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Model-Based Approaches to Speaker and Environment Adaptation

Overview

• Speaker Adaptation - “Adaptive”

– linear transform-based adaptation / adaptive training

• Extensions to Linear-Transform Approaches

– Bayesian adaptive training and inference
– discriminative mapping functions
– noisy constrained MLLR

• Noise Robust Speech Recognition - “Predictive”

– model-based approaches / ML noise estimation

• Extensions to Model-Based Approaches

– joint uncertainty decoding
– predictive linear transforms
– adaptive training / incremental adaptation
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Speaker Adaptation
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Model-Based Approaches to Speaker and Environment Adaptation

Speaker Adaptation

• Large differences between speakers

• Linguistic Differences e.g.

– Accents
tomato in RP/American English

– Speaker idiosyncrasies
either in English

– non-native speaker

• Physiological Differences e.g.

– physical attributes - gender,
length of vocal tract

– transitory effects
cold/stress/public speaking
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Model-Based Approaches to Speaker and Environment Adaptation

Adaptation Modes

• Speaker/environment adaptation is an essential part of LVCSR systems

– obtain the performance of a Speaker/Environment dependent system
with orders-of-magnitude less data (30 seconds vs 2000 hours!)

• The mode of adaptation depends on the task being investigated

– incremental: results are required causally, the adaptation data is not all
available in one block - dictation tasks, car navigation

– batch: all the data is available (or can be used) in one block - BN
transcription, CTS transcription

In addition for batch adaptation the adaptation data may be

– supervised: the correct transcription of the adaptation data is known
(dictation enrolment)

– unsupervised: no transcribed adaptation data available, transcription must
be hypothesised (BN transcription)
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Model-Based Approaches to Speaker and Environment Adaptation

General Adaptation Process

• Aim: Modify a “canonical” model to represent a target speaker

– transformation should require minimal data from the target speaker
– adapted model should accurately represent target speaker

Adapt

Canonical Speaker Model Target Speaker Model

• Need to determine

– nature (and complexity) of the speaker transform
– how to train the “canonical” model that is adapted
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Model-Based Approaches to Speaker and Environment Adaptation

Form of the Adaptation Transform

• There are a number of standard forms in the literature [1].

• Maximum A-Posteriori MAP [2] adaptation: general “robust” estimation

– in simplest form only adapts “seen” components

• Speaker Clustering: Gender-dependent (GD) models are the simplest from:

– often estimated using MAP adaptation with speaker-independent priors

EigenVoices[3], CAT [4] are more complex forms.

• Vocal Tract Length Normalisation: motivated from physiological perspective

• Linear Transform Adaptation: dominant form for LVCSR

– will be the focus of this part of the talk
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Model-Based Approaches to Speaker and Environment Adaptation

Form of the Adaptation Transform
• Dominant form for LVCSR are ML-based linear transformations

– MLLR adaptation of the means [5]

µ(s) = A(s)µ + b(s)

– MLLR adaptation of the covariance matrices [6, 7]

Σ(s) = H(s)ΣH(s)T

– Constrained MLLR adaptation [7]

µ(s) = A(s)µ + b(s); Σ(s) = A(s)ΣA(s)T

• Forms may be combined into a hierarchy [8] e.g.

CMLLR → MLLRMEAN
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Model-Based Approaches to Speaker and Environment Adaptation

ML and MAP Linear Transforms

• Transforms often estimated using ML (with hypothesis H)

W(s)
ml = arg max

W

{
p(O(s)|H;W)

}

– where W(s)
ml =

[
A(s)

ml b(s)
ml

]

– however not robust to limited training data

• Including transform prior, p(W), to get MAP estimate [9]

W(s)
map = arg max

W

{
p(O(s)|H;W)p(W)

}

– for MLLR Gaussian is a Gaussian prior for the auxiliary function
– CMLLR prior more challenging ...

