was evaluated on the Mandarin and Arabic
tasks described in chapter 8. A baseline system, S0, was first built. Next, system D1 was
built to be complementary to S0 using a directed decision tree, and D2 was then built to be
complementary to both D1 and S0. D1 and D2 were built in exactly the same way as S0, the

100

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 101

only difference being in the decision tree generation. The weighting for reference words in the
statistics generation was the sum function, previously given in equation 5.12, repeated here

l(Wref) =

(

1 −
1

S

S−1
∑

s=0

P (Wref |O,M
(s))

)α

(9.1)

The effect of α on the decision tree generation is interesting, so to avoid the computational
cost of building and decoding with many systems, the effect of α on decision tree divergence
measure is examined rather than its effect on final word error rate.

0 10 20 30 40
0

10

20

30

40

50

60

Tr
ee

 D
iv

er
ge

nc
e

α

S0+D1
S0+D2
D1+D2

0 5 10 15 20 25 30
0

50

100

150

Tr
ee

 D
iv

er
ge

nc
e

α

S0+D1
S0+D2
D1+D2

(a) Mandarin (b) Arabic

Figure 9.1: Decision Tree Divergence with α when comparing S0 and D1 (dotted line), S0 and
D2 (solid), D1 and D2 (dashed)

The tree divergence was measured for both Mandarin and Arabic broadcast news tasks,
and figure 9.1 shows how the tree divergence varies with α in the loss function calculation.
D1 was compared to just the baseline, S0, while D2 was compared both to S0 and to D1. The
divergence tends to increase with α, as more emphasis is placed on harder to recognise training
data. As α becomes larger, further increases in divergence are small. Both D1 and D2 are a
similar distance from S0, but D1 and D2 are much closer together. For the Mandarin system
in figure 9.1(a) the absolute values of the divergence are smaller. This could be because the
Mandarin system includes tonal questions, hence there are many more similar questions for
the Mandarin task than there are for Arabic. Thus, when selecting sub-optimal splits, the
questions chosen are more likely to be similar to the optimal question.

For the Mandarin task, the baseline decision tree has 6070 unique states. Figure 9.2 shows
the number of states in the directed decision tree, D1, as α in the loss function is changed.
As α is increased from 0.5 to 32, the number of unique states in the resulting decision tree
decreases from 5848 to 5643, and thus the directed tree is more compact than the baseline
tree.

As a contrast to the directed tree approach, ten random decision trees were also built for
the Mandarin task. Five of these were built with N = 10 and five with N = 5. N is the
number of questions between which the random tree algorithm decides at each step in growing
the tree. The divergences between S0 and the random trees are given in table 9.1 for both

graphs/div-graph-M.eps
graphs/div-graph-A.eps

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 102

0 5 10 15 20 25 30
5600

5650

5700

5750

5800

5850

α

N
um

be
r o

f s
ta

te
s

Figure 9.2: Number of unique states with α for the Mandarin directed decision tree D1

N=5 and N=10. When N=5, the divergence varies between 96.8 and 109.5, and for N=10 the
divergence with the baseline varies between 167.7 and 188.7. Thus, the divergence increases
with N as the random tree algorithm moves away from the baseline. These are greater than
the divergences between the baseline and the directed tree in figure 9.1(a), which is to be
expected as the random tree algorithm is far less restrained.

Table 9.1 also shows the number of unique states for each of the random trees. It can be
seen that as N increases, the number of states decreases. This is as expected, as the increase
in data likelihood will be slower than for the standard algorithm as the random tree is grown,
and so the likelihood will fall below the stopping threshold earlier. However, there appears
to be no correlation between the number of states and the divergence. The performance of
these random systems is examined in the following section.

Decision Tree Divergence with S0 # states

STANDARD S0 - 6070

RANDOM: N=5

R1 102.2 5568
R2 96.8 5618
R3 105.5 5606
R4 103.3 5585
R5 109.5 5600

RANDOM: N=10

R1 182.1 5226
R2 170.5 5188
R3 188.7 5142
R4 168.0 5222
R5 167.7 5184

Table 9.1: Random Trees for ML trained BN Mandarin systems - number of states and
divergence with baseline S0 system

It is suspected that if the divergence between two trees is small, then their combination
will not yield gains. For this reason, in the following sections, the first directed tree D1 was
built with α = 1 and the second D2 was built with α = 16.

graphs/ddtstates.eps

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 103

9.2 Random Decision Trees
First, the performance of random decision trees was examined on the Mandarin task. A
baseline decision tree was built using the standard decision tree algorithm discussed in section
2.8. From the ten random decision trees of the previous section, ten random systems were
also built. Each system was built with a 39 dimensional PLP feature vector and the number
of components per state was 16. ML training was performed, and no HLDA transform was
included in the frontend. This was to allow quick development of the ten random systems.

Decoding was run in a singlepass unadapted framework to evaluate the system per-
formances. The individual system results, and their performance in combination, on the
bnmdev06 test set are given in table 9.2. These results show that the random trees individu-
ally perform worse than the baseline, and as N is increased the individual system performance
gets worse. The average result for N=10 is 23.8% CER, compared to 23.6% for when N=5,
and 23.4% for the baseline. This is expected, as the random decision trees are never optimal
and drift further from the optimal decision tree as N is increased. That the random tree
systems are sub-optimal can be seen by a comparison of the ML criterion on the training
data, when averaged over all frames. The ML criterion for the baseline system, S0, is -68.31,
while the best ML criterion for the random systems is slightly worse at -68.40, and occurs
with system R4 when N=5.

In contrast to the individual performances, when these random systems were combined
with the baseline the performance improved, dropping from an error rate of 23.4% baseline
to an average of 22.9% for combination with the baseline when N=5, and 23.0% when N=10.
Thus, both values of N yield gains in combination, with N=5 performing slightly better
than N=10. All the gains achieved by CNC are statistically significant when compared with
the baseline S0 system. It is also worth noting that the best individual system does not
necessarily give the best results in combination, and there is some variation between best
and worst performance. For example, when N=5, the best performing system has an error
rate of 23.5% and the worst an error rate of 23.7%. When combined with the baseline,
the best performance is 22.8%, and the worst performance is 23.1%. When comparing the
performances of these ten random systems with the number of states and divergences in table
9.1, it appears that there is no correlation between word error rate and number of states or
divergence with the baseline. For the Mandarin results below, just the average of the random
tree results is given for N=5 as this allows for easy comparison.

The performance of the random tree systems suggests that small perturbations in the
decision tree generation can lead to gains in practice. This gain might also be expected
if, for example, the decision tree was generated with an alternative decision tree algorithm.
However, these trees were not explicitly trained with the goal of being complementary, as is
the case for the directed trees in the following experiments.

9.3 Directed Decision Trees
To evaluate the directed decision tree algorithm, and for direct comparison with the random
tree systems of the previous section, initial experiments built complementary decision trees
using ML training and a PLP frontend, with no HLDA transform and 16 Gaussian components
per state.

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 104

Decision Tree bnmdev06 (CER %)
Individual CNC with S0

PLP S0 23.4 -

RANDOM: N=5

R1 23.5 22.9
R2 23.5 22.9
R3 23.6 22.8
R4 23.6 22.9
R5 23.7 23.1

AVG 23.6 22.9

RANDOM: N=10

R1 23.6 22.9
R2 23.9 22.9
R3 23.9 23.1
R4 23.9 23.0
R5 23.8 22.8

AVG 23.8 23.0

Table 9.2: Random Tree Mandarin performance for ML trained systems, bnmdev06 (CER %)

The ML trained baseline, S0, was used to weight the training data and build a directed
decision tree. This tree was then used to train a directed tree system, D1, which was trained
in the same way as the baseline and the random systems above, with the exception of the
decision tree generation. A second directed tree system, D2, was also built in the same way,
but complementary to S0+D1. That is, the loss function for the data weighting was calculated
using the combination of S0+D1. When building the trees, D1 used a value of α = 1 in the
loss function calculation, while D2 used α = 16. Decoding was run in a singlepass unadapted
framework to evaluate the system performance.

Table 9.3 shows a comparison of the average random (R) and the directed tree perfor-
mance. For combining random systems and the baseline, the average over all combinations
is given. For example, S0+R denotes the average performance when combining S0 and the
five random systems. S0+R+R denotes the average performance when all the combinations
of two random systems are used.

It can be seen that the individual directed decision tree systems perform slightly better
than the baseline while the random trees perform worse. The performance of D2 improves
the baseline performance from 23.4% to 23.2% while the average random tree has an error
rate of 23.6%. This is most likely due to an implicit discriminative training effect obtained
from the data weighting.

In combination with the baseline system, the directed trees perform as well as the average
random tree. For example, the combination of S0+D1 gives an error rate of 22.9%, which is
just 0.1% worse than the best combination, S0+R3, from table 9.2. Additionally, S0+D1+D2
gave an error rate of 22.7%, which a 0.7% absolute improvement over the baseline performance,
while the average combination of S0 and two random trees gave a comparable error rate of
22.8%. The gains achieved from CNC are statistically significant when compared to the
baseline performance. The majority of this gain is seen when combining just two systems,
with a much smaller gain achieved by the third. For the directed tree systems, this pattern is
similar to that seen in the divergence measure in the previous section. For further gains from

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 105

the second system, it may be possible to increase the diversity of the second directed tree,
D2. However, with the loss function equation used for these experiments, figure 9.1 showed
that increasing the value of α further did not lead to increased diversity.

Complementary to System bnmdev06

PLP - S0 23.4

DIRECTED
S0 D1 23.3
S0+D1 D2 23.2

RANDOM - R 23.6

CNC

S0+D1 22.9
S0+D1+D2 22.7
S0+R 22.9
S0+R+R 22.8

Table 9.3: Comparison of Directed and Random Tree Mandarin results for ML trained sys-
tems, bnmdev06 set (CER %)

The directed decision tree algorithm makes use of a data weighting, and thus has some
implicit discriminative effect in training. This accounts for the improvements seen in the indi-
vidual directed tree results over the baseline ML trained system. This implicit discriminative
effect is additional to the gains achieved due to the systems being complementary, making it
difficult to see exactly where gains are achieved. Thus, ML trained systems are not examined
for the English and Arabic tasks, and the following results use an MPE trained baseline.

It is expected that if many random trees are built, the best of these would outperform both
the baseline and the directed tree systems. However, it is impractical to build many complex
systems, and these results show that, for a small number of random trees, the directed tree
performance is close to that of the best random tree, without the uncertainty associated with
randomness.

9.4 MPE Training and Directed Decision Trees
Next, the effect of directed decision trees on an MPE trained system was considered. It is
computationally expensive to generate lattices for discriminative training, so MPE training
was only performed for the baseline and for one directed tree system on the Mandarin task. For
the directed tree system, the HLDA transform and the MPE training lattices were regenerated.

Table 9.4 shows the results obtained in a singlepass decoding framework. First, the in-
dividual results for the baseline and the directed tree systems are shown. In contrast to the
ML system in the previous section, the individual directed decision tree system no longer
outperforms the baseline. This suggests that any implicit discriminative effect from the data
weighting is subsumed by the explicit discriminative training. When the two systems are
combined, statistically significant improvements in error rate are still seen. The improvement
from the baseline to the combined performance was 0.4% absolute, a drop in error from 18.4%
to 18.0%. The IDEAL performance, introduced in section 3.4, is 17.2%. This combination
scheme uses the reference to identify word errors made by the baseline, and only combines
with the second system when the first makes an error. Thus, the IDEAL performance shows
that some additional gain could be achieved with an optimal method of combination.

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 106

System Complementary to bnmdev06

MPE S0 - 18.4
DIRECTED D1 S0 18.5

CNC S0+D1 18.0
IDEAL S0+D1 17.2

Table 9.4: Directed tree performance for Mandarin with MPE trained systems, bnmdev06
testset (CER %)

Due to the inclusion of tonal phones and tonal questions in the decision tree for Mandarin,
lattice generation for MPE training is slowed. Hence, to examine the effect of a second MPE
trained complementary system, the Arabic and English tasks were used. For these tasks, S0
is again an MPE trained system with an HLDA frontend and an average of 16 components
per state. The complementary systems D1 and D2 were trained in the same manner as S0,
with separate HLDA transforms and training lattices.

Table 9.5 shows the performance obtained on the Arabic BN task. The directed tree
systems individually do not normally improve over the baseline S0 system. For example, on
bnad06, the baseline performance is 33.0%, compared to 33.1% for D1 and 33.2% for D2.
When combined with the baseline, large gains are achieved from the combination S0+D1,
while further small gains are obtained on two of the test sets for the combination S0+D1+D2.
On the bnad06 set, the performance of S0+D1 gives an error rate of 32.5%, which is a 0.5%
improvement over the baseline system. The combination of S0+D1+D2 gives a further 0.1%
improvement to 32.4%.

System Comp. to bnad06 bcat06 bcad06 bnat06 average

MPE S0 - 33.0 44.9 42.9 36.6 39.3

DIRECTED
D1 S0 33.1 45.1 42.6 36.6 39.3
D2 S0+D1 33.2 44.9 42.5 36.8 39.3

CNC
S0+D1 32.5 44.5 42.2 36.0 38.8
S0+D1+D2 32.4 44.5 42.1 36.0 38.7

Table 9.5: Directed tree performance for Arabic using a singlepass decoding framework with
single pronunciation MPE trained systems, bnat06, bcat06, bnad06 and bcat06 testsets (WER
%)

The same behaviour can be seen in table 9.6 for the two English test sets. The directed
tree systems individually do not improve performance over the baseline, but statistically
significant gains can be seen in combination. The largest gain is achieved from the addition
of one complementary system, and additional small gains are seen when incorporating the
second. On the dev03 test set, the baseline and the directed trees all have an error rate of
14.7%, which is improved by the combination of multiple systems: S0+D1 gives 14.4% and
S0+D1+D2 gives 14.3%. The IDEAL combination shows that there is some potential for
improvement over confusion network combination, with larger potential gains possible from
the combination of three systems.

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 107

System Complementary to dev03 eval98

MPE S0 - 14.7 13.2

DIRECTED
D1 S0 14.7 13.1
D2 S0+D1 14.7 13.5

CNC
S0 + D1 14.4 12.9
S0 + D1 + D2 14.3 12.8

IDEAL
S0 + D1 13.6 12.2
S0 + D1 + D2 13.1 11.8

Table 9.6: Directed tree performance for English with MPE trained systems, dev03 and eval98
testsets (WER %)

9.5 Combination of Complementary Approaches
The experiments presented above in this chapter use baseline and complementary systems
which are trained in an identical manner, with the exception of the decision tree. Thus, the
differences in performance are solely due to the decision tree generation.

The standard approach to generating complementary systems is simply to vary the training
of individual systems and choose those which combine well together. Despite the ad-hoc
nature of this approach, some techniques have consistently been found to be complementary.
Hence, it is interesting to look at using the directed decision tree approach in addition to these
other methods, to determine whether the gains from directed trees add to those from other
sources. This can be done by altering the training of D1, so both the training method and
the decision tree differ from S0, compared to the previous results where the only difference
was in the decision tree.

Gaussianisation, discussed in section 2.2.2.2, is an alternative frontend which has been
shown to be complementary to the HLDA frontend used in the previous results [98]. Gaus-
sianisation was applied to the Mandarin MPE trained baseline system, S0, while using the
same decision tree, resulting in a baseline Gaussianised system G0. Also, Gaussianisation was
applied to the directed tree D1 to build DG1. DG1 is thus complementary to S0, but also has
extra diversity due to the addition of a Gaussian frontend. The statistics for performing the
Gaussianisation were generated in the HLDA domain, due to the assumption of independence
between the feature vector dimensions, and thus the baseline decision tree was not altered.
Separate Gaussian transforms were estimated for both the baseline and the complementary
systems. Thus, S0 and G0 make use of the same decision tree, as do D1 and DG1.

Table 9.7 shows how the combination of the Gaussian frontend with the directed decision
tree improve over the techniques individually. As expected, Gaussianised frontend improves
over the PLP frontend. The individual system performance dropped from 18.4% to 17.8%,
and also the combination of S0 and G0 resulted in a further drop in error to 17.4%. Similarly,
changing the frontend of the directed tree improved its performance from 18.5% to 17.7%.
The combination of the baseline S0 system with the Gaussianised directed tree system, DG1,
outperformed both of these with an error of 17.2%. The gain is small, suggesting that the
performance of the PLP and Gaussian frontends is too different, or the two were highly
complementary to begin with. The same behaviour is seen in the IDEAL combination.

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 108

Decision Tree Complementary to System bnmdev06

STANDARD
MPE - S0 18.4
MPE+GAUSS - G0 17.8

DIRECTED
MPE S0 D1 18.5
MPE+GAUSS S0 DG1 17.7

CNC
S0+G0 17.4
S0+DG1 17.2

IDEAL
S0+G0 16.8
S0+DG1 16.4

Table 9.7: Mandarin Directed Tree performance in addition to Gaussianisation, bnmdev06
testset (CER %)

9.6 Multi-pass Performance
The previous results have all used a singlepass unadapted framework for decoding. It is inter-
esting to see how the performance is affected by using a more complex multi-pass combination
framework, with speaker adaptation and cross-adaptation.

First, the MPE trained Mandarin baseline, S0, and the directed tree system, D1, were
decoded in the two multi-pass frameworks described in section 8.1.3. The systems S0 and D1
are gender dependent versions of those previously evaluated in the singlepass framework in
table 9.4. Results for the P3 passes and the final confusion network combination are given in
tables 9.8 and 9.9.

The results show that, for the Mandarin task, the gains from the directed tree system in
the singlepass unadapted framework are lost when using the multi-pass framework. Using
separate P1 and P2 adaptation and lattice generation passes, in table 9.8, the combination
of the baseline and the complementary system gives an improvement of just 0.1% over the
baseline, from 14.9% to 14.8%. No gain is seen in the case of a common adaptation and lattice
generation pass, in table 9.9, where the baseline system S0 was used to perform the common
P1+P2 pass and obtain the lattices for rescoring. Additionally, no cross-adaptation effect is
seen in this setup, as the performance of the directed tree system alone, 15.0%, is 0.1% worse
than its performance in table 9.8 where no cross-adaptation is performed.

System bnmdev06

MPE S0 14.9
DIRECTED D1 14.9

CNC S0+D1 14.8

Table 9.8: Directed tree performance for Mandarin with MPE trained systems in a multi-pass
adaptive framework with separate adaptation and lattice generation passes, bnmdev06 testset
(CER %)

The multi-pass combination framework was also used to evaluate the random and directed
tree results on the Arabic task. This task has the additional option of single and multiple
pronunciation MPE training, which can be used in addition to the directed decision tree for

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 109

System bnmdev06

MPE S0 14.9
DIRECTED D1 15.0

CNC S0+D1 15.0

Table 9.9: Directed tree performance for Mandarin with MPE trained systems in a multi-pass
adaptive framework with a common adaptation and lattice generation pass, bnmdev06 testset
(CER %)

System Comp. to bnad06 bcat06 bcad06 bnat06 average

MPE S0 - 30.4 42.7 39.9 33.5 36.6

RANDOM R - 30.6 42.9 39.9 33.5 36.7

DIRECTED
D1 S0 30.5 42.8 39.8 33.4 36.6
D2 S0+D1 30.4 43.0 39.8 33.4 36.6

CNC
S0+D1 30.1 42.5 39.5 33.1 36.3
S0+R 30.1 42.4 39.6 33.1 36.3
S0+D1+D2 29.9 42.5 39.6 33.1 36.2

Table 9.10: Arabic results using a common adaptation and lattice generation pass with single
pronunciation MPE trained systems, bnat06, bcat06, bnad06 and bcat06 testsets (WER %)

additional diversity. The initial baseline system, S0, and the directed systems, D1 and D2,
were trained using the single pronunciation MPE criterion described in section 2.4.2.2, and
are gender dependent versions of the models used above in table 9.5. Three random tree
systems were built with N = 5, also using the single pronunciation criterion, and the the
average results (R) are given for clarity. The results obtained using a multi-pass decoding
framework with a common lattice generation pass are shown in table 9.10. These results
show a similar pattern to the previous unadapted singlepass results on the Mandarin and
English tasks. First, the individual directed and random tree results are slightly worse than
the baseline. Second, the combination of the directed tree systems and the baseline leads to
improvements, and the combination of the baseline with the random tree systems performs
slightly worse than the directed trees. However, the addition of a second directed tree system
does not improve performance. For example, on the bnad06 set, the baseline performance
is 30.4% word error rate. The average random tree performance is 30.6%, while D1 and D2
give individual performances of 30.5% and 30.4% respectively. The combination of S0+D1,
and the average combination with the random trees, S0+R, both give a small absolute gain
of 0.3% over the baseline, with a performance of 30.1%. These gains are consistent across the
four test sets.

It has previously been seen that the single and multiple pronunciation criteria are comple-
mentary for the broadcast news Arabic task [49]. This section also considers the combination
of the directed decision tree algorithm with the complementary training criteria, in a multi-
pass decoding framework.

M0 is a second baseline system trained using the multiple pronunciation MPE criterion
discussed in section 2.4.2.2. The only difference between M0 and S0 is the loss function used
in the MPE training stage. DM1 and DM2 are both built using directed decision trees in

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 110

the same way as M0, yet complementary to S0. That is, they are the same as D1 and D2
from the previous section, except for the loss function used in the MPE training. Hence they
should retain the gains seen previously, but also include extra diversity from the difference in
training. The three random tree systems were also trained using the multiple pronunciation
MPE training and hence should also show additional gains. The average performance of these
systems (RM) is given for clarity, and again S0+RM and S0+RM+RM denote the average of
the possible combinations.

Tables 9.11 and 9.12 show results obtained using these systems in the two multi-pass
frameworks previously described in section 8.1.3. The individual system performances for M0
and S0 are very similar, but those for M0 are slightly improved over S0 in table 9.11 due to
the cross-adaptation. S0 and M0 also give gains when combined. For example, in table 9.11,
the baseline performances are 30.4% and 30.2% for S0 and M0 respectively on bnad06, and
combining them gives a performance of 29.7%. This pattern is consistent for all testsets in
both decoding frameworks.

Considering the first directed tree system, DM1, the individual system performances
are similar to the baseline systems S0 over the four sets of results, again with some cross-
adaptation gains. However, the performance of S0+DM1 improves over that of S0+M0. For
example, in table 9.11, on bnad06, S0+DM1 gives an error rate of 29.5%, compared to 29.7%
obtained from combining S0 and M0.

Further gains can be obtained from introducing a second directed tree system, DM2. This
system was built to be complementary to S0+DM1. Comparing table 9.11 to table 9.10 where
both D1 and D2 were single pronunciation systems, the results are further improved, implying
that the directed tree gains are additional to those obtained from the multi-pronunciation
training. Again, the directed tree systems perform the same or slightly better in combination
than the random tree systems, over all four testsets.

System Comp. to bnad06 bcat06 bcad06 bnat06 average

MPE
S0 - 30.4 42.7 39.9 33.5 36.6
M0 - 30.2 42.1 39.2 32.9 36.1

RANDOM RM - 30.3 42.3 39.3 33.3 36.3

DIRECTED
DM1 S0 29.9 42.0 39.3 33.1 36.0
DM2 S0+DM1 30.2 41.9 39.3 33.1 36.1

CNC
S0+M0 29.7 41.8 39.0 32.5 35.7
S0+DM1 29.5 41.8 38.9 32.6 35.6
S0+RM 29.8 41.8 38.9 32.7 35.8
S0+DM1+DM2 29.5 41.4 38.8 32.5 35.5
S0+RM+RM 29.8 41.8 38.8 32.6 35.7

Table 9.11: Arabic results using a common adaptation and lattice generation pass and both sin-
gle/multiple pronunciation MPE training, bnat06, bcat06, bnad06 and bcat06 testsets (WER
%)

The different results in tables 9.11 and 9.12 show clearly the cross adaptation effect that
can be achieved when using one system to perform adaptation and generate lattices, and
another to rescore them. The effect is demonstrated by the improved individual system per-
formances for the directed tree systems when using a shared adaptation and lattice generation

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 111

System Comp. to bnad06 bcat06 bcad06 bnat06 avg

MPE
S0 - 30.4 42.7 39.9 33.5 36.6
M0 - 30.3 42.3 39.6 33.1 36.3

RANDOM RM - 30.6 42.7 39.6 33.8 36.6

DIRECTED
DM1 S0 30.1 42.4 39.6 33.6 36.4
DM2 S0+DM1 30.6 42.1 39.4 33.5 36.4

CNC
S0+M0 29.8 42.0 39.1 32.7 35.9
S0+DM1 29.4 41.6 38.7 32.4 35.5
S0+RM 29.5 41.7 38.7 32.5 35.6
S0+DM1+DM2 29.2 41.2 38.7 32.5 35.4
S0+RM+RM 29.2 41.2 38.9 32.8 35.5

Table 9.12: Arabic results using separate adaptation and lattice generation passes and both sin-
gle/multiple pronunciation MPE training, bnat06, bcat06, bnad06 and bcat06 testsets (WER
%)

pass (table 9.11) over using independent passes (table 9.12). It is interesting then that these
gains don’t follow through when system combination is performed as might be expected. It
is the framework with no cross-adaptation effect that gives the best results in combination
for the directed tree systems. This shows that individual system error rate is not necessarily
a good indicator of whether two systems are complementary or not, and, as such, simply
aiming to optimise individual system performances may not lead to optimal performance in
combination. The first framework is more efficient for decoding due to the shared P1+P2
pass, and it may be the case that relaxing the pruning on the first passes to give more di-
verse lattices for rescoring will combine the efficiency benefits of the first framework with the
performance gains of the second. However, as discussed in section 3.3.4, there is a trade-off
between efficiency and search errors introduced by lattice rescoring.

A second observation concerns the relative gains obtained when combining the baseline,
S0, with either one or two complementary systems, DM1 and DM2, for example in table 9.11.
The largest gains over the baseline are obtained by combining two complementary systems
and the baseline, though the contribution from adding the second complementary system is
small compared to that of just the first. Although the directed decision tree algorithm is not
a boosting approach, it does try and focus the statistics generation on harder parts of the
training set. Also, the broadcast news task makes use of lightly supervised training so there
are likely to be some transcription errors in the training data. However, unlike discussed
in section 4.1.2, the observation that random trees perform better in classification noise is
unlikely to apply here. Firstly, too few decision trees are built for the effect to be noticed,
and secondly the weighting is only done at a state level so the influence of poor transcriptions
is expected to be minimal. It is likely that the two directed decision trees are not diverse
enough, as seen with the tree divergence measure in figure 9.1(b). The fact that D1 and
D2 are close together in both divergence and error rate suggest a need to somehow increase
diversity between these two trees in order to see gains from a second complementary system.
This cannot be done by simply increasing α, as section 9.1 shows that the tree divergence
does not increase further as α becomes larger.

CHAPTER 9. EXPERIMENTAL RESULTS WITH DIRECTED DECISION TREES 112

While the gains seen from the directed decision trees aren’t as large as those from combin-
ing S0 and M0, they consistently add to the the gains from combining the single and multiple
pronunciation MPE systems, while performing slightly better than the average random tree
systems.

9.7 Summary
Experimental results were presented on three Broadcast News tasks - Mandarin, English and
Arabic. The divergence measure was first evaluated on these Arabic and Mandarin tasks.
There appears not to be a strong correlation between divergence and word error rate, as seen
by the high divergences between the random trees and the baseline on the Mandarin task,
which in fact have similar performances to the directed trees. The divergence was instead used
to evaluate the similarity of the trees and hence determine suitable parameters for building
the directed decision trees.

Preliminary results on the Mandarin task using ML trained models show that systems built
using directed trees perform as well, or slightly better, than the average of those built using
random trees, without the individual fluctuations in performance seen when using multiple
random trees. Compared to the random tree systems, the directed tree is a deterministic
algorithm allowing more control over the tree generation process, and also has the advantage
that the order of combination in decoding is the same as that in training.

Next, results presented on the three languages show that the combination of complemen-
tary directed tree systems and the baseline give consistent performance gains in a range of
conditions - using both ML and MPE trained models, and performing unadapted singlepass
decoding or using a more complex multi-pass decoding scheme. Typically, the largest gains
are obtained from the combination of one directed tree system with the baseline, but further
small gains are seen from the addition of a second directed tree system.

Directed decision trees were then used in addition to two other techniques that have
been empirically shown to be complementary. These were a Gaussianised frontend for the
Mandarin task, and single/multiple pronunciation MPE training for the Arabic. In both
cases, the combination of directed trees with these techniques has shown gains additional to
those seen from just using the different techniques to independently train systems. Again,
large gains are seen from the addition of one complementary system, with further small gains
from a second, and the directed trees typically perform as well as or better than the average
random tree.

CHAPTER 10
Experimental Results

with Data Weighting

This chapter presents experimental results achieved when the approaches discussed in
chapter 7 are used to explicitly train complementary systems. Results are presented

on broadcast news English and Mandarin tasks, though the Arabic task is not used. This
is because the approaches examined in this chapter alter the training algorithm, and thus
cannot be used in addition to the single and multiple pronunciation training which was used
in the previous chapter to incorporate additional diversity. This chapter concludes by ad-
dressing the issue of poor alignments in decoding, as discussed in section 7.3. In contrast to
the experiments of chapter 9, this chapter focuses on altering the training algorithm via a
data weighting, and the standard decision tree is used for all systems.

In contrast to the directed decision tree experiments in the previous chapter, a distance
metric for evaluating the diversity of HMMs isn’t considered in this chapter. While such a
measure could prove informative, it is not expected to be as useful for evaluation. First, the
explicit training schemes in this chapter are more closely linked with word error rate when
compared to the implicit directed decision tree approach. Second, the time saving which could
be achieved by evaluating a distance measure for HMMs is much smaller than that achieved
by a distance metric for decision trees.

10.1 Word-level Active Training Results
This section considers the active ML training approach introduced in section 7.1. First,
experiments on the English task show the effect of the active training as the loss function,

113

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 114

number of training iterations, and updated parameters are changed. Initially, a well-trained
16 component system is used as the baseline, though a simpler 4 component system is also
considered to evaluate generalisation. Performance is examined on both the test and training
data. To conclude, the active training is also evaluated on the Mandarin task, and is used in
addition to Gaussianisation to incorporate further diversity.

As discussed in section 7.3, initial experiments showed a tendency for the ML training
to increase the state occupation posteriors on portions of the training data with low weight,
and decrease the state occupation posteriors on portions with high weight. Thus, the state
alignments were fixed in training using a second model set. For all the experiments below,
the baseline model was used as the second model for fixing the state alignments. Silence
models are always given a weight of 0, and hence not updated, as these are assumed to be
well trained and a complementary silence model is not expected to be useful in practice.

10.1.1 Test Data Performance
The first experiments were carried out on the English broadcast news task with an ML trained
baseline model, S0, which has an average of 16 components per state. The frontend consists
of a 39 dimensional feature vector including 12 PLP coefficients plus energy, first, second and
third derivatives, and an HLDA transform. Training data confusion networks were obtained
for S0, and used to train a complementary system, D1.

The word-level active training was evaluated as the number of training iterations increased.
The threshold loss function used was

l(Wref) = 1 if
1

S

S−1
∑

s=0

P (Wref |O,M
(s)) < β

= 0 otherwise (10.1)

This is the loss function of equation 5.13, and a value of β = 0.25 was used. That is,
any reference word with a posterior less than 0.25 in the confusion network was considered
incorrect, and used for training with a weight of 1. All other words were assigned a loss
of 0. The threshold of 0.25 corresponds to 36.2% of the reference words being used for
training. During training, the means, variances and component weights were updated, but
the transition probabilities were not as they are not expected to influence the results. The
results in table 10.4 below confirm this.

Table 10.1 shows the impact of the number of training iterations on the word error rate.
As the number of iterations increases, the individual systems typically perform slightly worse
than the baseline. For example, on the dev03 set, the baseline S0 has a word error rate of
18.1% and, after 8 iterations of training, the word error rate has increased to 18.2%. In
contrast, the combination of the baseline and the complementary system improves the error
rate. Again, for the dev03 set, after 8 iterations of training the combination of the two systems
gives an error rate of 17.7%, which is a 0.4% absolute improvement over the baseline. On
the dev03 set, the combination of S0+D1 is statistically significant for all iterations when
compared with the baseline using the matched pairs test. On the eval98 set however, only
the combination of S0 and D1 for the fourth iteration is significant. On the dev03 set, the
performance of the active training after two iterations is 18.0%, which is a 0.1% improvement

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 115

System Iteration dev03 eval98

S0 HLDA 18.1 16.6

D1 THRESHOLD

2 18.0 16.7
4 18.1 16.8
6 18.2 16.8
8 18.2 16.8

S0+D1 CNC

2 17.8 16.5
4 17.7 16.4
6 17.7 16.4
8 17.7 16.4

S0+D1 IDEAL

2 17.0 15.7
4 16.9 15.6
6 16.8 15.6
8 16.8 15.5

Table 10.1: BN English word-level active ML training WER (%) results as the number of
iterations increases. Threshold loss function with β = 0.25 on the dev03 and eval98 test sets

over the baseline. This could be due to the discriminative effect of the active training giving
an improvement in performance, such as is seen with MPE training.

It is interesting to see that the IDEAL combination of the two systems gives a further
improvement over the CNC performance. For example, the IDEAL combination of the base-
line and the complementary system after eight iterations of training is 16.8% on the dev03
set, compared to the CNC performance of 17.7%. The IDEAL combination only uses the
second system when the first is incorrect, and so its improved performance suggests that
combination with the second system does correct many of the errors which the first system
makes. However, as CNC performs worse than the IDEAL combination, this suggests that
the combination of the second system not only corrects errors made by the first, but also
introduces new errors. This implies that the training algorithm does indeed correct errors
made by the baseline system, but also that the degredation on the previously well modelled
data is large and degrades the overall performance.

The IDEAL performance improves as the number of iterations increases, implying that
the ML active training is driving the system to be more complementary as less training data
is used, but the combination scheme is not taking full advantage.

Next, to determine how dependent the active training is on the form of loss function, a
different loss function was used. The sum loss function of equation 5.12 with α = 1 was used
for training, repeated here:

l(Wref) = 1 −
1

S

S−1
∑

s=0

P (Wref |O,M
(s))α (10.2)

This function does not make a hard decision about whether a reference word is correctly
modelled or not, but instead uses a weighting based on its posterior probability in the con-
fusion network. Thus, a far greater percentage of the data is used for training, and reference
words have a continuous weighting between 0 and 1.

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 116

System Iteration dev03 eval98

S0 HLDA 18.1 16.6

D1 SUM

2 17.8 16.4
4 17.8 16.5
6 17.8 16.6
8 17.7 16.6

S0+D1 CNC

2 17.8 16.4
4 17.8 16.3
6 17.7 16.3
8 17.7 16.3

S0+D1 IDEAL

2 17.1 15.8
4 17.1 15.7
6 17.0 15.7
8 16.9 15.6

Table 10.2: BN English word-level active ML training WER (%) results as the number of
iterations increases. Sum loss function on the dev03 and eval98 testsets

The results for training with the sum loss function in table 10.2 show the same trends as for
the threshold loss function results in table 10.1, implying that the form of loss function does
not greatly alter the training. However, the behaviour of the two functions is slightly different.
First, the individual systems perform better when training with the sum loss function, and
this is probably due to the larger proportion of training data used. There is little difference in
the CNC performance between the two loss functions, though all combinations are statistically
significant when compared to the baseline, for both test sets. The IDEAL performance with
the sum loss function is worse than for the threshold. This is probably due to the larger
amount of training data used, which restricts the degree to which the training can focus on
the errors, and hence the degree to which the two systems are complementary.

The difference between the performance with sum and the threshold functions suggests
the effective amount of training data influences the active training. To examine this, the
performance was evaluated as the threshold in the loss function changed. As the threshold
increases, the proportion of reference words with weight 1 increases, and hence the effective
amount of training data is increased. As words are assigned a loss of 0 or 1, a simple measure
of how much data is used is the proportion of reference words with a posterior below the
threshold and hence assigned a loss of 1.

The results in table 10.3 show the performance as the loss threshold changes, for two
iterations of training where the means, variances and component priors are updated during
training. The threshold of β ≤ 1.0 corresponds to two further iterations of standard ML
training with 100% of the training set being used, while the decreasing threshold corresponds
to an effectively smaller training set. Table 10.3 also shows the percentage of the training
data reference words assigned a loss of 1.

For a high threshold, the behaviour is like that of active training discussed in section 2.4.3,
where the individual system performance improves over the baseline. For example, with a
threshold of 0.75 on the dev03 set, the performance improves from 18.1% WER to 17.8%. As
the threshold decreases further, the training focuses more on the errors and the individual

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 117

system performance degrades. For example, when using just 24.2% of the reference words
for training, or a threshold of 0.0025, the performance on the dev03 set degrades by 1.0%
absolute, to 19.1% WER. This is again similar to previous work with active training, where
it has been suggested that it is not sensible to focus too much on the errors, as they are often
outliers.