• Both approaches rely on expectation-maximisation (EM)
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Model-Based Approaches to Speaker and Environment Adaptation

Training a “Good” Canonical Model

• Standard “multi-style” canonical model

– treats all the data as a single “homogeneous” block
– model represents acoustic realisation of phones/words (desired)
– and acoustic environment, speaker, speaking style variations (unwanted)

Multi−Style

Model
Adapted 

Canonical Model

(a) Multi-Style System

Adapted
Model

Canonical 
Model

(b) Adaptive System

Two different forms of canonical model:

• Multi-Style: adaptation converts a general system to a specific condition;

• Adaptive: adaptation converts a “neutral” system to a specific condition [10, 7]
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Model-Based Approaches to Speaker and Environment Adaptation

Adaptive Training

Transform
Speaker 1 Speaker 1

Model
Speaker 1

Data

Canonical
Model

Transform
Speaker 2 Speaker 2

Model

Transform
Speaker S Speaker S

Model

Speaker 2
Data

Speaker S
Data

• In adaptive training the training corpus is split into “homogeneous” blocks

– use adaptation transforms to represent unwanted acoustic factors
– canonical model only represents desired variability

• All forms of linear transform can be used for adaptive training

– CMLLR adaptive training highly efficient
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Model-Based Approaches to Speaker and Environment Adaptation

CMLLR Adaptive Training

• The CMLLR likelihood may be expressed as [7]:

N (ot;Aµ + b,AΣAT) =
1
|A|N (A-1ot −A-1b; µ,Σ)

same as feature normalisation - simply train model in transformed space

Estimate Speaker
Transform

Canonical Model
Estimate

Transforms

Canonical Model

Model

GI Acoustic Model
Identity Transform

• Interleave Model and transform estimation

• Adaptive canonical model not suited for
unadapted initial decode

– GI model used for initial hypothesis

• MLLR less efficient, but still reasonable
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Model-Based Approaches to Speaker and Environment Adaptation

Unsupervised Linear Transformation Estimation

• Estimation of all the transforms is based on EM:

– requires the transcription/hypothesis of the adaptation data
– iterative process using “current” transform to estimate new transform

Transform
Estimate

Speaker Transform

Update Complete
Data Set

Identity Transform

Adaptation Data
Recognise

Statistics

Hypothesis

Transform

• Two iterative loops for estimation:

1. estimate hypothesis given transform
2. update complete-dataset given

transform and hypothesis

referred to as Iterative MLLR [11]

• For supervised training hypothesis is known

• Confidence-scores can also be used

– confidence-based MLLR [12]

Cambridge University
Engineering Department

Tsinghua University April 2009 12



Model-Based Approaches to Speaker and Environment Adaptation

Lattice-Based MLLR

• For unsupervised adaptation hypothesis will be error-full

• Rather than using the 1-best transcription and iterative/confidence MLLR

– generate a lattice when recognising the adaptation data [12]
– accumulate statistics over the lattice (Lattice-MLLR)

DIDN’T ELABORATEBUTTO
ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

1-best transcription Word lattice

• The accumulation of statistics is closely related to obtaining denominator
statistics for discriminative training

• No need to re-recognise the data

– iterate over the transform estimation using the same lattice

Cambridge University
Engineering Department

Tsinghua University April 2009 13



Model-Based Approaches to Speaker and Environment Adaptation

Extensions to Linear Transform Approaches

• Bayesian Adaptive Training and Inference:

– HMMs as a dynamic Bayesian network
– transform parameters embedded in acoustic model
– integrated (instantaneous) adaptation and recognition

• Discriminative Mapping Transforms:

– efficient and robust approach to obtaining discriminative linear transforms

• Noisy Constrained MLLR:

– ML-estimated transform suitable for both noise and speaker adaptation
– integration into adaptive training framework
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Hidden Markov Model - A Dynamic Bayesian Network
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1

()

(c) Standard HMM phone topology

ot ot+1

t+1qqt

(d) HMM Dynamic Bayesian Network

• Notation for DBNs:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states.

• Poor model of the speech process - piecewise constant state-space.
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Model-Based Approaches to Speaker and Environment Adaptation

Adaptive Training From Bayesian Perspective

ot ot+1

t+1qqt

(e) Standard HMM

ot ot+1

qt qt+1

t t+1W W

(f) Adaptive HMM

• Observation additionally dependent on transform Wt [13]

– transform same for each homogeneous block (Wt = Wt+1)
– adaptation integrated into acoustic model - instantaneous adaptation

• Need to known the prior transform distribution p(W) (as in MAP scheme)
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Model-Based Approaches to Speaker and Environment Adaptation

Inference with Adaptive HMMs
• Acoustic score - marginal likelihood of the whole sequence, O = o1, . . . ,oT

– still depends on the hypothesis H
– point-estimate canonical parameters (standard complexity control schemes)

p(O|H) =
∫

W
p(O|H,W)p(W) dW

=
∫

W

∑

q∈Q(H)