System Threshold (β) % words dev03 eval98

S0 HLDA 18.1 16.6

D1
THRESHOLD

≤1.00 100 18.0 16.6
0.75 46.7 17.8 16.5
0.50 41.2 17.9 16.5
0.25 36.2 18.0 16.7

0.0025 24.2 19.1 17.6

S0+D1
CNC

≤1.00 100 18.0 16.5
0.75 46.7 17.8 16.4
0.50 41.2 17.8 16.4
0.25 36.2 17.8 16.5

0.0025 24.2 18.0 16.6

S0+D1
IDEAL

≤1.00 100 17.8 16.4
0.75 46.7 17.2 15.8
0.50 41.2 17.1 15.8
0.25 36.2 17.0 15.7

0.0025 24.2 16.9 15.6

Table 10.3: BN English word-level active ML training WER (%) results as the threshold in
the loss function changes. 2 iterations of training, % words = percentage of reference words
below threshold, dev03 and eval98 testsets

It is interesting to note that the pattern of the IDEAL combination results in table 10.3
is reversed from that of the individual system results. That is, as the training focuses more
on the errors, the systems become more diverse and introduce different errors, hence the
IDEAL performance improves. However, the CNC performance does not reflect this increased
diversity, and the combination results are stable over a range of different thresholds. The
combination of the baseline and the complementary system yields some gain, with a word
error rate of 17.8% for thresholds of 0.25-0.75 on the dev03 set. This is a 0.3% absolute
improvement over the baseline performance of 18.1%. The IDEAL combination performance
improves from 17.8% to 16.9% as the threshold decreases from 1.0 to 0.0025, and the training
focuses more on the errors. Of the results obtained from confusion network combination of
S0 and D1 on the dev03 set, all results are statistically significant with the exception of a
threshold of 1.0, i.e. standard ML training.

The experiments above have updated the means, variances and GMM component priors.
Table 10.4 shows the effect of updating the different HMM parameters using the word-level
active training. Two iterations of training were performed, using the threshold loss function
with β = 0.25. The means (m), variances (v), transition probabilities (t) and component
priors (w) were updated. Table 10.4 shows that most of the effect of the active training is

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 118

seen when updating the means and variances, while the component weights and the transition
probabilities have little impact on the overall results.

System Updated dev03 eval98

S0 HLDA 18.1 16.6

D1 THRESHOLD

m 17.9 16.5
v 18.1 16.7

mv 18.0 16.7
mvw 18.0 16.7
tmvw 18.0 16.7

S0+D1 CNC

m 17.8 16.4
v 18.0 16.6

mv 17.8 16.5
mvw 17.8 16.5
tmvw 17.8 16.5

S0+D1 IDEAL

m 17.2 15.9
v 17.5 16.1

mv 17.0 15.7
mvw 17.0 15.7
tmvw 17.0 15.7

Table 10.4: BN English word-level active ML training WER (%) results as the updated pa-
rameters change. 2 iterations of training, loss threshold function with β = 0.25. m=means,
v=variances, t=transition probabilities and w=component priors, dev03 and eval98 testsets

The results above used a baseline system, S0, with an average of 16 Gaussian components
per state. This system is well trained, and so it is interesting to examine the effect of the
active training on a system which is not well trained, and thus evaluate generalisation. For
this purpose, a baseline system with an average of 4 Gaussian components per state was
built in the same way as the 16 component system, including the same decision tree. The
results are shown in table 10.5. The 16 component baseline performs better than the 4
component baseline, as expected. For example, on the dev03 set, the baseline error rate for
the 4 component system is 20.6% compared to 18.1% for the 16 component system. Next,
two iterations of the word-level active training were performed, with a threshold of β = 0.25
in the loss function, to build a system, D1, complementary to the 4 component baseline.
Performing the active training improves the performance to 20.2%, and combination of the
two systems yields a final error rate of 20.0%. This is a similar pattern to the results obtained
with the 16 component system, and suggests that the active training does not quickly lead to
overtraining.

The results presented in this section show that it is possible to achieve gains over a baseline
system by performing word-level active training. For gains to be seen for the individual
systems, the complementary system must not be too different from the baseline system. That
is, gains can be seen if the number of iterations is not too high and the loss function is chosen
so the active training uses a large proportion of the training set. This effect has been seen
with previous work on utterance-level active training as discussed in section 2.4.3.

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 119

System dev03 eval98

S0 HLDA (4 COMPONENT) 20.6 19.5
D1 THRESHOLD 20.2 19.1

S0+D1
CNC 20.0 19.1

IDEAL 19.4 18.4

Table 10.5: BN English word-level active ML training WER (%) with a 4 component system.
2 iterations of training, loss threshold function with β = 0.25, dev03 and eval98 testsets

Gains can be seen from combining the individual systems with the baseline, even when the
active training has degraded the performance of the individual system. However, if the active
training has driven the individual system to be too different from the baseline, then CNC
does not take full advantage of the diversity. CNC appears relatively stable when combining
systems which were trained using a range of parameters. In contrast, the IDEAL combination
performance improves as the complementary system is driven to be more diverse than the
baseline, for example by performing more iterations of training, or by focusing more on the
errors through the loss function.

10.1.2 Effect on Training Data
The previous section considered the performance of the word-level active training on two
independent test sets. It is also informative to consider the effect of the training on the
training data. This allows issues such as overtraining and lack of generalisation to more
easily be seen. Additionally, it allows a better assessment of whether the training is achieving
its goal of focusing the complementary models on the errors made by the baseline system. In
order to examine the performance on the training set, both recognition performance and the
effect on the word posteriors are examined.

Recognition performance was evaluated on a 10 hour subset of the English training data,
and decoding was carried out in the same way as for the independent test set results above.
The performance on this training data subset as the number of training iterations increases is
shown in table 10.6. The 16 component ML trained baseline was used, and eight iterations of
word-level active training were performed using a threshold of β = 0.25 in the loss function.
Thus these results are directly comparable to those in table 10.1 on the dev03 and eval98 test
sets.

The results show a large improvement in performance from doing active training, which
is not seen on the independent test set results of table 10.1. This performance increase is is
seen to a greater extent in section 10.2.1 below when considering the effect of MPE training
on the training data, and suggests that the large improvement in performance is due to the
discriminative effect of the active training, rather than overtraining. After eight iterations of
active training, the word error rate on this subset has dropped from 19.3% to 17.4%. The
CNC performance however is slightly worse than the individual system results, though there
is a potentially large gain to be achieved from the IDEAL combination.

The word-level active training algorithm directly uses the posterior probabilities of the
training data reference words, in order to appropriately weight the training data. Hence, it
is interesting to see the effect of the training on these word posteriors.

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 120

System Iteration train subset

S0 HLDA 19.3

D1 THRESHOLD

2 17.8
4 17.6
6 17.6
8 17.4

S0+D1 CNC

2 17.9
4 17.6
6 17.6
8 17.5

S0+D1 IDEAL

2 16.2
4 15.9
6 15.8
8 15.7

Table 10.6: BN English active ML training WER (%) results on a 10 hour training data
subset, as the number of iterations increases, threshold loss β = 0.25

Figures 10.1(a) and (b) show the cumulative distributions of the training data reference
word posteriors, obtained from the training data confusion networks from the 16 component
baseline system, for (a) training data words with a posterior less than 0.25, and (b) words
with a posterior greater than 0.25. This corresponds to the threshold used for training, and
so the 36% of words in figure 10.1(a) had a weight of 1 and were used in the active training,
while the remaining 64% in figure 10.1(b) had a weight of 0 in training. Figures 10.1(c) and
(d) show the cumulative distribution of the same word posteriors after the active training,
where (c) shows the same selection of training data words as in (a), and (d) shows the same
words as in (b). Two iterations of active training were performed, with the threshold loss
function and β = 0.25.

Thus, the effect of the training can clearly be seen on the portion of data with weight 1
by comparing figures 10.1(a) and (c). The posteriors of these reference words have increased
due to the training. In figure 10.1(a), all 36% of words have a posterior of less than 0.25,
while in figure 10.1(c), 31% of the words have a posterior of less than 0.25. Thus, the active
training has increased the posterior of 5% of the initially badly modelled words to be above
the threshold of 0.25. Additionally, in figure 10.1(a), approximately 22% of the words had
a low posterior and were pruned out of the confusion networks. After active training, this
figure decreased to approximately 19%.

A comparison of figures 10.1(b) and (d) shows that the posteriors of previously well
modelled words were also decreased by the training. In 10.1(b), the top 64% of words have a
posterior greater than 0.25. In figure 10.1(d) however, the posterior of 0.25 corresponds to a
figure of 40% on the x-axis, compared to 36% in figure 10.1(b), showing that the training has
degraded the posterior of 4% of the words to below the threshold of 0.25. Figure 10.1(d) also
shows that, of the initially well modelled words, the posterior of approximately 1% degraded
sufficiently that they were pruned out of the confusion networks.

The effect of training on the reference word posteriors suggest that the training algorithm
is achieving its goal of better modelling previously badly modelled data. At the same time,

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 121

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

(a) S0 (bottom 36% of data) (b) S0 (top 64% of data)

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

(c) D1 (the same 36% of data as in (a)) (d) D1 (the same 64% of data as in (b))

Figure 10.1: CDFs of training data reference word posteriors, (a) and (b) before and (c) and
(d) after active training with β = 0.25 for the BN English task

performance deteriorates on the portion of training data which was well modelled by the
baseline. While the active training improves the posteriors for the poorly modelled reference
words, as in figure 10.1(c), the effect on the previously well modelled words in figure 10.1(d) is
substantial. This explains the large gains achieved by the IDEAL combination. In contrast,
for CNC where the posterior probabilities are used directly, the improvement seen on one
portion of data may not be large enough to counteract the degradation on the other. This
explains the lack of improvement from CNC on the training data, in table 10.6 above.

10.1.3 Two Complementary Systems
The word-level active training can be performed within an iterative framework for building
multiple complementary systems, as was done for directed decision trees. Table 10.7 shows the
effect of building a second complementary system on the English task. D1 and D2 are both
trained using two iterations of active training, with a threshold loss function and β = 0.25.
D1 is complementary to S0, while D2 is complementary to S0+D1.

graphs/mlmbrl-s0-splita.eps
graphs/mlmbrl-s0-splitb.eps
graphs/mlmbrl-s1-splita.eps
graphs/mlmbrl-s1-splitb.eps

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 122

System Complementary to dev03 eval98

S0 HLDA 18.1 16.6

D1
THRESHOLD

S0 18.0 16.7
D2 S0+D1 18.1 16.9

S0+D1
CNC

17.8 16.5
S0+D1+D2 17.8 16.5

S0+D1
IDEAL

17.0 15.7
S0+D1+D2 16.6 15.5

Table 10.7: BN English active ML training WER (%) results for two complementary systems,
threshold loss β = 0.25, 2 iterations of training, dev03 and eval98 testsets

Individually, D2 performs worse than S0 and D1. This may be because the training of D1
degrades the posteriors of the well modelled data, as seen in figure 10.1 in the previous section,
and D2 focuses training too much on these errors introduced by D1. When combined with the
baseline and the first complementary system, D2 does not alter the CNC performance over the
combination of S0 and D1, although potential improvements from the IDEAL performance
can be seen.

These results suggest that modifications to the training algorithm are needed to restrict
the degradation on previously well modelled data, before the algorithm is useful for building
multiple complementary systems.

10.1.4 Mandarin Results
To check that the behaviour of the previous sections is not specific to the BN English task,
word level active training was also evaluated on the Mandarin broadcast news task. The
baseline system, S0, for this task is an ML trained model, with an HLDA frontend and a 42
dimensional feature vector, including 12 PLP coefficients, 1st, 2nd and 3rd derivatives, energy
and pitch, with an average of 16 components per state. Gaussianisation was then incorporated
into the frontend, to give a second baseline system, G0. Next, D1 was trained, using S0 as a
starting point, to be complementary to S0 using the word-level active training. Two iterations
of training were performed using the threshold loss function and β = 0.25. Additionally, the
word-level active training was performed using system G0 as the starting point, but to build
a model complementary to S0, yielding system DG1. DG1 is thus complementary to S0, but
incorporates additional diversity due to the Gaussianised frontend.

The results in table 10.8 show the performance of these four systems individually and
when combined with the S0 baseline. The addition of a Gaussianised frontend improves the
baseline performance from 23.0% to 20.1% CER, and their combination further improves
the performance to 21.7% CER, as expected. The word-level active training also improves
the individual system performance from 23.0% to 21.1% CER, though the combination of
S0 and D1 yields no gain with a performance of 24.4% CER. However, the addition of the
Gaussianisation and the word-level active training gives the best performance of 21.6% when
S0 and DG1 are combined, with a corresponding IDEAL performance of 19.0%. The word-
level active training does give gains additional to those seen from Gaussianisation, though the

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 123

System Complementary to bnmdev06

S0 HLDA - 23.0
G0 HLDA+GAUSS - 20.1
D1 THRESHOLD S0 21.1
DG1 THRESHOLD+GAUSS S0 20.4

S0+G0
CNC

21.7
S0+D1 22.4
S0+DG1 21.6

S0+G0
IDEAL

19.2
S0+D1 20.2
S0+DG1 19.0

Table 10.8: 16-component BN Mandarin active training CER (%) results, 2 iterations of
training, threshold loss function β = 0.25, bnmdev06 testset

gains are small as the performance gap between the HLDA and GAUSS frontends is large to
begin with.

10.2 Discriminatively Training Complementary
Systems

This section discusses experiments performed with the discriminative Minimum Bayes’ Risk
Leveraging (MBRL) training presented in section 7.2. Results are initially presented on the
broadcast news English task. First, MPE training is considered as a method for generating
complementary systems. Next, MBRL training is used, and the effect of the loss function and
the smoothing examined. Results are presented on both the test and training data. Addi-
tionally, the effect of altering the size of the system, via the number of Gaussian components,
is examined. Finally, experiments are presented on the broadcast news Mandarin task, in
addition to a Gaussianised frontend for additional diversity.

Unlike for the ML training, the loss function for MBRL training does not directly alter
the effective size of the training set. Hence, there is no need for a second model to fix the
state alignments.

10.2.1 MPE Training for Complementary Systems
MPE, and other discriminative training schemes, focus on errors as part of the training.
Thus, it is interesting to consider standard discriminative training as a method for generating
complementary systems. Normally, eight iterations of MPE training are performed to yield
a well-trained system. In this section, sixteen iterations of MPE training are performed to
yield an overtrained system. This overtrained system is interesting to consider as a comple-
mentary system as its training focuses more on errors and hence might be expected to be
complementary to a well-trained MPE system.

An ML trained HLDA system was used as the starting point for performing MPE training.
This system is the baseline S0 system of the previous section. Sixteen iterations of MPE

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 124

Iteration(s) dev03 eval98 train subset

MPE

0 18.1 16.6 19.3
6 14.9 13.3 12.7
8 14.7 13.2 12.0
12 14.7 13.1 11.1
16 15.2 13.7 10.8

CNC

8+0 15.3 13.8 13.4
8+6 14.8 13.2 12.4
8+12 14.5 13.0 11.5
8+16 14.7 13.1 11.0

IDEAL

8+0 13.6 12.3 11.5
8+6 14.4 12.7 11.9
8+12 14.1 12.7 10.9
8+16 13.7 12.4 10.3

Table 10.9: BN English MPE training for generating complementary systems, WER (%), on
the dev03 and eval98 testsets, and a 10 hour subset of training data

training were performed, with an MMI prior for smoothing. Table 10.9 shows the results
obtained on the dev03 and eval98 test sets as training progresses. As expected, the first
iterations of MPE training improve the performance, reaching a minimum after about 12
iterations, before further training leads to overtrained models and a decreased performance.
After 8 iterations of training, on the dev03 set, the word error rate has decreased from 18.1%
to 14.7%. Normally, 8 iterations of MPE training result in a well-trained system, and this is
the MPE trained system used below in this chapter as a baseline. Many iterations of MPE
training degrade the performance, and after 16 iterations, performance on the dev03 set has
dropped to 15.2%.

Next, this 8th iteration well-trained MPE system was combined with models obtained
from different iterations. Table 10.9 shows the CNC and IDEAL performance results. Small,
statistically significant, gains can be achieved by combining the 8th and the 12th iteration.
For example, the error rate of the combination is 14.5% on the dev03 set, while the 8th
and and 12th iterations both give error rates of 14.7%. Other combinations do not lead to
gains. The IDEAL combination results show mostly small potential gains, except for the
combination of the 8th iteration with either the 0th or 16th iterations. These systems are
further away from the 8th iteration in terms of number of training iterations, and the gains
achieved from an IDEAL combination are larger. This is similar to the results seen in the
previous section, where diverse systems tend not to give good CNC performance but good
IDEAL performance, and systems that are close give a much smaller IDEAL combination
gain.

Table 10.9 also shows the performance obtained on a subset of training data as MPE
training progresses. As was seen for the active training in section 10.1.2, there is a large jump
in performance from carrying out the discriminative training, and after eight iterations of
MPE training, the word error rate has dropped from 19.3% to 12.0%.

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 125

10.2.2 MBRL Test Data Performance
MBRL training is expected to have many of the same attributes as active learning, and some
initial experiments showed this to be the case. Further iterations of training are expected to
drive the complementary system further from the baseline, degrading the individual system
performance yet leading to improved IDEAL gains. Also, it is expected, as in table 10.4,
that updating the component priors and transition probabilities will have little effect on the
overall performance. Hence, this section considers just the loss function and the smoothing
when performing the MBRL training. The baseline system, S0, used in this section is the
system obtained from eight iterations of MPE training, and is used as a starting point for
MBRL training, where just the means and variances were updated.

10.2.2.1 Effect of Loss Function

Section 5.3.2 gives two loss functions for the discriminative MBRL training - a sum function
and a threshold, in equations 5.15 and 5.16 respectively. The former, the threshold function,
was first used for training. With this function, a lattice arc is given a weight of 1 if the
corresponding reference word has a posterior less than the threshold.

The effect of the threshold for the MBRL training differs from its effect in the word-
level ML active training. Previously, the threshold, β, in the loss function directly alters the
amount of training data used by assigning portions of the data a weight of zero. In contrast,
for the MBRL training, the threshold does not alter the effective amount of training data,
but the weighting of arcs in the training lattices.

The training was performed with S0 as a static prior, as in section 2.4.2.5, and a smoothing
value of τ = 70. This is the same training as is performed for building gender dependent MPE
trained models for the broadcast news tasks. Two iterations of training were performed to
avoid overtraining the complementary systems. D1 was trained to be complementary to S0.
The effect of altering the loss threshold can be seen in the results of table 10.10, and the
reduced impact of the threshold on the training set size can clearly be seen as the operation
of the MBRL training is stable over a range of thresholds. The table also shows, for each
threshold, the percentage of reference words which are below the threshold.

For a threshold value of β = 0.25, on the dev03 test set, the performance of the individual
system degrades from 14.7% to 14.9%, but the combination of S0 and D1 gives a small gain,
with an error rate of 14.6%, although this gain is not statistically significant. The IDEAL
combination of these two systems is 14.1% word error rate, and the IDEAL gains are also
stable over a range of thresholds.

Next, to evaluate a different form of loss function, the sum function in equation 5.15
was used for training. Again, two iterations of training were carried out. Table 10.11 shows
the results obtained using this different loss function. The results are very similar to those
obtained with the threshold loss function. The complementary system performs worse indi-
vidually than the baseline system, and gives no statistically significant gain when combined
with the baseline. There are small potential gains to be obtained from performing an IDEAL
combination. Thus, as for the previous active training results, the form of the loss function
does not greatly alter the effect of the training.

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 126

β % words dev03 eval98

S0 MPE 14.7 13.2

D1 THRESHOLD

0.99 59.1 15.0 13.5
0.75 44.4 15.0 13.5
0.50 39.9 15.1 13.5
0.25 35.8 14.9 13.5
0.01 27.2 15.1 13.6

S0+D1 CNC

0.99 59.1 14.6 13.1
0.75 44.4 14.7 13.2
0.50 39.9 14.7 13.2
0.25 35.8 14.6 13.1
0.01 27.2 14.7 13.2

S0+D1 IDEAL

0.99 59.1 14.2 12.7
0.75 44.4 14.1 12.7
0.50 39.9 14.2 12.7
0.25 35.8 14.1 12.7
0.01 27.2 14.1 12.7

Table 10.10: English BN MBRL training results, with change in threshold, WER (%), %
words = percentage of reference words below threshold, dev03 and eval98 testsets

System dev03 eval98

S0 MPE 14.7 13.2
D1 SUM 15.0 13.5

S0+D1
CNC 14.7 13.1

IDEAL 14.2 12.7

Table 10.11: English BN MBRL training results, with the sum loss function, WER (%), two
iterations of training, dev03 and eval98 testsets

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 127

10.2.2.2 Effect of Smoothing

The previous section showed that the MBRL training is not affected by the form of the
loss function. This section examines the effect of smoothing on the complementary system
training. As discussed in section 2.4.2.5, the smoothing interpolates the model parameter
estimates between the baseline, S0, and the estimated model parameters. If the smoothing
is too relaxed, the training allows the complementary system model parameters to drift too
far from the baseline, and performance may be poor. Conversely, if the smoothing is too
restrictive, then the complementary system may be too similar to the baseline and the systems
will not be complementary. The impact of the smoothing is thus similar to the threshold, β
in the loss function, and also the value of α used in the decision tree algorithm, in section
9.1. Additionally, decreasing the smoothing is expected to have a similar effect to increasing
the number of training iterations.

System τ dev03 eval98

S0 MPE - 14.7 13.2

D1
THRESHOLD

∞ 14.7 13.2
2500 14.8 13.3
300 14.8 13.4
70 15.1 13.5
10 16.4 14.7
0 18.8 16.5

S0+D1
CNC

∞ 14.7 13.2
2500 14.7 13.2
300 14.6 13.2
70 14.7 13.2
10 14.8 13.2
0 15.3 13.6

S0+D1
IDEAL

∞ 14.7 13.2
2500 14.5 13.1
300 14.3 13.0
70 14.2 12.7
10 13.6 12.3
0 13.5 12.1

Table 10.12: English BN MBRL training results, with change in smoothing, WER (%), thresh-
old loss function with β = 0.5, 2 iterations of training, dev03 and eval98 testsets

The baseline system, S0, is the same MPE system as above, and is again used as a static
prior during training. A smoothing value of τ = ∞ effectively keeps the model parameters
the same as the baseline, while a smoothing of τ = 0 implies no smoothing. Two iterations
of MBRL training were performed, using the threshold loss function with β = 0.5, and only
the means and variances were updated.

The results are given in table 10.12 for a range of values of τ . As expected, as the
smoothing decreases, the complementary model parameters move further from the baseline
and the individual model performance degrades. With a smoothing of τ = 70, the performance
degrades from 14.7% to 15.1% on the dev03 set, and with no smoothing the performance

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 128

further degrades to 18.8%. However, with the exception of τ = 0, the CNC performance
is fairly insensitive to the smoothing, giving error rates that are very similar to the baseline
system alone. In contrast, as the smoothing decreases and the complementary system becomes
more diverse, the IDEAL performance improves. The only statistically significant results
obtained from combination of the baseline and the complementary system are when τ = 0.
Previous work has found that combining systems with very different error rates leads to
poor performance. It is interesting to note for these results, that the performance doesn’t
greatly degrade when combining systems with differing error rates. For example, S0 and the
complementary system with τ = 10 have error rates of 14.7% and 16.4% respectively. Their
combination gives an error rate of 14.8%, which is just 0.1% worse than the baseline. For two
independently trained systems with similarly differing performance, their combination would
be expected to perform considerably worse.

10.2.3 Effect on the Training Data
Experiments discussed in the previous section show that the MBRL training tends to de-
grade the test performance of the individual systems, but that small gains can sometimes be
achieved by combining the MBRL trained systems with the baseline. However, in general,
the combination of the MBRL trained system and the baseline does not improve over the
baseline alone. To see why this might be, the performance and effect of the algorithm on the
training data is examined.

Recognition results were obtained using the same ten hour subset of training data used
in section 10.1.2, as the number of iterations of MBRL training was increased. The baseline
system, S0, is the same well-trained MPE system as in the previous section, and the threshold
loss function was used with β = 0.5. Smoothing was performed with a static prior using
τ = 70. The results are shown in table 10.13.

System Iteration train subset

S0 MPE 12.0

D1 THRESHOLD
2 12.1
4 12.6
8 13.7

S0+D1 CNC
2 11.9
4 11.9
8 11.9

S0+D1 IDEAL
2 11.6
4 11.4
8 11.3

Table 10.13: BN English MBRL training data subset recognition performance as number of
iterations increases, threshold loss β = 0.5, τ = 70

The baseline performance on this subset of training data gives a word error rate of 12.0%,
with the performance of the complementary system degrading as the number of iterations
increases. After eight iterations of training, the word error rate is 13.7%. However, the
combination of the baseline and the complementary system consistently gives an error rate

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 129

of 11.9%. Again, the IDEAL gains improve as the number of iterations increases and the
complementary system becomes more diverse.

This behaviour differs from the performance of the ML word-level active training on the
training set, as seen in section 10.1.2, and differs from the effect of MPE training shown
previously in table 10.9. For both active and MPE training, the training improves results on
the training data subset, while MBRL degrades performance.

It is also interesting to see the effect of training on the training data reference word
posteriors. Figure 10.2 shows the effect of training on the posteriors, and is similar to figure
10.1 for the active training. However, the graphs in figures 10.2 and 10.1 are not directly
comparable due to the different baselines and initial distributions over word posteriors, and
also the different choice of threshold.

Figures 10.2(a) and (b) show the cumulative densities of the reference word posteriors
obtained using S0, for the words (a) with a posterior below 0.5, and (b) with a posterior above
0.5. This threshold corresponds to 40% of words with a posterior below 0.5, and 60% with a
posterior above, with approximately 23% of reference words not appearing in the confusion
networks. Figures 10.2(c) and (d) show the cumulative density functions of the same portions
of training data after two iterations of the MBRL training have been performed. In figure
10.2(c), approximately 36% of the reference words have a posterior greater than 0.5, compared
to 40% in figure 10.2(a), showing that the MBRL training has improved the posterior of 4%
of words to above the threshold of 0.5. Figure 10.2(d) shows that 2% of reference words had
a degredation in their posterior from above to below 0.5.

It can be seen that the effect of the MBRL training is to increase the posteriors of words
which were previously badly modelled, and meanwhile decreases the posteriors of word which
were previously well modelled. Thus the baseline and the MBRL trained system make dif-
ferent errors. As for the active training case, the MBRL training decreases the percentage of
reference words which do not appear in the confusion networks. However, the improvement on
the poorly modelled portion of data may not be enough to overcome the degradation on the
previously well modelled data, and could lead to poor performance using confusion network
combination which uses the posterior probabilities directly.

10.2.4 Overtraining and Generalisation
The results discussed above in this chapter have used a 16 component MPE trained system
as the starting point for performing MBRL training. This system is well-trained, and further
MPE training begins to degrade performance. Hence, to further investigate the issue of
generalisation and overtraining, it is interesting to consider the MBRL training starting with
a system which is not well trained. For this purpose, 8 and 4 component MPE trained systems
were built, and used as the starting point for MBRL training. The 16, 8 and 4 component
MPE trained systems were built in an identical manner, but with separate HLDA transforms
and MPE training lattices.

The results for the 16, 8 and 4 component systems are given in table 10.14. Individually,
it can be seen that the performance degrades as the number of components decreases. For
example, on the dev03 set, the performance on the 16 component baseline system was 14.7%,
on the 8 component system it was 15.3%, and on the 4 component system performance had
dropped to 16.2%. This suggests that the 8 and 4 component systems are not well trained.

Two iterations of MBRL training were performed for each system, with a threshold loss
function and β = 0.5. Smoothing with the baseline as a static prior was used, with τ = 70,

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 130

0 10 20 30
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

(a) S0 (bottom 40% of data) (b)S0 (top 60% of data)

0 10 20 30
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100

% of words

P
os

te
rio

r P
ro

ba
bi

lit
y

(c) D1 (the same 40% of data as in (a)) (d) D1(the same 60% of data as in (b))

Figure 10.2: CDFs of training data reference word posteriors, (a) and (b) before and (c) and
(d) after MBRL training with β = 0.5, for the BN English task

System Components dev03 eval98

S0 MPE
4 16.2 14.8
8 15.3 13.9
16 14.7 13.2

D1 THRESHOLD
4 18.4 16.6
8 16.1 14.4
16 15.1 13.5

S0+D1 CNC
4 16.3 14.7
8 15.4 13.9
16 14.7 13.2

S0+D1 IDEAL
4 15.0 13.7
8 14.5 13.2
16 14.2 12.7

Table 10.14: English BN Results MBRL 4, 8 and 16 components, dev03 and eval98 testsets

graphs/mbrl-s0-splita.eps
graphs/mbrl-s0-splitb.eps
graphs/mbrl-s1-splita.eps
graphs/mbrl-s1-splitb.eps

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 131

and just the means and variances were updated. It can be seen that, although absolute
performance improves as the number of components increases, the pattern of results on all
three systems is the same.

First, performing the MBRL training degrades the individual system results. For example,
with the 4 component system, the MBRL training degrades performance from 16.2% to 18.4%,
while on the 16 component system the performance degrades from 14.7% to 15.1%. Next,
combining the baseline and the MBRL trained system performs about as well as the baseline
alone. The combination of the 4 component baseline and the MBRL trained system gives an
error rate of 16.3%, which is 0.1% absolute worse than the baseline. For the 16 component
system, the combination of S0 and D1 gives an error rate of 14.7%, which is identical to the
baseline performance alone. As has previously been seen, large gains could be achieved from
the IDEAL combination. These results further suggest that overtraining is not an issue with
the MBRL training, and starting from a simpler system does not affect the performance of
the algorithm.

10.2.5 Building Multiple Complementary Systems
As with the directed decision trees and the word-level active training, MBRL training may
be embedded within an iterative boosting-like framework to build multiple systems. Table
10.15 shows the results obtained when building two systems on the English task. D1 is built
to be complementary to S0, as before, while D2 is trained to be complementary to S0+D1.

Individually, D2 improves over D1, suggesting that it attempts to fix some of the errors
that D1 introduced. However, in combination, the IDEAL performance improves from the
addition of a second system, but the CNC results do not. The performance of the CNC for
the combinations S0+D1 and S0+D1+D2 is the same for both test sets.

System Complementary to dev03 eval98

S0 MPE - 14.7 13.2
D1

THRESHOLD
S0 15.1 13.5

D2 S0+D1 14.9 13.2

S0+D1
CNC

14.7 13.2
S0+D1+D2 14.7 13.2

S0+D1
IDEAL

14.2 12.7
S0+D1+D2 13.9 12.6

Table 10.15: BN English results for two complementary systems, threshold loss β = 0.5, dev03
and eval98 testsets

10.2.6 MBRL on Broadcast News Mandarin
The discriminative MBRL results in this section have been presented on the English broadcast
news task. To conclude, the training was evaluated on the Mandarin task, and the effect of
training in addition to Gaussianisation was considered.

A 16 component MPE trained baseline system, S0, was used, and a 16 component system
with a Gaussian frontend, G0, was also built. Then, two iterations of MBRL training were

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 132

performed, with a threshold loss function and β = 0.5. Both a standard MPE and a Gaus-
sianised system were trained to be complementary to S0. Results are shown in table 10.16.
The Gaussianised system, G0, improves over the MPE system, with the error rate dropping
from 18.4% to 17.8%. The combination of S0 and G0 improved further, with an error rate of
17.4%. This effect has been seen in previous work using Gaussianisation.

The MBRL training degrades the individual system performance, with D1 yielding an
error of 19.5%, compared to the baseline of 18.4%. The combination of the two performs
0.2% absolute worse than the baseline, with 18.6% CER. A fourth system, DG1, was trained
to be complementary to S0, but with a Gaussianised frontend. The MBRL training degrades
the performance of the Gaussianised system from 17.8% to 19.0%. S0 and DG1 have individual
performances of 18.4% and 19.0% respectively, while their combination yields a performance
of 17.8%. However, this performance is 0.4% absolute worse than the combination of the
standard baseline and Gaussianised system.

The pattern of results for the Mandarin task are similar to the results seen on the English
task, suggesting that the effect of the MBRL training is consistent across the different lan-
guages. It also does not appear beneficial to improve MBRL training by combining it with the
additional diversity obtained from Gaussianisation. This is in contrast to the directed decision
tree results of table 9.7, which uses the same baseline systems, and where Gaussianisation
gave small additional gains to the complementary system training.

System Complementary to bnmdev06

S0 MPE - 18.4
G0 MPE+GAUSS - 17.8
D1 THRESHOLD S0 19.5
DG1 THRESHOLD+GAUSS S0 19.0

S0+G0
CNC

17.4
S0+D1 18.6
S0+DG1 17.8

S0+G0
IDEAL

16.8
S0+D1 17.7
S0+DG1 16.9

Table 10.16: Mandarn BN MBRL results (CER %) in addition to Gaussianisation, β = 0.5,
bnmdev06 testset

10.3 Addressing Alignment Issues
As discussed in section 7.3, there are potential issues with the decoding of complementary
systems due to poor performance on segments of the data influencing the performance on other
segments. To address this, the form of decoding proposed in section 7.3.1 was examined
on the English task. In this form of decoding, the confusion networks obtained from the
baseline system are pruned using a confidence measure, converted to lattices, and rescored
by the complementary system. Thus, this is an implicit form of system combination. This
section uses the posterior probability as a confidence measure and so decoding with the
complementary system is only performed on portions of the test set where the baseline best

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 133

hypothesis word has a low posterior. This is closely matched to the threshold loss function
used in training though, unlike with the IDEAL combination, no use is made of the reference
transcription in decoding.

The MPE trained baseline was used as the starting point for eight iterations of MBRL
training, using a threshold loss function with β = 0.5 and a smoothing value of τ = 70.
C2 is the complementary system obtained after two iterations of MBRL training, while C8
is the system obtained after 8 iterations of MBRL training. Table 10.17 gives the baseline
performance obtained when performing standard CN decoding and combination. The initial
confusion networks for the restricted decoding were obtained from decoding with the baseline
system, S0.

System dev03 eval98 train subset

S0 MPE 14.7 13.2 12.0
C2 THRESHOLD-2 15.1 13.5 12.1
C8 THRESHOLD-8 16.5 14.9 13.7

S0+C2
CNC

14.7 13.2 11.9
S0+C8 14.8 13.3 11.9

S0+C2
IDEAL

14.2 12.7 11.6
S0+C8 13.8 12.4 11.3

Table 10.17: English BN Results MBRL 16 component results (WER %)

The restricted decoding was performed for a variety of posterior thresholds for pruning,
and figures 10.3 and 10.4 show the results on the two test sets, while figure 10.5 shows the
results obtained on the 10 hour subset of training data. These plots show the word error
rate after this restricted decoding as the percentage of baseline CN segments being rescored
is increased. For the test sets, performance obtained from rescoring the lattices with C2 is
relatively consistent over a range of thresholds. However, the performance decreases as the
proportion of rescored data increases when using C8 to rescore the lattices. For example, on
the dev03 set, the performance degrades from 15.0% to 15.9% as the threshold increases from
0.4 to 0.95 and the percentage of data rescored increases to 35%. The performance however
improves over the standard decoding result of 16.5% in table 10.17, which is expected as this
form of decoding is much more restricted.

In contrast, for the training data subset, the performance first improves as the threshold is
increased, and then decreases. The baseline performance is 12.0% word error rate. Rescoring
the lattices with the C2 system improves the error rate to 9.0% when the threshold is 0.99
and 46% of the baseline confusion network segments are rescored. This is a 3.0% absolute
improvement in word error rate, and equates to a 25% relative improvement in word error
rate. This suggests that there is some issue with poor alignments affecting the decoding,
and accounts for the improvement in the training subset performance as the complementary
models are biased towards correcting the particular errors. Additionally, the restricted form
of decoding improves markedly over the IDEAL performance, which for the combination of
S0 and C8 is 11.3%. This suggests that restricting the hypothesis space for decoding means
the complementary system is better able to select the correct word than when unrestricted
decoding is performed.