P (q)
T∏

t=1

N (ot;Aµ(qt) + b,Σ(qt))p(W) dW

• Latent variables makes exact inference impractical

– need to sum over all possible state-sequences explicitly
– Viterbi decoding not possible to find best hypothesis

• Need schemes to handle both these problems [13]

– variational Bayes/MAP N-best supervision/adaptation/rescoring

Cambridge University
Engineering Department

Tsinghua University April 2009 17



Model-Based Approaches to Speaker and Environment Adaptation

Utterance Level Bayesian Adaptation
• Initial evaluations on English Conversational Speech recognition task

Bayesian ML Train
Approx SI SAT

— 32.8 —

ML 35.5 35.2
MAP 32.2 31.8
VB 31.8 31.5

• All experiments use N-best supervision

– ML adaptation much worse than SI - insufficient adaptation data
– VB yields additional gains over MAP
– Note: N-best supervision better than 1-best (0.5% for VB-SAT)

• SAT performance better than SI performance

– gains from adaptive HMM 1.3% absolute over SI baseline
– integrated adaptation seems to be useful (though implementation an issue)
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Model-Based Approaches to Speaker and Environment Adaptation

Discriminative Linear Transforms

• Linear transforms can be trained using discriminative criteria [14, 15]

– estimation using minimum phone error (MPE) training

W(s)
d = arg min

W

{∑

H
P (H|O(s);W)L(H,H(s))

}
.

• For unsupervised adaptation discriminative linear transforms (DLTs) not used

– estimation highly sensitive to errors in supervision hypothesis
– more costly to estimate transform than ML training

• Not used for discriminative SAT [16], standard procedure

1. perform standard ML-training (ML-SI)
2. perform ML SAT training updating models and transforms (ML-SAT)
3. estimate MPE-models given the ML-transforms (MPE-SAT)
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Model-Based Approaches to Speaker and Environment Adaptation

Discriminative Mapping Functions
• Would like to get aspects of discriminative transform without the problems:

– train all speaker-specific parameters using ML training
– train speaker-independent parameters using MPE training

• Applying this to linear transforms yields (as one option) [17]

µ(s) = Ad

(
A(s)

ml µ + b(s)
ml

)
+ bd

= Adµ
(s)
ml + bd

– W(s)
ml =

[
A(s)

ml b(s)
ml

]
- speaker-specific ML transform

– Wd = [Ad bd] - speaker-independent MPE transform

• Yields a composite discriminative-like transform

A(s)
d = AdA

(s)
ml ; b(s)

d = Adb
(s)
ml + bd
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Model-Based Approaches to Speaker and Environment Adaptation

Training DMTs

• This form of DMT results in the following estimation criterion

Wd = arg min
W

{∑
s

∑

H
P (H|O(s);W,W(s)

ml )L(H,H(s))

}
.

– posterior P (H|O(s);W,W(s)
ml ) based on speaker ML-adapted models

– supervised training of discriminative transform

• Standard DLT update formulae can be used

• Quantity of training data vast compared to available speaker-specific data

– use large number of base-classes
– in these experiments 1000 base-classes used

• Can also be used for adaptive training [18]

– closer to full discriminative adaptive training
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Model-Based Approaches to Speaker and Environment Adaptation

Discriminative Adaptive Training with DMTs

• Initial evaluations on English Conversational Speech recognition task

Training Transform WER (%)
Scheme Training Testing eval03

SI — — 29.2

SI —
MLLR 27.0
MLLR+DMT 26.2

DSAT

MLLR MLLR 26.4
MLLR MLLR+DMT 25.6
DLT DLT 28.1
MLLR+DMT MLLR+DMT 25.3

• All systems trained using MPE (both multi-style and adaptive)

• As expected adaptation helps with the multi-style trained system

– DMTs help with the multi-style trained system (0.8% absolute)
– DMTs help with adaptively trained system (1.1% absolute)

Cambridge University
Engineering Department

Tsinghua University April 2009 22



Model-Based Approaches to Speaker and Environment Adaptation

Noisy CMLLR

• Linear transforms described are general

– hierarchies allow very complex forms to be used
– interesting to examine forms aimed at particular tasks

• Noisy CMLLR is aimed at noise-robust speech [19] recognition

p(ot; µ(m),Σ(m),A,b,Σb) = |A|N (Aot + b; µ(m),Σ(m)+Σb)