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 134

0 20 40 60 80 100
14.5

15

15.5

16

16.5

Percentage of CN segments rescored

W
or

d
E

rr
or

 R
at

e

S0 standard decoding
C2
C8

Figure 10.3: English BN Results MBRL 16 component training subset results (WER %) for
the restricted decoding with percentage of CN segments rescored, dev03

0 20 40 60 80 100

13.5

14

14.5

15

Percentage of CN segments rescored

W
or

d
E

rr
or

 R
at

e

S0 standard decoding
C2
C8

Figure 10.4: English BN Results MBRL 16 component training subset results (WER %) for
the restricted decoding with percentage of CN segments rescored, eval98

BASELINE
incorrect # correct

S0 2995 1943

AFTER RESCORING
corrected # deteriorated

C2 265 523
C8 341 640

Table 10.18: Effect of the restricted decoding on the rescored CN segments, i.e. those where
the best word posterior ≤ 0.7, on the dev03 set using systems C2 and C8

graphs/rescored.dev03.eps
graphs/rescored.eval98.eps

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 135

0 20 40 60 80 100

9

9.5

10

10.5

11

11.5

12

12.5

Percentage of CN segments rescored

W
or

d
E

rr
or

 R
at

e

S0 standard decoding
C2
C8

Figure 10.5: English BN Results MBRL 16 component training subset results (WER %) for
the restricted decoding with percentage of CN segments rescored, training data subset

Table 10.18 shows a more detailed breakdown of the effect of the restricted decoding on
the dev03 set, with a posterior threshold of 0.7 for pruning the confusion networks obtained
from decoding with the S0 system. 4938 confusion network segments have a best word with
a posterior less than 0.7, which corresponds to 14% of the total confusion network segments.
Of these, 1943 are correct, and 2995 are incorrect. Thus, 60.7% of the rescored segments are
incorrect. Compared to a baseline word error rate of 14.7%, this suggests that the posterior
is a relatively good indicator of word errors. When rescoring these segments using C2, 265
of the previously incorrect segments are corrected, although 523 of the segments which were
previously correct using S0 are made worse by rescoring with C2. Similarly, for rescoring
with C8, 341 segments are corrected and 640 are made worse. Thus, the restricted decoding
with the complementary system does correct a large proportion of the errors - around 10%
of the segments which could be corrected are improved by rescoring - although at the cost of
introducing more new errors than are corrected. Hence, with the use of an improved confidence
measure or error detection algorithm, this form of decoding should yield improvements for
complementary systems.

10.4 Summary
This chapter has presented experimental results on two Broadcast News tasks - English and
Mandarin - using the word-level active training and the MBRL training schemes presented
in chapter 7. These schemes explicitly focus on training data errors in order to build systems
which make different errors, and hence are complementary. An ML trained baseline was used
for the word-level active training results, and an MPE trained baseline for the MBRL training.

For both algorithms, results were first presented on the English task, varying parameters
such as number of iterations, smoothing and loss function, in order to examine the effect of
the training on an independent test set. Results were then presented on the training data to
determine the effect of the training, and on simpler 4 and 8 component systems to examine

graphs/rescored.train.eps

CHAPTER 10. EXPERIMENTAL RESULTS WITH DATA WEIGHTING 136

the issue of overtraining. To conclude, both algorithms were evaluated on the Mandarin task
in addition to a Gaussianised frontend for further diversity.

Results for the ML word-level active training showed that individual system performance
can be improved by the active training, and further gains can be achieved by combination
with the baseline. If the training focuses too much on the errors, or drives the complemen-
tary system too far from the baseline, then the individual system performance degrades,
though potential gains could be achieved using an IDEAL combination. This suggests that
an alternative combination scheme might prove useful when combining the multiple systems.

In contrast, for the discriminative MBRL training, little gain is seen from training the
complementary systems. Again, as the training drives the system to be more diverse, the
IDEAL combination improves, but the results from CNC are reasonably stable over a range
of conditions.

For both training algorithms, analysis of the training data reference word posteriors shows
that the training is successful in focusing more on the errors made by the baseline, while also
degrading performance on previously well modelled data. Additionally, the results obtained
from decoding with the training data subset suggest that overtraining is not an issue as the
performance is similar to that seen from MPE training. Results presented on simpler systems
show the same patterns as on a complex system, suggesting that the training has a similar
effect whether the baseline system is well-trained or not. Finally, results presented on the
Mandarin task show similar patterns to the English task.

Finally, this chapter evaluated a different form of decoding, where the complementary
system is used to rescore only low confidence portions of data obtained from decoding with
the baseline system. This form of decoding yields improvements on the subset of training
data, but not on the independent test sets where more errors were introduced than corrected.
This suggests that the word posterior probability alone is not accurate enough as a measure
for identifying errors, but an improved error detection algorithm could yield performance
gains on the test sets with this form of decoding.

CHAPTER 11
Combination of

Complementary Systems

The previous chapter evaluated the performance of the MBRL algorithm for explicitly
training complementary systems. The results show that the training drives the systems

to be diverse, and diversity can be increased by, for example, performing more iterations of
training or updating more parameters. However, confusion network combination does not take
full advantage of the diversity, and the combination of the baseline and the complementary
system is consistent over a range of training conditions. Hence, this chapter considers ap-
proaches to combination based on the techniques discussed in sections 5.1.3 and 7.3.2. These
attempt to approach the IDEAL performance by training a classifier to accurately predict
word errors. These techniques are evaluated for word error detection on all data, and also on
the subset of word errors which will affect the outcome of combination.

Another application of the word error detection is pruning the confusion networks for the
restricted decoding evaluated previously in section 10.3, where it was seen that the posterior
probability alone was not a suitable indicator of word error. With an accurate word error
detection algorithm, this restricted decoding could outperform the standard combination.
However, the techniques in this chapter are evaluated in the context of confusion network
combination. This is due to the ease of evaluating a word-error detection task, and the
IDEAL combination giving a lower bound on final word error rate if a perfect word-error
detection algorithm was available.

There is some potential gain from the IDEAL combination with the directed and random
decision tree systems investigated in chapter 9. However, due to the implicit complementary
system generation, there is not the property that the IDEAL performance markedly improves

137

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 138

as the systems become more diverse through training. Thus, while the methods in this chapter
may give gains with the directed decision tree systems, it is more interesting to consider the
application to MBRL trained systems. Also, these techniques are not evaluated for the word-
level active training, as the results are expected to be similar to those obtained with the
MBRL systems.

The results in this chapter are evaluated on the English task, using the same systems
as for the restricted decoding in section 10.3. Table 11.1 shows the baseline performance of
the S0 system, and the performance of two complementary systems, C2 and C8. These are
obtained from two and eight iterations of MBRL training respectively. It can be seen that the
IDEAL combination gives gains of approximately 0.5% and 1.0% absolute over the baseline
and CNC performances.

This chapter first investigates two approaches to combination using a global parameter -
a system weighting and a threshold. Next, logistic regression is used as a classifier for word
error detection, and its application to system combination is discussed.

System dev03 eval98

S0 MPE 14.7 13.2
C2 THRESHOLD-2 15.1 13.5
C8 THRESHOLD-8 16.5 14.9

S0+C2
CNC

14.7 13.2
S0+C8 14.8 13.3

S0+C2
IDEAL

14.2 12.7
S0+C8 13.8 12.4

Table 11.1: English BN Results MBRL 16 component

11.1 Global Approaches to Combination
Confusion network combination used in the previous two chapters treats all systems equally
during combination. The word posterior is calculated as a simple unweighted average of
word posteriors from each system. However, the systems being combined typically don’t have
equal performance, and it might be beneficial to take this into account during combination.
Alternatives are to introduce a global weighting for each system, or to use a global posterior
threshold for performing the combination. These two methods are discussed in this section.

11.1.1 Global Weighting
A weighting for each system during confusion network combination, as discussed in section
3.3.1.4, calculates a weighted average of word posteriors. For the combination of two systems,
the posterior of a word W given systems S0 and C2 becomes

P (W|S0,C2,O) = (1 − λ)P (W|S0,O) + λP (W|C2,O) (11.1)

where λ is the weight assigned to system S0. Weights can be calculated in different ways,
though better systems typically have a higher weighting. In this form of combination, λ = 0

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 139

0 0.2 0.4 0.6 0.8 1
14

14.2

14.4

14.6

14.8

15

15.2

W
or

d
E

rr
or

 R
at

e

λ

Weighted CNC: S0+C2 dev03
IDEAL
Unweighted CNC

0 0.2 0.4 0.6 0.8 1
13.5

14

14.5

15

15.5

16

16.5

17

W
or

d
E

rr
or

 R
at

e

λ

Weighted CNC: S0+C8 dev03
IDEAL
Unweighted CNC

(a) S0+C2 (b) S0+C8

Figure 11.1: Global weighting for confusion network combination, dev03 set

corresponds to just using S0, while λ = 1 corresponds to just using the complementary
system C2. λ = 0.5 corresponds to the unweighted CNC. This weighted combination of
complementary systems is similar to that used in boosting, although the MBRL algorithm
does not calculate weights as part of the training.

The graphs in figure 11.1 show the effect of altering λ on the dev03 set performance. Figure
11.1(a) shows the combination of S0 and C2, while figure 11.1(b) shows the combination of
S0 and C8. The IDEAL combination of the two systems is also shown. As λ increases from
0 to 0.5, a small gain over the baseline and the unweighted combination can be seen. For
S0+C8, the combination of the two systems yields a performance of 14.6% for λ = 0.2, while
the baseline performance is 14.7%. However, the weighted combination does not reach the
IDEAL combination of 13.8%.

11.1.2 Global Posterior Threshold
The performance of the global weighting for combination suggests a need to alter the combi-
nation at a more local level. That is, to decide at a finer granularity whether to perform the
combination of the baseline with the complementary system. Selecting whether to combine
with a second system at the confusion segment level is close to the IDEAL combination, which
uses the reference transcription to make the decision. A straightforward approach in decoding
is to use a threshold on the best word posterior in a confusion segment to decide whether to
combine with the corresponding confusion segment in the second system.

Thus, if the posterior of the best word Ŵ is above a threshold, β, then it is considered
correct and is selected as the hypothesis word. Otherwise, the combination with the second
system is carried out for that segment. This mirrors the IDEAL combination, and also the
threshold loss function in training. The combination S0+C2 becomes

P (W|S0,C2) =

{

P (W|S0) if P (Ŵ|S0) > β
1
2P (W|S0) + 1

2P (W|C2) otherwise

graphs/weight2-dev03.eps
graphs/weight8-dev03.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 140

0 0.2 0.4 0.6 0.8 1
13.5

14

14.5

15

15.5
W

or
d

E
rr

or
 R

at
e

β

CNC: S0+C2 dev03
IDEAL

0 0.2 0.4 0.6 0.8 1
13.5

14

14.5

15

15.5

W
or

d
E

rr
or

 R
at

e

β

CNC: S0+C8 dev03
IDEAL

(a) S0+C2 (b) S0+C8

Figure 11.2: Global posterior threshold for confusion network combination, dev03 set

In this form of combination, a threshold of β = 0 corresponds to only using the system
S0. As the threshold increases, the number of CN segments combined with the second system
increases, and a threshold of 1 corresponds to the standard unweighted CNC of S0 and the
complementary system C2. A weighted combination was not used as the previous section
showed little gain from weighting the systems.

The graphs in figure 11.2 show the effect of altering the posterior threshold for this form of
CNC on the dev03 set, along with the IDEAL combination result. Over a range of thresholds,
the effect of the posterior threshold has very little effect on the combination performance,
for both combinations S0+C2 and S0+C8 in figures 11.2(a) and (b) respectively. As for
the restricted decoding in section 10.3, this suggests that the posterior probability is not
informative for use with system combination.

11.2 Word Error Detection and Combination using
Single Features

The global weighting and threshold on the best word posterior in the previous section do not
yield a gain which is close to the IDEAL performance. However, the posterior probability
is known to be a reasonable confidence measure, and so its use might be expected to yield
performance gains when used for combination. This section examines the performance of the
posterior threshold in more detail, and also considers two other features for error detection
and combination - the number of alternative words in the confusion segment, and the entropy
of the segment, H, given by

H = −
∑

W∈W

P (W) log P (W) (11.2)

where W is the set of all competing words in the confusion network segment. These three
single features can be used in a threshold combination scheme, like that in section 11.1.2
above. A high posterior probability for the best hypothesised word, low entropy, and low

graphs/thresh2-dev03.eps
graphs/thresh8-dev03.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 141

number of alternative words in the CN segment all indicate a high confidence. The use of
single features for word error detection is a simplified version of the classification approach
presented in section 7.3.2. The four classes previously discussed are used in this chapter.
They are

• Class 0: S0 is correct but the output from combination S0+S1 is not

• Class 1: S0 is incorrect but the combination of S0+S1 is correct

• Class 2: both S0 and the combination are incorrect

• Class 3: both S0 and the combination are correct

Table 11.2 gives the number of examples in each class for the combination of S0 and C2.
Both the dev03 and eval98 sets are included in the totals, and all confusion segments from the
two sets are used, whether the hypothesised best word is a valid word or a deletion, indicated
by a !NULL arc. Classes 2 and 3 are those where the combination of the two systems does
not alter the best word hypothesis, while classes 0 and 1 are those CN segments where the
combination does alter the final word error rate. As expected, classes 2 and 3 have many
more examples than classes 0 and 1.

examples

class 0 396
class 1 394
class 2 16378
class 3 66002

Table 11.2: Class sizes for error detection, combined dev03 and eval98 sets, for the combina-
tion S0+C2

For the task of word error detection, classes 0 and 3 are combined to give the class of
words which are correctly hypothesised by the baseline system S0, while classes 1 and 2
are combined to give the class of word errors. There are many more segments belonging
to the class of correct words, as the word error rate is around 14%. Figure 11.3 shows the
ROC plot for word error detection for the three features; posterior, entropy and number of
alternative words. The ROC plot shows the proportion of correct words falsely identified as
errors against the proportion of errors correctly identified, as the threshold is altered. Thus
the IDEAL combination corresponds to the top left hand corner of the ROC plot where all
errors are correctly identified, and no correct words are mistakenly identified as an error. The
dotted line on the diagonal corresponds to a feature which is not informative for the task of
word error detection. It can be seen that all three features are reasonably good indicators
for word error. Posterior and entropy perform similarly, and the number of alternatives is a
slightly worse indicator. Other evaluation metrics, such as the F-measure, are not relevant
for evaluating performance as the precision is more important than the recall for application
of these methods to combination.

As previously mentioned, a good feature for error detection does not necessarily aid com-
bination if the correctly classified words mainly belong to classes 2 and 3, i.e. those which

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 142

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

Entropy
Posterior
Number of CN alternatives

Figure 11.3: ROC for word error detection using system S0 with the posterior probability,
number of alternative words, and CN segment entropy

do not alter the combination performance. Figure 11.4 shows the ROC curve for error de-
tection as the threshold is changed for the three features, but only on the subset of examples
from classes 0 and 1 which alter the performance after combining the S0 and C2 systems.
Again, the IDEAL combination corresponds to the top left hand corner of the ROC plot. In
contrast to the previous ROC plot in figure 11.3, it can be seen that the three features are
not useful for identifying the subset of errors which alter the combination performance as
they are much closer to the diagonal. This explains the poor performance of the posterior
threshold in combination, as seen in figures 11.2 (a) and (b) of the previous section, as the
posterior probability is not a good indicator for errors which affect the combination. In both
plots 11.3 and 11.4, the posterior probability, entropy and number of alternative words in the
confusion segment have similar performance for error detection, which is likely to be because
the features are highly correlated. This is because the posterior probability and the number
of alternatives are both used in the calculation of the entropy, in equation 11.2.

Section 11.1.2 showed the recognition results obtained when using a threshold on posterior
probability to identify word errors. The recognition performance using thresholds on the
entropy and number of alternative words are not evaluated, as they are expected to perform
similarly to the posterior probability.

11.3 Word Error Detection and Combination using
Multiple Features

A natural extension to using single features for word error detection is to train a classifier
using multiple features for detecting errors. In this section, logistic regression, discussed in
section 5.1.3.1, is used as the classifier as initial experiments showed it outperformed the
more complex support vector machine. Classification techniques for word error detection
have previously shown limited results [165]. However, while classification techniques have
been applied to ROVER combination [68], they have not been applied to confusion network

graphs/roc_hmm2.single.detect.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 143

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

Entropy
Posterior
Number of CN alternatives

Figure 11.4: ROC for word error detection from the S0 system, only on the subset of words
which alter the combination S0+C2

combination. Additionally, it is expected that, due to the MBRL training algorithm, the
complementary systems combined in this chapter will perform well on some parts of the data
and poorly on others. Hence, classification techniques may prove useful at identifying relevant
errors for combining the complementary systems.

To begin, features are extracted from each segment of the confusion networks obtained
from decoding with S0, and also from the force-aligned best transcription, as proposed in
section 7.3.2. All features are normalised to have a mean of 0 and a variance of 1. Five sets
of features were extracted, grouped according to their source:

Confusion Segment Features - features extracted directly from the confusion segment

• segment entropy

• number of alternative words in segment

• posterior probability of best word

Lattice Arc Features - features calculated from the lattice arcs which were clustered to
give the best word in the CN segment

• number of clustered lattice arcs

• best language model score of clustered arcs

• best acoustic model score of clustered arcs

• best arc likelihood of clustered arcs

• variance in start times of clustered arcs

• variance in end times of clustered arcs

Segment Context - information about the preceding and following confusion segments

• best word to left is !NULL

• best word to right is !NULL

• segment at start of utterance

graphs/roc_hmm2.single.combine.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 144

• segment at end of utterance

Duration - extracted from the force-aligned best transcription

• duration of word in characters

• duration of word in seconds

Language Model Information - extracted from the best transcription

• LM backoff mode

• LM probability

The CN segment features - posterior probability, entropy, and number of alternatives - are
the single features used in the previous section. Of the available features, only the CN segment
and context information are available if the best word in the segment is a deletion, or !NULL
arc. This is because a !NULL word does not appear in the force-aligned best transcription,
and there may not necessarily be an appropriate silence segment to align it with. Thus, the
two cases are treated differently, and only the full set of features are used when the best word
is not !NULL. An alternative would be to assign default values for !NULL words and train
just one classifier, but this could distort the results. The number of examples for each class
are given in table 11.3.

error # correct # total

!NULL 1999 11364 13363
non-!NULL 10255 48348 58603

Table 11.3: Class sizes for error detection of words hypothesised by S0, split into !NULL and
non-!NULL words

To evaluate the performance of logistic regression for error detection, n-fold cross-validation
was used with all of the data from the eval98 and dev03 test sets. The segmentation into
n = 27 subsets was done to avoid words from one speaker being in multiple sets. Figure 11.5
shows the ROC plots obtained from the task of error detection, while figure 11.6 shows the
performance of the logistic regression on the subset of examples from classes 0 and 1 which
affect the outcome of the combination S0+C2. Figure 11.5 corresponds to figure 11.3 of the
previous section, and figure 11.6 to figure 11.4, but the plots in this section are split according
to whether the best hypothesised word is a valid word or a deletion, i.e. !NULL arc.

Figure 11.5(a) shows the performance of the logistic regression on the non-!NULL words
using the CN segment features, the context information, all features, and all features with
the exception of the CN segment information. Other combinations of the five sets of features
perform similarly to all features and so aren’t shown. The context information by itself is a
reasonably good indicator for word errors, and the addition of the duration, arc, and language
model information improves the detection further. However, the CN segment information
alone outperforms all the other features. The use of all five feature sets performs similarly to
just the CN information alone, suggesting that they do not contain extra information which
is not already contained in the three CN segment features.

Figure 11.5(b) shows the error detection performance on the subset of !NULL words, using
only the CN segment information, the context information, and the combination of the two.
In this case, the context information is far less useful than for the non-!NULL words, and

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 145

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

CN
CONTEXT
ALL
ALL except CN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

CN
CN+CONTEXT
CONTEXT

(a) non-!NULL words (b) !NULL words only

Figure 11.5: ROC for error detection with multiple features, all of the eval98 and dev03 sets

the CN segment information again performs reasonably well. However, for both the !NULL
and non-!NULL words, the use of multiple features and logistic regression does not appear to
outperform the use of single features, as presented in the previous section. Additionally, the
features are more informative for the case of non-!NULL words than for !NULL words.

Figures 11.6 (a) and (b) show the same plots as in figure 11.5 but for the subset of features
which make a difference to combination. As above, the classifier is trained to detect errors,
using all words from the dev03 and eval98 sets, but the evaluation is performed on just those
examples from classes 0 and 1 which alter the final word error rate. This is due to there not
being enough training examples to train a classifier just on the examples from classes 0 and 1.
As with the single features above, while the multiple features are a reasonable indicator for
error detection in figure 11.5, they do not perform well on the subset of words which affect the
combination for both the !NULL and non-!NULL words, in figure 11.6. Thus, it is expected
that integrating multiple baseline features and logistic regression with CNC will not improve
performance and so no recognition performance was obtained.

The classifiers above have only been trained on features extracted from the baseline system,
S0. It is possible to extract the same features from the complementary system, and thus double
the size of the feature vector. Additionally, three further features can be extracted from the
combination:

Combination information

• best word posterior after combination

• posterior of best word from the baseline system in the complementary system CN

• posterior of best word from the complementary system in the baseline CN

However, the case of !NULL words must be appropriately dealt with. In contrast to
the previous experiments, there are now four cases which must be handled as either the
first, second, or both systems may have the best word in the CN segment being !NULL. To
investigate the performance of these additional features, only the case of both systems having

graphs/roc.nonull.eps
graphs/roc.null.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 146

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

CN
CONTEXT
ALL
ALL except CN

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT
TR

U
E

 D
E

TE
C

T

CN
CN+CONTEXT
CONTEXT

(a) non-!NULL words (b) !NULL words only

Figure 11.6: ROC for error detection with multiple features, on the subset of the eval98 and
dev03 sets which alter the combination S0+C2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

ALL S0+C2
CN S0
CN C2

Figure 11.7: ROC for word error detection using multiple features from systems S0 and C2,
for all words

graphs/roc.nonull.combine.eps
graphs/roc.null.combine.eps
graphs/roc.all.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 147

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FALSE DETECT

TR
U

E
 D

E
TE

C
T

ALL S0+C2
CN S0
CN C2

Figure 11.8: ROC for word error detection using multiple features from systems S0 and C2,
for the subset of words which affects the combination

non-!NULL words is considered, as the plots above show poorer results when identifying
errorful !NULL words.

Again, n-fold cross-validation was used when training the classifier, and ROC plots were
obtained for the available features. Figure 11.7 shows the performance of all the available
features from both systems, along with the CN segment information from each system alone.
Figure 11.8 shows the performance of the same classifier when applied to the subset of ex-
amples which affect the combination. The effect of the logistic regression is the same as seen
previously. All the features do perform slightly better when used together than the CN seg-
ment information alone, and they appear to be a relatively good indicator for error detection.
However, when applied to the subset of examples which affect the combination, they are no
longer a reliable indicator as the ROC curves lie close to the diagonal.

This section has evaluated the application of word error detection to combination, with
features extracted from both the baseline and the complementary systems. It would be
preferable to train the classifier only on those examples from classes 0 and 1 which alter the
combination. However, there is far less data available from these classes, and so it is not
possible to robustly train a classifier. This is a particular problem when the task is divided
further to account for !NULL arcs in one or both of the systems as not all features are available
for these arcs.

11.4 Summary
This chapter has looked at alternative approaches for combining complementary systems.
These are motivated by the potential IDEAL combination gains seen in the previous ex-
perimental results, which are not seen with confusion network combination. If a suitable
confidence measure could be computed, and word errors accurately detected, then the com-
bination could be improved to achieve the IDEAL performance. Additionally, the restricted
decoding scheme evaluated in the previous chapter may lead to improved results if used with
an accurate word error detection algorithm.

graphs/roc.all.comb.eps

CHAPTER 11. COMBINATION OF COMPLEMENTARY SYSTEMS 148

First, a global weighting and posterior threshold were evaluated, and it was seen that these
do not improve over the standard confusion network combination. Next, word error detection
and its application to combination was investigated. Single features were first used, including
posterior probability, entropy and number of alternatives in the CN segment. Then, logistic
regression was used to train a classifier using multiple features extracted from the decoding.
It was seen that the multiple features do not perform better than the single features for word
error detection, and using the best word posterior or CN segment entropy gives the best
prediction of word errors. However, when applied to combination, these techniques do not
perform well enough on the relevant subset of data to expect gains from combination.

CHAPTER 12
Conclusions

In this thesis, the problem of generating and combining complementary systems for ASR is
investigated. First, an approach to building complementary systems was proposed where

the decision tree generation is altered to avoid clustering states which are associated with
confusions, leading to systems making different errors. Next, two approaches to directly
training complementary systems were proposed, based on maximum likelihood and minimum
Bayes risk training. The three algorithms take into account the performance of a number of
previous systems through a data weighting based on confusion network combination, and can
be embedded within an iterative framework for building multiple complementary systems.
Finally, alternative methods for combination of complementary systems were investigated,
based on existing approaches for predicting word errors and confidence. In this chapter, a
detailed summary of this thesis is presented, followed by possible directions for further work.

12.1 Review of Work
Chapters 6 and 7 of this thesis presented three algorithms for generating complementary sys-
tems for ASR, based on a data weighting proposed in section 5.3. Typically, complementary
systems for ASR are found in an ad-hoc manner, by building multiple diverse systems and
selecting those which yield improvements upon combination. These systems can be diverse
in many ways, for example using different frontends, training algorithms or segmentations, as
discussed in section 3.1. It has been found that independently trained systems with very dif-
ferent error rates do not normally give improvements when combined. Also, the performance
of independent systems when combined cannot be predicted before performing the combi-
nation. Thus, previous work has looked at explicitly training complementary systems, and

149

CHAPTER 12. CONCLUSIONS 150

existing approaches were discussed in chapter 4. These approaches include injecting random-
ness, adapting the boosting algorithm for ASR, training specialist models to fix errors, and
training multiple model parameters in parallel. The latter method is feasible if the models
are combined in a synchronous manner during decoding, so they are constrained to be in the
same state at the same time. For asynchronous combination however, where there are two
independent state switching processes, the training is infeasible and approximate techniques
must be used. When the complementary models are trained in an iterative fashion, such as
in boosting, training must take into account the performance of previous systems. Hence, the
appropriate training algorithm for generating complementary systems depends on the method
employed to combine the complementary systems.

The three algorithms presented in this thesis use confusion network combination (CNC)
as a method for combining systems in both the testing and training algorithms. CNC and
other existing combination methods are detailed in chapter 3. The three main classes of
combination algorithm are hypothesis combination, which includes CNC, likelihood combi-
nation, and implicit combination. This thesis makes use of hypothesis combination schemes,
based on confusion networks, as these allow the easy separation of the training algorithm and
combination scheme. Confusion network combination is used to incorporate information from
multiple models, and weight the training appropriately to focus on errorful portions of data,
thus generating a system with complementary errors.

Section 6.1 presents the directed decision tree algorithm for generating complementary
systems. This algorithm biases the decision tree to separate states which previously led to
errors. Thus, the different clustering of states in the decision tree allows a model which was
not possible with the original tying. Additionally, a divergence measure was proposed in sec-
tion 6.3 to allow easy comparison of decision trees without having to train the corresponding
systems. Rather than measure cluster similarity, this measure makes direct use of the struc-
ture of decision trees, and calculates an efficient metric based on the similarity between state
distributions in the two trees.

The modified ML algorithm presented in section 7.1 uses active training to explicitly
generate complementary systems. This algorithm differs from previous work with active
training in its application to complementary system generation by taking multiple previous
systems into account during the training data weighting. Additionally, the weighting is applied
at the word level to better match the word level combination scheme. The minimum Bayes’
risk leveraging (MBRL) algorithm presented in section 7.2 makes use of the discriminative
minimum Bayes’ risk criterion to build complementary systems. It is related to existing
discriminative training criteria, and can be optimised in the same way, but differs in its aim
of incorporating information from multiple previous systems into the training. Both MBRL
and the word-level active training weight the training data so that the training focuses on
errors made by previous systems, and not on data which was previously well modelled. In
this way, the complementary systems have a greater flexibility to model errors, although they
may degrade performance on the previously well modelled data.

The three algorithms use a common data weighting approach, discussed in section 5.3.
This data weighting uses confusion networks aligned with the reference transcription, and
weights words or lattice arcs based on their posterior in the confusion networks. These
weights are then applied directly at the state level of the HMM. This differs from previous
data weighting methods, discussed in section 5.2, as it does not rely on force-aligning the
data. Hence, a data weighting obtained with one system can easily be applied to another,
without needing to realign the data. In this thesis, a threshold and a sum function are used

CHAPTER 12. CONCLUSIONS 151

to obtain the data weighting, although these could be replaced by any suitable function.
Furthermore, the data weighting easily takes multiple previous systems into account, hence
the three algorithms can be embedded within an iterative boosting-like framework to build
multiple complementary systems.

MBRL and the word-level active training scheme explicitly focus on previous errors in
training, and hence there are potential issues with their performance in decoding. Particularly,
it is expected that they will perform well on specific portions of the data and badly on
other portions. Section 7.3 discusses alternative approaches to combination, to address these
potential issues. First, a modified form of decoding was presented in section 7.3.1 where the
complementary system is only used to rescore portions of the data where it is believed that
the first system makes an error. This is used in a similar way to the acoustic code-breaking
discussed in section 4.2.4, as the second model is used only to resolve potential confusions
made by the first. Next, section 7.3.2 discusses the application of classification techniques to
improve the combination. This is related to the confidence prediction and word error detection
methods detailed in section 5.1.3. Both approaches attempt to bring the final combination
closer to that used in training by mirroring the threshold loss function, and thus improve the
combination of the baseline and complementary systems.

Experimental results obtained using the directed decision tree algorithm on three LVCSR
tasks are presented in chapter 9. First, two directed trees were built and the divergence mea-
sure evaluated. It was found that focusing more on the errors increased the tree divergence,
though a second complementary decision tree is less diverse than a first. Next, the directed
tree was compared to the performance of a random decision tree in sections 9.2 and 9.3. Re-
sults show that the directed tree performs better than the average random tree, but without
the fluctuations seen from introducing randomness.

Results were then obtained from decoding in a single and multi-pass framework using the
directed tree systems. Sections 9.4 and 9.6 respectively show that gains can be achieved from
the addition of one complementary system, and further small gains achieved from a second.
Finally, the directed tree approach was used in addition to an alternative frontend in section
9.5, and an altered training algorithm in section 9.6, to include extra diversity, and results
show that further gains can be achieved. Thus, the directed tree algorithm is an effective
approach for generating complementary systems for large vocabulary recognition.

Chapter 10 presents experimental results for the word-level active training and the MBRL
algorithm on two LVCSR tasks. Section 10.1 first discusses results for the active training al-
gorithm. Performance was evaluated as the number of training iterations increased, and it
was seen that further training leads to more diverse systems. Next, the effect of the data
weighting was investigated. When a large portion of the training set is used, the algorithm
behaves just as standard active training and improves the individual system performance.
However, as the weighting focused more on the errors, the individual system performance de-
grades, while gains were seen from combination. As the systems become more diverse through
further training iterations or an increased focus on the errors, the IDEAL combination perfor-
mance improves, suggesting that the systems do make complementary errors. On a simpler
system, the same behaviour was seen, while the addition of a second complementary system
showed no additional gains. To investigate the potential issue of overtraining, performance
was examined on the training data. Analysis of the reference word posteriors before and after
training show that the algorithm has the desired effect of improving the modelling of badly
modelled data, while degrading performance on well modelled data. Finally, the addition

CHAPTER 12. CONCLUSIONS 152

of the active training to an alternative frontend for additional diversity led to further small
gains.

Section 10.2 presented results obtained using the discriminative MBRL algorithm for
building complementary systems. First, MPE training was examined as a method of gener-
ating complementary systems, and small gains were seen. Next, the MBRL algorithm was
evaluated as the loss function and smoothing were varied. The results were similar to the
active training algorithm, showing that the training can drive the system to be more diverse,
though these gains were not taken advantage of with the standard combination. The same
behaviour was seen for two simpler systems. Analysis of the training data performance again
showed that the MBRL training degrades performance on previously well modelled data, but
improves performance on previously badly modelled data, as anticipated. Thus, both the
active training and MBRL algorithms perform as expected on the training data, and the al-
gorithms do drive the systems to be more diverse and make complementary errors. However,
the current combination approach does not take advantage, probably because the degradation
on previously well modelled data is large.

Section 10.3 examined a restricted form of decoding to better match the training algorithm,
where the complementary system was only used to rescore segments of the data when the
first system was not confident. On the training data, this decoding substantially improved
the results. On the test data however, the performance degraded using this form of decoding.
Although a number of errors were corrected by this approach, further errors were introduced,
implying that the posterior probability as a confidence measure was not accurate enough for
identifying poorly recognised regions of data.

Finally, chapter 11 examined approaches to word error detection for improving the com-
bination of multiple systems. First, a global weighting and posterior threshold were used for
combination, and results showed no improvement over standard confusion network combina-
tion. Next, the performance of both single and multiple features was examined for identifying
word errors, the latter using logistic regression to train a binary classifier. These features were
shown to be a reasonably good indicator for predicting word errors, although a combination
of multiple features performed only slightly better than the posterior probability alone. When
applied to the subset of errors which affect the combination however, the features were no
longer a reliable indicator. Hence, an improved method of word error detection is needed to
achieve the potential gains from combination.

12.2 Future Work
Very little work has previously looked at explicitly generating complementary systems for
automatic speech recognition, and hence there is much scope for further work. In particular,
several areas of this thesis may be expanded. These are summarised below.

• The experimental results with directed decision trees used a divergence measure for
evaluating the distance between trees. A similar metric, such as in [22], for similarity
between HMMs might prove useful when building complementary systems, to provide
further insight into the effect of the algorithm.

• The three algorithms in this thesis used confusion networks for encoding the confusions
made by previous systems. Other forms of combination, such as fWER combination or

CHAPTER 12. CONCLUSIONS 153

pinched lattices might perform differently. This would require alterations to the training
and data weighting to take these different forms of combination into account.

• In the same way as the MPE criterion has been applied to feature transform estima-
tion to calculate discriminative features [125], the MBRL or related criterion might be
applicable to estimating complementary features.

• The experimental results in this thesis have evaluated performance on three similarly
sized broadcast news tasks with different languages. These have common properties,
such as unsupervised or lightly supervised training, noise, and ungrammatical, sponta-
neous speech. Hence, it would be interesting to evaluate the algorithms on other tasks,
whether they differ in their properties or size.

• Gaussianisation and multiple/single pronunciation MPE training were used in this the-
sis to introduce extra diversity into training. However, there are many other techniques
which have been empirically shown to be complementary, and could be used in addition
to the algorithms proposed in this thesis. For example, previous work has shown that
different frontends have complementary features, or that multiple stream systems with
streams for different frequency bands can provide complementary information. With
additional forms of diversity, it might be possible to successfully build multiple comple-
mentary systems.

• The results in this thesis showed that large gains could be achieved with an IDEAL
combination, but this is difficult to achieve in practice. Hence, other methods of com-
bination might achieve a performance closer to the IDEAL. For example, additional
features might be incorporated into the classification task of chapter 11, or with a large
enough test set there may be enough examples to explicitly train a classifier for the task
of combination rather than word error detection. This task differs from standard error
detection as only a subset of errors are important for system combination. It might
also prove useful to somehow decouple the confidence scoring from features calculated
during recognition, as these are normally correlated with the posterior probability.