– has the same form as a model-based compensation scheme (JUD)

• Similar to CMLLR, but with an additional bias on the variance

– CMLLR can be viewed as estimating the “neutral” speech
– the variance bias, Σb, a level of uncertainty

• Form can be used in an adaptive training/discriminative fashion as well
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Model-Based Approaches to Speaker and Environment Adaptation

Noisy CMLLR and Factor Analysis

• The estimation of/adaptive training of NCMLLR related to:

– shared factor analysis approach for covariance matrix modelling [20]
– EM-based VTS adaptive training for canonical model estimation [21]

• All treat “clean” speech as a latent variable

– posterior distribution depends on the form being examined
– update for canonical models:

µ̂(m) =
∑H

h=1

∑T
t=1 γ

(mh)
t E {st|ot,m}∑H

h=1

∑T
t=1 γ

(mh)
t

• Discriminative adaptive training also considered [19]

µ̂(m) =
∑H

h=1

∑T
t=1(γ

(mh)
numt − γ

(mh)
dent )E {st|ot,m}+ Dmµ(m) + τpµ

(m)
p∑H

h=1

∑T
t=1(γ

(mh)
numt − γ

(mh)
den,t ) + Dm + τp
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Noisy CMLLR vs CMLLR Performance

• Evaluated on engine-on/highway noise condition from the Toshiba data

– phone-numbers task (unknown digit length sequences)
– see next section for test data configuration, here run at speaker level
– simplified training data set-up trained on noise-corrupted WSJ SI-284

System
Adapt ENON HWY
(diag) ML MPE ML MPE

Multi-style
— 1.2 0.8 6.7 5.0

CMLLR 0.3 0.3 2.4 2.0
NCMLLR 0.5 0.6 2.1 1.9

Adaptive CMLLR 0.3 0.2 2.1 1.5
Training NCMLLR 0.3 0.2 1.8 1.2

• Adaptive training again shows gains over multi-style training

– NCMLLR out-performs CMLLR at low SNR conditions
– MPE gains larger when using adaptive training
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Speaker Adaptation Summary

• Speaker adaptation an important part of speech recognition systems

• Linear transform-based adaptation still dominant form for LVCSR adaptation

– extensively used in CU-HTK and other evaluation systems
– needs to be able to handle errors in the hypotheses
– need to be able to discriminatively estimated transforms

• Adaptive training a theoretically very interesting extension

– use adaptation transforms during training
– allows a “neutral” speaker model to be generated

• Gains for speaker adaptive training still disappointing ...

• Though simple (just a linear transform) still issues to be addressed

– e.g. integrating adaptation into acoustic model efficiently ...
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Noise-Robust ASR
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Noise Robust ASR - In-Car Navigation
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Noise Compensation Approaches

Environment
Training

Clean Acoustic

Noisy Acoustic 
Models

Noisy Speech
Features

Clean Speech
Features Models

Compensation
Feature

Compensation
Model

Environment
Recognition

• Two main approaches:

– feature compensation: “clean” the noisy features
– model compensation: “corrupt” the clean models

• This work concentrates on model compensation approaches

– VTS and JUD examples, predictive model compensation schemes
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Mismatch Functions

• Speech data is normally parameterised in the Cepstral domain, thus

ys
t =

1
2
C log

(
exp(2C-1xs

t + 2C-1hs) + exp(2C-1ns
t)

)
= xs

t + hs + f(xs
t , n

s
t , h

s)

C is the DCT, magnitude-based Cepstra

– non-linear relationship between the clean speech, noise and corrupted speech
– not possible to get simple expression for all parameterisations

• This has assumed sufficient smoothing to remove all “cross” terms

– some sites use interaction likelihoods or phase-sensitive functions [22, 23]
– given xs

t , h
s and ns

t there is a distribution

ys
t ∼ N (xs

t + hs
t + f(xs

t , n
s
t , h

s),Φ)
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Model-Based Approaches to Speaker and Environment Adaptation

Mismatch function optimisation
• The mismatch function is only an approximation - variations possible

– γ-optimised - tunable parameter γ, ignoring hs

ys
t = xs

t +
1
γ
C log

(
1 + exp

(
γC−1(ns

t − xs
t)

))

– Phase-sensitive - tunable parameter α, in theory −1 ≤ α ≤ 1

ys
t = xs

t +
1
2
C log

(
1 + exp

(
2C−1(ns

t − xs
t)