References

[1] M. Afify, L. Nguyen, B. Xiang, S. Abdou, and J. Makhoul. Recent Progress in Arabic
Broadcast News Transcription at BBN. In Proc. Interspeech, 2005. 3.1, 3.3.4.1, 8.4

[2] A. Allauzen. Error Detection in Confusion Network. In Proc. Interspeech, 2007. 5.1.3

[3] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul. A compact model for
speaker-adaptive training. In Proc. ICASSP, 1999. 2.9

[4] L.M. Arslan and J.H.L. Hansen. Selective Training for Hidden Markov Models with
Applications to Speech Classification. IEEE Trans. on Speech and Audio Processing, 7
(1):46–54, 1999. 2.4.3, 5.2.1, 5.2.1

[5] S. Axelrod, R. Gopinath, and P. Olsen. Modeling with a Subspace Constraint on Inverse
Covariance Matrices. In Proc. ICSLP, 2002. 2.3.1

[6] L.R. Bahl, P.F. Brown, P.V.d Souza, and R.L. Mercer. Maximum Mutual Information
Estimation of Hidden Markov Model Parameters for Speech Recognition. In Proc.
ICASSP, 1986. 2.4.2.1, 2.4.2.4, 5.2.2

[7] L.R. Bahl, P.V. de Souza, P.S. Gopalkrishnan, D. Nahamoo, and M.A. Picheny. Context
Dependent Modelling of Phones in Continuous Speech using Decision Trees. In Proc.
DARPA Speech and Natural Language Processing Workshop, pages 264–270, 1991. 2.8

[8] L.E. Baum and J.A. Eagon. An Inequality with Applications to Statistical Estimation
for Probabilistic Functions of Markov Processes and to a Model for Ecology. Bull.
Amer. Math. Soc., 73:360–363, 1967. 1.1, 2.3, 2.4.1

[9] P. Beyerlein. Discriminative Model Combination. In Proc. ASRU, 1997. 3.3.1.6

[10] P. Beyerlein, X. Aubert, R. Haeb-Umach, M. Harris, D. Klakow, A. Wendemuth, S. Mo-
lau, M. Pitz, and A. Sixtus. The Philips/RWTH System for Transcription of Broadcast
News. In Proc. DARPA Broadcast News and transcription workshopa, 1999. 3.3.1.6

[11] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. 2.2.2.3, 3.2.3

[12] H. Bourlard and S. Dupont. A new ASR approach based on independent processing
and recombination of partial frequency bands. In Proc. ICSLP, 1996. 3.3.3.3

[13] L. Breiman. Random Forests. Machine Learning, 45:5–32, 2001. 4.1.1

[14] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996. 4.1.1

154

REFERENCES 155

[15] C. Breslin and M.J.F. Gales. Generating Complementary Systems for Speech Recogni-
tion. In Proc. ICSLP, 2006. (document)

[16] C. Breslin and M.J.F. Gales. Generating Complementary Systems using Directed De-
cision Trees. In Proc. ICASSP, 2007. (document), 6.1

[17] C. Breslin and M.J.F. Gales. Building Multiple Complementary Systems using Directed
Decision Trees. In Proc. Interspeech, 2007. (document), 6.1

[18] A.D. Brown and G. E. Hinton. Products of Hidden Markov Models. Technical Report
GCNU TR 2000-08, Gatsby Computational Neuroscience Unit, 2000. 3.3.3.2, 4.1.3

[19] T. Buckwalter. Buckwalter Arabic morphological analyzer version 2.0. In LDC2004L02,
Linguistic Data Consortium, 2004. 8.4

[20] M.A. Carreira-Perpinan and G.E. Hinton. On contrastive divergence learning, 2005.
URL citeseer.ist.psu.edu/735735.html. 4.1.3

[21] I.F. Chen and L.S. Lee. A New Framework for System Combination based on Integrated
Hypothesis Space. In Proc. ICSLP, 2006. 3.3.1.1

[22] J.Y. Chen, P. Olsen, and J. Hershey. Word Confusability - Measuring Hidden Markov
Model Similarity. In Proc. Interspeech, 2007. 12.2

[23] S.S. Chen and R.A. Gopinath. Gaussianization. In Proc. Advances in NIPS, 2000.
2.2.2.2, 2.2.2.2

[24] T. Cincarek, T. Toda, H. Saruwatari, and K. Shikano. Selective EM Training of Acoustic
Models Based on Sufficient Statistics of Single Utterances. In Proc. ASRU, 2005. 2.4.3

[25] T. Cincarek, T. Toda, H. Saruwatari, and K. Shikano. Utterance Based Selective Train-
ing for the Automatic Creation of Task Dependent Acoustic Models. IEICE Transac-
tions on Info and Systems, 89(3):962–969, 2006. 2.4.3

[26] D.A. Cohn, L. Atlas, and R.E. Ladner. Improving Generalization with Active Learning.
Machine Learning, 15(2):201–221, 1992. 2.4.3

[27] S.B. Davis and P. Mermelstein. Comparison of Parametric Representations for Mono-
syllable Word Recognition in Continuously Spoken Sentences. IEEE Trans. on Speech
and Audio Processing, 28(4):357–366, 1980. 2.2, 2.2.1

[28] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society, 39:1–39, 1977.
2.4.1

[29] T.G. Dietterich. Ensemble Methods in Machine Learning. Lecture Notes in Computer
Science, 1857:1–15, 2000. 1.2, 4.1, 4.1.1

[30] T.G. Dietterich. An Experimental Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting and Randomization. Machine Learning,
pages 1–22, 1999. 4.1.2

citeseer.ist.psu.edu/735735.html

REFERENCES 156

[31] C. Dimitrakakis and S. Bengio. Boosting HMMs with an Application to Speech Recog-
nition. In Proc. ICASSP, 2004. 4.2.2

[32] V. Doumpiotis and W. Byrne. Pinched Lattice Minimum Bayes Risk Discriminative
Training for Large Vocabulary Continuous Speech Recognition. In Proc. ICSLP, 2004.
2.4.2.2, 2.4.2.3, 2.4.2.3, 2.6.2, 2.7.3

[33] V. Doumpiotis, S. Tsakaliis, and W. Byrne. Discriminative Training for Segmental
Minimum Bayes Risk Decoding. In Proc. ICASSP, 2003. 4.2.4

[34] G. Evermann and P.C. Woodland. Posterior Probability Decoding, Confidence Estima-
tion and System Combination. In Proceedings Speech Transcription Workshop, 2000.
2.6.2.1, 2.7.3

[35] G. Evermann and P.C. Woodland. Design of Fast LVCSR Systems. In Proc. ASRU,
2003. 3.1

[36] J.G. Fiscus. A Post-Processing System to Yield Reduced Word Error Rates: Recogniser
Output Voting Error Reduction (ROVER). In Proc. ASRU, 1997. 2.7.3, 3.3.1.2

[37] Y. Freund and R. Schapire. Experiments with a New Boosting Algorithm. In Proceedings
of the thirteenth International Conference on Machine Learning, 1996. 3.2.2, 4.1.2, 4.2.2,
5.2, 5.2.1

[38] Y. Freund and R. Schapire. A decision-theoretic generalization of online learning and an
application to boosting. Journal of Computer and System Sciences, pages 55:119–139,
1997. 4.1.2

[39] S. Furui. Speaker independent isolated word recognition using dynamic features of
speech spectrum. IEEE Trans. on Acoustics, Speech, and Signal Processing, 34:52–59,
1986. 2.2.1

[40] M.J.F. Gales. Transformation Streams and the HMM Error Model. Computer Speech
and Language, 2002. 3.3.2

[41] M.J.F. Gales. The generation and the use of regression class trees for MLLR adapta-
tion. Technical Report CUED/F-INFENG/TR263, Cambridge University, 1996. (via
anonymous) ftp://svr-www.eng.cam.ac.uk. 2.9

[42] M.J.F. Gales. Maximum Likelihood Linear Transformations For HMM-Based Speech
Recognition. Computer Speech and Language, 12, 1998. 2.9, 2.9

[43] M.J.F. Gales. Semi-tied Covariance Matrices for Hidden Markov Models. IEEE Trans.
on Speech and Audio Processing, 7:272–281, 1999. 2.2.2.3, 2.3.1

[44] M.J.F. Gales and S.S. Airey. Product of Gaussians for Speech Recognition. Techni-
cal Report CUED/F-INFENG/TR458, University of Cambridge, 2003. Available via
anonymous ftp from: svr-www.eng.cam.ac.uk. 3.3.3, 3.3.3.2, 3.3.3.3, 4.2.3.1

[45] M.J.F. Gales and S.S. Airey. Product of Gaussians for Speech Recognition. Computer
Speech and Language, 2006. 3.2.3, 3.3.3.2, 4.2.3.1

ftp://svr-www.eng.cam.ac.uk

REFERENCES 157

[46] M.J.F. Gales and P.C. Woodland. Mean and Variance Adaptation Within the MLLR
Framework. Computer Speech and Language, 10:249–264, 1996. 2.9

[47] M.J.F. Gales, B. Jia, K.C. Sim, P.C. Woodland, and K. Yu. Development of the CUHTK
2004 RT04F Mandarin Conversational Telephone Speech Transcription System. In Proc.
ICASSP, 2005. 3.1

[48] M.J.F Gales, D.Y. Kim, P.C. Woodland, H.Y. Chan, D. Mrva, R. Sinha, and S.E.
Tranter. Progress in the CU-HTK broadcast news transcription system. IEEE Trans.
on Speech and Audio Processing, 14:1513–1525, September 2006. 1.1, 2.2.2.3, 3.1, 3.1,
3.3.4.1, 3.3.4.2, 8.1.3

[49] M.J.F. Gales, F. Diehl, C.K. Raut, M. Tomalin, P.C. Woodland, and K. Yu. Develop-
ment of a Phonetic System for Large Vocabulary Arabic Speech Recognition. In Proc.
ASRU, 2007. 2.4.2.2, 3.1, 3.1, 8.4, 9.6

[50] J. Gauvain and C.H. Lee. Maximum a Posteriori Estimation for Multivariate Gaussian
Misture Observations of Markov Chains. IEEE Trans. on Acoustics, Speech, and Signal
Processing, 2:291–299, 1994. 2.9

[51] J.L. Gauvain, L. Lamel, and G. Adda. The LIMSI Broadcast News Transcription
System. Speech Communication, pages 37(1–2):89–108, 2002. 3.1

[52] Z. Ghahramani and M. Jordan. Factorial Hidden Markov Models. Machine Learning,
pages 245–275, 1997. 3.3.2, 4.2.3.2

[53] M. Gibson and T. Hain. Hypothesis Spaces for Minimum Bayes Risk Training in Large
Vocabulary Speech Recognition. In Proc. Interspeech, 2006. 2.4.2.2

[54] L. Gillick and S.J. Cox. Some statistical issues in the comparison of speech recognition
algorithms. In Proc. ICASSP, 1989. 8.1.2

[55] L. Gillick, Y. Ito, and J. Young. A Probabilistic Approach to Confidence Estimation
and Evaluation. In Proc. ICASSP, 1997. 5.1.3

[56] J. Glass, T.J. Hazen, S. Cyphers, I. Malioutov, H. Huynh, and R. Barzilay. Recent
Progress in the MIT Spoken Lecture Processing Project. In Proc. Interspeech, 2007. 3.1

[57] V. Goel and W. Byrne. Minimum Bayes-risk automatic speech recognition. Computer
Speech and Language, pages 115–135, 2000. 2.6.2, 2.6.2, 2.6.2

[58] V. Goel, W. Byrne, and S. Khudanpur. LVCSR rescoring with modified loss functions:
a decision theoretic perspective. In Proc. ICASSP, 1998. 2.6.2

[59] V. Goel, S. Kumar, and W. Byrne. Segmental Minimum Bayes-Risk ASR Voting Strate-
gies. In Proc. ICSLP, 2000. 3.3.1.2

[60] V. Goel, S. Kumar, and W. Byrne. Segmental Minimum Bayes-risk decoding for Auto-
matic Speech Recognition. IEEE Trans. on Speech and Audio Processing, pages 12:234–
249, 2004. 5.3.3

REFERENCES 158

[61] R. Haeb-Umbach, X. Aubert, P. Beyerlein, D. Klakow, M. Ullrich, A. Wendemuth,
and P. Wilcox. Acoustic modeling in the Philips Hub-4 continuous-speech recognition
system. In Proc. DARPA Broadcast News Transcription and Understanding Workshop,
1998. 2.3.1

[62] T. Hain, L. Burget, J. Dines, G. Garau, V. Wan, M. Karafiat, J. Vepa, and M. Lincoln.
The AMI System for the Transcription of Speech in Meetings. In Proc. ICASSP, 2007.
2.2.2.3, 3.1, 3.1, 3.3.4.1, 3.3.4.2

[63] D. Hakkani-Tr, G. Riccardi, and A. Gorin. Active Learning for Automatic Speech
Recognition. In Proc. ICASSP, 2002. 2.4.3, 5.2.1

[64] T.J. Hazen and I. Bazzi. A Comparison and Combination of Methods for OOV Word
Detection and Word Confidence Scoring. In Proc. ICASSP, 2001. 5.1.3

[65] G. Heigold, W. Macherey, R. Schluter, and H. Ney. Minimum Exact Word Error Train-
ing. In Proc. ASRU, 2005. 2.4.2.2

[66] H. Hermansky. Perceptual Linear Predictive (PLP) Analysis of Speech. Journal of the
Acoustic Society of America, 87(4):1738–1752, 1990. 2.2, 2.2.1

[67] D. Hillard and M. Ostendorf. Compensating for Word Posterior Estimation Bias in
Confusion Networks. In Proc. ICASSP, 2006. 2.6.2.1

[68] D. Hillard, B. Hoffmeister, M. Ostendorf, R. Schluter, and H. Ney. iROVER: Improving
system combination with classification. In Proceedings HLT, 2007. 3.3.1.2, 5.1.3, 11.3

[69] G. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural
Computation, 14:1771–1800, 2002. 3.3.3.2, 4.1.3

[70] G. Hinton. Products of Experts. In Proceeding of ICANN, 1999. 3.2.3, 3.3.3

[71] B. Hoffmeister, T. Klein, R. Schluter, and H. Ney. Frame Based System Combination
and a Comparison with Weighted ROVER and CNC. In Proc. ICSLP, 2006. 3.3.1.1,
3.3.1.3, 5.3.3

[72] B. Hoffmeister, D. Hillard, S. Hahn, R. Schluter, M. Ostendorf, and H. Ney. Cross-site
and Intra-site ASR System Combination: Comparisons on Lattice and 1-best Methods.
In Proc. ICASSP, 2007. 3.3.1.1

[73] B. Hoffmeister, C. Plahl, P. Fritz, G. Heigold, J. Loof, R. Schluter, and H. Ney. Devel-
opment of the 2007 RWTH Mandarin LVCSR System. In Proc. ASRU, 2007. 3.1

[74] J. Huang, E. Marcheret, L. Visweswariah, V. Libal, and G. Potamianos. Detection,
Diarization, and Transcription of Far-Field Lecture Speech. In Proc. Interspeech, 2007.
3.1, 3.1, 4.2.1

[75] X.D. Huang, A. Acero, and H.W. Hon. Spoken Language Processing. Prentice Hall,
2001. 2.6.1, 2.6.1

[76] M.Y. Hwang, W. Wang, X. Lei, J. Zheng, O. Cetin, and G. Peng. Advances in Mandarin
Broadcast Speech Recognition. In Proc. Interspeech, 2007. 3.1, 3.1, 3.3.4.1

REFERENCES 159

[77] H. Jiang. Confidence measures for speech recognition: A survey. Speech Communica-
tion, pages 45:455–470, 2005. 5.1, 5.2.1

[78] D. Jurafsky and J.H. Martin. Speech and Language Processing. Prentice Hall, 2000.
2.3.2, 2.5

[79] J. Kaiser, B. Horvat, and Z. Kacic. Overall Risk Criterion estimation of hidden Markov
model parameters. Speech Communication, pages 38:383–398, 2002. 2.4.2.3

[80] T.M. Kamm. Active Learning for Acoustic Speech Recognition Modeling. PhD thesis,
John Hopkins University, 2004. 1.2, 2.4.3, 5.2.1

[81] T.M. Kamm and G.G.L. Meyer. Automatic Selection of Transcribed Training Material.
In Proc. ASRU, 2001. 2.4.3, 5.2.1

[82] T.M. Kamm and G.G.L. Meyer. Selective Sampling of Training Data for Speech Recog-
nition. In Proceedings HLT, 2002. 2.4.3

[83] T.M. Kamm and G.G.L. Meyer. Word-selective Training for Speech Recognition. In
Proc. ASRU, 2003. 2.4.3, 5.2.1

[84] A. Kannan, M. Ostendorf, and J.R. Rohlicek. Maximum likelihood clustering of Gaus-
sians for speech recognition. IEEE Trans. on Speech and Audio Processing, 2:3:453–455,
1994. 2.8

[85] T. Kemp and T. Schaaf. Estimating Confidence Using Word Lattices. In Proc. Eu-
rospeech, 1997. 5.1.2, 5.1.3

[86] D.Y. Kim, G. Evermann, T. Hain, D. Mrva, S.E. Tranter, L. Wang, and P.C. Woodland.
Recent Advances in Broadcast News Transcription. In Proc. ASRU, 2003. 3.1, 8.2

[87] D. Klakow. Log-linear interpolation of language models. In Proc. ICSLP, 1998. 3.3.1.6

[88] S. Kullback and R.A. Leibler. On Information and Sufficiency. Annals of Mathematical
Statistics, pages 22:79–86, 1951. 6.3

[89] N. Kumar. Investigation of Silicon-Auditory Models and Generalization of Linear Dis-
criminant Analysis for Improved Speech Recognition. PhD thesis, John Hopkins Uni-
versity, 1997. 2.2.2.3

[90] L. Lamel. Lightly Supervised and Unsupervised Acoustic Model Training. Computer,
Speech and Language, 2002. 2.4.3

[91] L. Lamel, A. Messaoudi, and J.L. Gauvain. Improved Acoustic Modeling for Transcrib-
ing Arabic Broadcast Data. In Proc. Interspeech, 2007. 8.4

[92] M.I. Layton and M.J.F. Gales. Maximum Margin Training of Generative Kernels.
Technical Report CUED/F-INFENG/TR.484, Cambridge University Engineering De-
partment, 2004. 4.2.4

[93] B. Lecouteux, G. Linares, Y. Esteve, and J. Mauclair. System Combination by Driven
Decoding. In Proc. ICASSP, 2007. 3.3.1.1

REFERENCES 160

[94] L. Lee and R.C. Rose. Speaker Normalisation using Efficient Frequency Warping Pro-
cedures. In Proc. ICASSP, 1996. 2.2.2

[95] C.J. Legetter and P.C. Woodland. Maximum Likelihood Linear Regression Speaker
Adaptation of Contiuous Density HMMs. Computer Speech and Language, 1997. 2.9

[96] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(8):707 – 710, 1966. 2.7.2

[97] R. Lippmann. Speech Recognition by Machines and Humans. Speech Communication,
22(1):1–16, 1997. 1.1

[98] X. Liu, M.J.F. Gales, K.C. Sim, and K. Yu. Investigation of Acoustic Modeling Tech-
niques for LVCSR Systems. In Proc. ICASSP, 2005. 2.2.2.2, 3.1, 9.5

[99] A. Ljolje. The importance of cepstral parameter correlations in speech recognition.
Computer Speech and Language, 8:223–232, 1994. 2.2.2

[100] J. Loof, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeister, C. Plahl, D. Ryback,
R. Schluter, and H. Ney. The RWTH 2007 TC-STAR Evaluation System for Euro-
pean English and Spanish. In Proc. Interspeech, 2007. 2.2.2.3, 3.1, 3.1, 3.3.4.1

[101] W. Macherey, L. HaferKamp, R. Schluter, and H. Ney. Investigations on Error Mini-
mizing Training Criteria for Discriminative Training in Automatic Speech Recognition.
In Proc. Interspeech, 2005. 2.4.2.2

[102] D.J.C. MacKay. Ensemble Learning for Hidden Markov Models.
http://www.inference.phy.cam.ac.uk/mackay/abstracts/ensemblePaper.html,
1997. 4.1.3

[103] D.J.C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge University Press, 2003. Available from
http://www.inference.phy.cam.ac.uk/mackay/itila/. 4.1.3, 4.2.3.2

[104] L. Mangu. Finding Consensus in Speech Recognition. PhD thesis, The John Hopkins
University, 2000. 2.6.2.1

[105] L. Mangu, E. Brill, and A. Stolke. Finding Consensus Among Words: Lattice-Based
Word Error Minimization. In Proc. Eurospeech, 1999. 2.4.2.3, 2.6.2, 2.6.2, 2.6.2.1, 5.1.1

[106] G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley, 1997.
3.3.3

[107] A. Messaoudi, J.L. Gauvain, and L. Lamel. Arabic Broadcast News Transcription using
a One Million Word Vocalized Vocabulary. In Proc. ICASSP, 2006. 3.1

[108] C. Meyer and H. Schramm. Boosting HMM acoustic models in large vocabulary speech
recognition. Speech Communication, pages 48:532–548, 2006. 4.2.2, 5.2.1

[109] H. Misra, H. Bourlard, and V. Tyagi. New Entropy Based Combination Rules in
HMM/ANN Multi-Stream ASR. In Proc. ICASSP, 2003. 3.3.1.5

REFERENCES 161

[110] P. Momayyez, J. Waterhouse, and R. Rose. Exploiting Complementary Aspects of
Phonological Features in Automatic Speech Recognition. In Proc. ASRU, 2007. 3.1,
3.3.1.6

[111] P. Moreno, B. Logan, and B. Raj. A Boosting Approach for Confidence Scoring. In
Proc. Eurospeech, 2001. 5.1.3

[112] N. Morgan and H. Bourlard. An Introduction to Hybrid HMM/Connectionist Approach.
IEEE Signal Processing Magazine, 12:25–42, 1995. 3.3.1.5

[113] K. Na, B. Jeon, D. Chang, S. Chae, and S. Ann. Discriminative Training of Hidden
Markov Models using Overall Risk Criterion and Reduced Gradient Method. In Proc.
Eurospeech, 1995. 2.4.2.2

[114] L. Nguyen, S. Matsoukas, J. Davenport, F. Kibala, R. Schwartz, and J. Makhoul.
Progress in transcription of Broadcast News using Byblos. Computer, Speech and Lan-
guage, 2002. 3.1

[115] P. Niyogi, J.B. Pierrot, and O. Siohan. Multiple Classifiers by Constrained Minimisa-
tion. In Proc. ICASSP, 2000. 4.1.3

[116] H. Nock. Techniques for modelling Phonological Processes in Automatic Speech Recog-
nition. PhD thesis, University of Cambridge, 2001. 3.3.3.3

[117] H.J. Nock and S.J. Young. Loosely coupled HMMs for ASR. In Proc. ICSLP, 2000.
3.3.3.3, 3.3.3.3

[118] Y. Normandin. Hidden Markov Models, Maximum Mutual Information Estimation and
the Speech Recognition Problem. PhD thesis, McGill University, Montreal, 1991. 2.4.2,
2.4.2.1, 2.4.2.4

[119] J.J. Odell. The Use of Context in Large Vocabulary Speech Recognition. PhD thesis,
University of Cambridge, 1995. 2.8, 2.8

[120] M.K. Omar and L. Mangu. An Evaluation of Lattice Scoring using a Smoothed Estimate
of Word Accuracy. In Proc. ICSLP, 2007. 3.3.1.1

[121] S. Ortmanns, H. Ney, and A. Aubert. A Word Graph Algorithm for Large Vocabulary
Continuous Speech Recognition. Computer Speech and Language, pages 43–72, 1997.
2.1, 2.7.1

[122] D. Povey. Discriminative Training for Large Vocabulary Speech Recognition. PhD thesis,
University of Cambridge, 2003. 2.4.2.2, 2.4.2.3, 2.4.2.4, 2.4.2.4, 2.4.2.4, 5.2.2, 5.3.3

[123] D. Povey and B. Kingsbury. Evaluation of Proposed Modifications to MPE for Large
Scale Discriminative Training. In Proc. ICASSP, 2005. 2.4.2.2

[124] D. Povey and P.C. Woodland. Minimum Phone Error and I-Smoothing for Improved
Discriminative Training. In Proc. ICASSP, 2002. 2.4.2.5

[125] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau, and G. Zweig. fMPE: Dis-
criminatively trained features for speech recognition. In Proc. ICASSP, 2005. 2.4.2.2,
12.2

REFERENCES 162

[126] B. Ramabhadran, O. Siohan, L. Mangu, G. Zweig, M. Westphal, H. Schluz, and
A. Soneiro. The IBM 2006 Speech Transcription System for European Parlimentary
Speeches. In TC-STAR Workshop on Speech-to-Speech Translation, 2006. 3.1, 3.1,
3.3.4.1, 3.3.4.2, 4.2.1

[127] W.M. Rand. Objective Criteria for the Evaluation of Clustering Methods. Journal of
the Americal Statistical Association, 66:846–850, 1971. 6.3

[128] G. Riccardi and D. Hakkini-Tr. Active and Unsupervised Learning for Automatic
Speech Recognition. In Proc. Eurospeech, 2003. 2.4.3

[129] R. Riccardi and D. Hakkani-Tr. Active Learning: Theory and Applications to Auto-
matic Speech Recognition. IEEE Trans. on Speech and Audio Processing, 13(4):504–511,
2005. 2.4.3

[130] R.C. Rose, B.H. Juang, and C.H. Lee. A Training Procedure for Verifying String
Hypotheses in Continuous Speech Recognition. In Proc. ICASSP, 1995. 5.1.2, 5.1.2

[131] A. Sankar. Bayesian Model Combination (BAYCOM) for Improved recognition. In
Proc. ICASSP, 2005. 3.3.1.4

[132] G. Saon, S. Dharanipragada, and D. Povey. Feature Space Gaussianization. In Proc.
ICASSP, 2004. 2.2.2.2, 2.2.2.2

[133] L.K. Saul and M.I. Jordan. Mixed Memory Markov Models. Machine Learning, pages
75–87, 1999. 3.3.3.3

[134] R.E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197–227, 1990.
4.1.2

[135] H. Schwenk. Using boosting to improve a hybrid HMM/Neural-Network Speech Recog-
niser. In Proc. ICASSP, 1999. 4.2.2

[136] H. Schwenk and J.L. Gauvain. Combining Multiple Speech Recognisers using Voting
and Language Model Information. In Proc. ICSLP, 2000. 3.3.1.2

[137] R. Sinha, M.J.F. Gales, D.Y. Kim, X.A. Liu, K.C. Sim, and P.C. Woodland. The CU-
HTK Mandarin Broadcast News Transcription System. In Proc. ICASSP, 2006. 3.1,
3.1

[138] O. Siohan, B. Ramabhadran, and B. Kingsbury. Constructing Ensembles of ASR Sys-
tems using Randomized Decision Trees. In Proc. ICASSP, 2005. 4.2.1, 4.2.1

[139] N.D. Smith and M.J.F. Gales. Using SVMs and Discriminative Models for Speech
Recognition. In Proc. ICASSP, 2002. 4.2.4

[140] H. Soltau, G. Saon, B. Kingsbury, J. Kuo, L. Mangu, D. Povey, and G. Zweig. The
IBM 2006 GALE Arabic ASR System. In Proc. ICASSP, 2007. 2.2.2.3, 3.1

[141] A. Stolke, Y. Konig, and M. Weintraub. Explicit Word Error Minimization in N-Best
List rescoring. In Proc. Eurospeech, 1997. 2.6.2, 2.6.2, 3.3.1.1

REFERENCES 163

[142] S. Stuker, C. Fugen, S. Burger, and M. Wolfel. Cross-System Adaptation and Combi-
nation for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic
Front-end. In Proc. ICSLP, 2006. 3.3.1.3, 3.3.4.2

[143] S. Stuker, C. Fugen, F. Kraft, and M. Wolfel. The ISL 2007 English Speech Transcription
System for European Parlimentary Speeches. In Proc. Interspeech, 2007. 3.1

[144] T.P. Tan and L. Besacier. Acoustic Model Interpolation for Non-Native Speech Recog-
nition. In Proc. ICASSP, 2007. 3.3.3

[145] M.J. Tomlinson, M.J. Russell, and N.M. Brooke. Integrating Audio and Visual Infor-
mation to provide Highly Robust Speech Recognition. In Proc. ICASSP, 1996. 3.3.3.3

[146] M.J. Tomlinson, M.J. Russell, R.K. Moore, A.P. Buckland, and M.A. Fawley. Modelling
Asynchrony in Speech using Elemental Single-signal Decomposition. In Proc. ICASSP,
1997. 3.3.3.3

[147] T. Utsuro, Y. Kodama, T. Watanave, H. Nishizaki, and S. Nakagawa. Confidence of
Agreement among Multiple LVCSR Models and Model Combination by SVM. In Proc.
ICASSP, 2003. 5.1.2, 5.1.3

[148] T. Utsuro, Y. Kodama, T. Watanabe, H. Nishizaki, and S. Nakagawa. An Empirical
Study on Multiple LVCSR Model Combination by Machine Learning. In Proceedings
HLT, 2004. 5.1.3

[149] V. Valtchev, J.J. Odell, P.C. Woodland, and S.J. Young. MMIE training of large
vocabulary recognition systems. Speech Communication, 22:303–314, 1997. 2.4.2.1

[150] V. Vapnik. Statistical Learning Theory. John Wiley and Sons Inc., 1998. 5.1.3

[151] A.P. Varga and R.K. Moore. Hidden Markov Model Decomposition of Speech and Noise.
In Proc. ICASSP, 1990. 3.3.3.1, 3.3.3.3

[152] V. Venkataramani and W. Byrne. Lattice Segmentation and Support Vector machines
for Large Vocabulary continuous Speech Recognition. In Proc. ICASSP, 2005. 3.3.4,
4.2.4, 4.2.4

[153] L. Wang, M.J.F. Gales, and P.C. Woodland. Unsupervised Training for Mandarin
Broadcast News and Conversation Transcription. In Proc. ICASSP, 2007. 2.4.3

[154] M. Weintraub, F. Beaufays, Z. Rivlin, Y. Konig, and A. Stolcke. Neural-Network Based
Measures of Confidence for Word Recognition. In Proc. ICASSP, 1997. 5.1.3

[155] F. Wessel and H. Ney. Unsupervised training of acoustic models for large vocabulary
continuous speech recognition. IEEE Trans. on Speech and Audio Processing, 13(1):
23–31, 2005. 2.4.3

[156] F. Wessel, R. Schluter, and H. Ney. Using Posterior Word Probabilities for Improved
Speech Recognition. In Proc. ICASSP, 2000. 2.6.2

[157] F. Wessel, R. Schluter, K. Macherey, and H. Ney. Confidence measures for Large Vocab-
ulary Continuous Speech Recognition. IEEE Trans. on Speech and Audio Processing,
pages 288–298, 2001. 2.7.1, 5.1.1

REFERENCES 164

[158] F. Wessel, R. Schluter, and H. Ney. Explicit Word Error Minimization Using Word
Hypothesis Posterior Probabilities. In Proc. ICASSP, 2001. 2.6.2, 5.1.1

[159] P.C. Woodland and D. Povey. Large Scale Discriminative Training of Hidden Markov
Models for Speech Recognition. Computer Speech and Language, 16:25–47, 2002. 2.4.2.3,
2.4.2.4

[160] J. Xue and Y. Zhao. Improved Confusion Network Algorithm and Shortest Path Search
from Word Lattice. In Proc. ICASSP, 2005. 2.6.2.1

[161] J. Xue and Y. Zhao. Random Forests-based Confidence Annotation using Novel Features
from Confusion Network. In Proc. ICASSP, 2006. 5.1.3

[162] J. Xue and Y. Zhao. Random Forests of Phonetic Decision Trees for Acoustic Modeling
in Conversational Speech Recognition. IEEE Trans. on Audio, Speech, and Language
Processing, pages 16(3):519–528, 2008. 4.2.1, 4.2.1

[163] S.J. Young, G. Evermann, M.J.F. Gales, T. Hain, D. Kershaw, G. Moore, J.J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P.C. Woodland. The HTK Book (for HTK
Version 3.3). University of Cambridge, 2004. 2.2, 2.4.2.3, 2.6.1, 3.3.3.3

[164] S.R. Young. Detecting Misrecognitions and Out-of-Vocabulary Words. In Proc.
ICASSP, 1994. 5.1.1

[165] R. Zhang and A.I. Rudnicky. Word Level Confidence Annotation using Combinations
of Features. In Proc. Eurospeech, 2001. 5.1.3, 7.3.2, 11.3

[166] R. Zhang and A.I. Rudnicky. Comparative Study of Boosting and Non-boosting Train-
ing for Constructing Ensembles of Acoustic Models. In Proc. Eurospeech, 2003. 4.2.2,
5.2, 5.2.1

[167] R. Zhang and A.I. Rudnicky. A Frame Level Boosting Training Scheme for Acoustic
Modelling. In Proc. ICSLP, 2004. 4.2.2, 5.2.1

[168] R. Zhang and A.I. Rudnicky. Investigations of Issues for Using Multiple Acoustic Models
to Improve Continuous Speech Recognition. In Proc. ICSLP, 2006. 3.3.1.2, 4.2.2, 7.2

[169] A. Zolnay, D. Kocharov, R. Schluter, and H. Ney. Using Multiple Acoustic Feature Sets
for Speech Recognition. Speech Communication, pages 514–525, 2007. 3.3.1.6

[170] G. Zweig and M. Padmanabhan. Boosting Gaussian Mixtures in an LVCSR System. In
Proc. ICASSP, 2000. 4.2.2

	1 Introduction
	1.1 Automatic Speech Recognition
	1.2 Complementary Systems
	1.3 Thesis Organisation

	2 HMM-based Statistical Speech Recognition
	2.1 Statistical Framework for ASR
	2.2 Frontend Processing
	2.2.1 Feature Extraction
	2.2.2 Feature Normalisation and Transformations
	2.2.2.1 Cepstral Mean and Variance Normalisation
	2.2.2.2 Gaussianisation
	2.2.2.3 Feature Transforms

	2.3 Hidden Markov Models
	2.3.1 HMM Topology for ASR
	2.3.2 Likelihood Calculation

	2.4 Training Hidden Markov Models
	2.4.1 Maximum Likelihood
	2.4.2 Discriminative Training
	2.4.2.1 Maximum Mutual Information
	2.4.2.2 Minimum Bayes' Risk Training
	2.4.2.3 Implementation Detail
	2.4.2.4 Optimisation of Discriminative Criteria
	2.4.2.5 Smoothing

	2.4.3 Active and Unsupervised Training

	2.5 Language Modelling
	2.6 Decoding
	2.6.1 Viterbi Decoding
	2.6.2 Minimum Bayes' Risk Decoding
	2.6.2.1 Confusion Network Decoding

	2.7 Aligning Multiple Hypotheses
	2.7.1 N-best Lists and Word Lattices
	2.7.2 Levenshtein Alignment
	2.7.3 Aligning Multiple Hypotheses

	2.8 Decision Trees for Parameter Tying
	2.9 Adaptation
	2.10 Summary

	3 System Combination
	3.1 Multi-pass Combination Framework for LVCSR
	3.2 General Combination Methods
	3.2.1 Majority and Weighted Voting
	3.2.2 Posterior Combination
	3.2.3 Mixtures and Products of Experts

	3.3 Combination for Automatic Speech Recognition
	3.3.1 Hypothesis Combination Schemes
	3.3.1.1 Minimum Bayes' Risk Decoding
	3.3.1.2 ROVER
	3.3.1.3 Confusion Network Combination
	3.3.1.4 Weighted Combination
	3.3.1.5 Frame-level Posterior Combination
	3.3.1.6 Discriminative Model Combination

	3.3.2 Distributional Combination Schemes
	3.3.3 Likelihood Combination Schemes
	3.3.3.1 Mixture Models for ASR
	3.3.3.2 Products of Experts
	3.3.3.3 Multiple Streams and the Mixed Memory Model

	3.3.4 Implicit Combination Schemes
	3.3.4.1 N-best and Lattice Rescoring
	3.3.4.2 Cross Adaptation

	3.4 IDEAL combination
	3.5 Summary

	4 Generating Complementary Systems
	4.1 General Approaches
	4.1.1 Injecting Randomness
	4.1.2 Boosting
	4.1.3 Simultaneously Training Multiple Systems

	4.2 Methods in Automatic Speech Recognition
	4.2.1 Random Decision Trees
	4.2.2 Boosting for Automatic Speech Recognition
	4.2.3 Simultaneously Training Multiple Systems for ASR
	4.2.3.1 Products of GMMs
	4.2.3.2 Factorial HMMs

	4.2.4 Acoustic Code Breaking

	4.3 Summary

	5 Data Weighting for ASR
	5.1 Confidence Measures
	5.1.1 Estimating Posterior Probability
	5.1.2 Alternative Confidence Scores
	5.1.3 Combining Multiple Scores
	5.1.3.1 Logistic Regression

	5.2 Existing Approaches to Data Weighting for ASR
	5.2.1 ML Training
	5.2.2 Discriminative Training

	5.3 A New Approach to Data Weighting for ASR
	5.3.1 Weighting Reference Words
	5.3.2 Weighting Lattice Arcs
	5.3.3 Alternative to Confusion Networks

	5.4 Summary

	6 Directed Decision Trees
	6.1 Directed Decision Tree Algorithm
	6.2 Multiple Complementary Systems
	6.3 Decision Tree Cluster Divergence Measure
	6.4 Summary

	7 Minimum Bayes' Risk Leveraging
	7.1 Word-level Active Training
	7.2 Minimum Bayes' Risk Leveraging Algorithm
	7.3 Issues with Training Complementary Systems
	7.3.1 Alignment
	7.3.2 Combination as a Binary Classification Task

	7.4 Summary

	8 Experimental Setup
	8.1 Broadcast News Training and Decoding
	8.1.1 Training Approach
	8.1.2 Single-pass Decoding
	8.1.3 Multi-Pass Decoding Framework

	8.2 Broadcast News English
	8.3 Broadcast News Mandarin
	8.4 Broadcast News Arabic

	9 Experimental Results with Directed Decision Trees
	9.1 Decision Tree Divergence
	9.2 Random Decision Trees
	9.3 Directed Decision Trees
	9.4 MPE Training and Directed Decision Trees
	9.5 Combination of Complementary Approaches
	9.6 Multi-pass Performance
	9.7 Summary

	10 Experimental Results with Data Weighting
	10.1 Word-level Active Training Results
	10.1.1 Test Data Performance
	10.1.2 Effect on Training Data
	10.1.3 Two Complementary Systems
	10.1.4 Mandarin Results

	10.2 Discriminatively Training Complementary Systems
	10.2.1 MPE Training for Complementary Systems
	10.2.2 MBRL Test Data Performance
	10.2.2.1 Effect of Loss Function
	10.2.2.2 Effect of Smoothing

	10.2.3 Effect on the Training Data
	10.2.4 Overtraining and Generalisation
	10.2.5 Building Multiple Complementary Systems
	10.2.6 MBRL on Broadcast News Mandarin

	10.3 Addressing Alignment Issues
	10.4 Summary

	11 Combination of Complementary Systems
	11.1 Global Approaches to Combination
	11.1.1 Global Weighting
	11.1.2 Global Posterior Threshold

	11.2 Word Error Detection and Combination using Single Features
	11.3 Word Error Detection and Combination using Multiple Features
	11.4 Summary

	12 Conclusions
	12.1 Review of Work
	12.2 Future Work

	References