)
+ 2α exp

(
C−1(ns

t − xs
t)

))

−20 −15 −10 −5 0 5 10 15 20
0

2
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14

Signal−to−Noise Ratio (dB)

power     
magnitude 
gamma=0.75
alpha=2.5 

Ratio of corrupted speech magnitude
to clean speech magnitude

• magnitude (α = 1, γ = 1)

• power (α = 0, γ = 2)

• α = 2.5 (AURORA tuned [24])

• γ = 0.75 (AURORA tuned [25])

• γ = 1.0 used in this work
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Delta and Delta-Delta Parameters
• Aim to ‘reduce’ HMM conditional independence assumptions

– standard to add delta and delta-delta [26] parameters

yt =




ys
t

∆ys
t

∆2ys
t


 ; ∆ys

t =
∑n

i=1 wi

(
ys

t+i − ys
t−i

)

2
∑n

i=1 w2
i

• Two versions used to represent the impact of noise on these [27, 28]

∆ys
t ≈

∂ys
t

∂t
OR ∆ys

t = D




ys
t−1

ys
t

ys
t+1




– the second is more accurate, but more statistics required to be stored
– need to compensate all model parameters for best performance

• For enhancement can simply base deltas on static “clean” features
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Model-Based Compensation
• Could retrain system using noise-corrupted training data

– need to have all training data available and corrupt it with noise
– slow - single-pass retraining [29] a faster approximation

• Model-based compensation approximates SPR [29]

µ(m)
y = E{y|m}; Σ(m)

y = diag
(
E{yyT|m} − µ(m)

y µ(m)T
y

)

• Due to non-linearities no closed form solution - approximations required [29]

– Monte-Carlo-style: generate “speech” and “noise” observations and combine
– Log-Add: only transform the mean
– Log-Normal: sum of two log-normal variables approximately log-normal
– Vector Taylor series: first or higher order expansions used [30]

• Referred to here as predictive schemes - model parameters implicitly found

– contrast to adaptive speaker transforms - explicit parameter estimation
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Model-Based Approaches to Speaker and Environment Adaptation

Model-Based Compensation Procedure

Corrupted Speech HMM

Noise HMM

Speech State − N components Noise State − M components

− NxM components
Corrupted−Speech State

1a 2a 1b 2b 3b3a

1 2 3 a b

Clean Speech HMM

Model Combination

• Each speech/noise pair considered

– yields final component

• Also multiple-states possible

– 3-D Viterbi decoding [31]

• Iterative schemes also possible:

– iterative PMC [29]
– Algonquin [22]

• Commonly used configuration:

– single state
– single component
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Model-Based Approaches to Speaker and Environment Adaptation

Vector Taylor Series

• Vector Taylor Series (VTS) one popular approximation [32, 30]

– Taylor series expansion about “current” parameter values
– for these expression ignore impact of convolutional distortion
– mismatch function approximated using first order series

ys
t ≈ µs

x + f(µs
x, µ

s
n) + ∇xf(x, n)|µs

x,µ
s
n
(xs

t − µs
x) + ∇nf(x, n)|µs

x,µ
s
n
(ns

t − µs
n)

where f(x, n) is the mismatch function from previous slide (ignoring hs)

• Gives simple approach to estimating noise parameters

µ(m)s
y = E{ys

t |m} ≈ µ(m)s
x + f(µ(m)s

x , µs
n)

Σ(m)s
y ≈ AΣ(m)s

x AT + (I−A)Σ(m)s
n (I−A)T; A =

∂ys

∂xs
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Model-Based Approaches to Speaker and Environment Adaptation

Noise Parameter Estimation

• In practice the noise model parameters, µn, µh,Σn, are not known

– need to be estimated from test data
– simplest approach - use VAD and start/end frames to estimate noise

• Also possible to use ML estimation [32, 33, 24]

{
µ̂n, µ̂h, Σ̂n

}
= argmax

µn,µh,Σn

{p(y1, . . . , yT |µn, µh,Σn; λx)}

• VTS approximation yields simple approach to find µn, µh

– first/second-order approaches to find Σn

– simple statistics for auxiliary function

• Parameters estimated in the same fashion as unsupervised adaptation

– need to have hypothesis H
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Extensions to Model-Based Approaches

• Joint Uncertainty Decoding:

– derived from joint clean/corrupted speech modelling
– attempts to speed up model compensation process

• Predictive Linear Transforms:

– efficiently handles changes in the feature-vector correlations

• Adaptive Training using VTS/JUD:

– training systems with a wide-range of back-ground noise conditions

• Incremental Adaptation:

– using model-based related schemes in a causal fashion
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Model-Based Approaches to Speaker and Environment Adaptation

Minimum Mean-Square Error Estimates
• Estimate the clean speech x̂t given the corrupted speech yt

– to handle non-linearity partition space using an R-component GMM, then

x̂t = E{xt|yt} =
R∑

r=1

P (r|yt)E{xt|yt, r}

• Model the joint-distribution for each component, then [34]

[
yt

xt

]∣∣∣∣ r ∼ N
([

µ
(r)
y

µ
(r)
x

]
,

[
Σ(r)

yy Σ(r)
yx

Σ(r)
xy Σ(r)

xx

])

E{xt|yt, r} = µ(r)
x + Σ(r)

xy Σ(r)-1
yy (yt − µ(r)

y ) = A(r)yt + b(r)

– joint distribution estimated using stereo data
can be estimated using model-based compensation schemes [32, 35]

– various forms/variants possible: SPLICE [36], POF[37], VTS-based [32, 38]
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Model-Based Approaches to Speaker and Environment Adaptation

Uncertainty Decoding

t+1
(1)q

t
(1)q xt

y t+1 t+1
(2)q

q(2)
tnt

t+1x nt+1

y t

p(yt) =
∫

p(yt|xt, nt)p(xt)p(nt)dntdxt
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0.5

p(
o|

x)

• All the model-based approaches are computationally expensive

– scales linearly with # components (100K+ for LVCSR systems)

• Need to model the conditional distribution p(yt|xt, nt) [39, 22, 33]

– select form to allow efficient compensation/decoding (if possible)

Cambridge University
Engineering Department

Tsinghua University April 2009 40



Model-Based Approaches to Speaker and Environment Adaptation

Joint Uncertainty Decoding
• Rather than model p(yt|xt, nt) use [33]

p(yt|xt) =
∫

p(yt|xt, nt)p(nt)dnt

• Simplest approach is to assume yt and xt jointly Gaussian (again)

– to handle changes with acoustic-space make dependent on r
– simple to derive conditional distribution p(yt|xt, r)
– contrast to MMSE where p(xt|yt, r) modelled
– joint distribution estimated using VTS/PMC (stereo data can also be used)

• Product of Gaussians is an un-normalised Gaussian, so

p(yt|m, r) = |A(r)|N (A(r)yt + b(r); µ(m),Σ(m) + Σ(r)
b )

– r is normally determined by the component m [40]
– contrast to MMSE where GMM built in acoustic space to determine r
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JUD versus (N)CMLLR
• For JUD compensation, PMC/VTS only required at regression class level

– A(r),b(r) and Σ(r)
b functions of noise parameters µn, µh,Σn

Model-space ProcessingFront-end Processing

HypothesisDecode
Corrupted 
Speech

Variance 
Update

Apply 
Transform

Apply 
Transform

Apply 
Transform

Variance 
Update

Variance 
Update

• Similar to CMLLR however

– JUD parameters estimated using noise models derived from data
– CMLLR directly uses data to estimate parameters
– JUD has a bias variance, found to be important for noise estimation
– same form as NCMLLR, but estimated in a predictive fashion
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Predictive Linear Transforms
• Consider a GMM, the corrupted/adapted distributions are

p(y) =
M∑

m=1

c(m)
y N (y; µ(m)

y ,Σ(m)
y ); p̃(y) =

M∑
m=1

c(m)
x |A|N (Ay + b; µ(m)

x ,Σ(m)
x )

– how to estimate the “best” linear transform?

• Estimate should be based on minimising the KL-divergence

KL(p||p̃) =
∫

p(y) log
(

p(y)
p̃(y)

)
dy

– using the matched-bound approximation (K terms independent of A,b)

KL(p||p̃) ≤ −
MX

m=1

c
(m)
y

Z
N (y; µ

(m)
y , Σ(m)

y ) log
“
N (Ay + b; µ

(m)
x , Σ(m)

x )
”

dy + K

– a framework for estimating “predictive” linear transforms [41]

Cambridge University
Engineering Department

Tsinghua University April 2009 43



Model-Based Approaches to Speaker and Environment Adaptation

Predictive CMLLR

• For schemes like CMLLR required the “predictive” statistics are e.g.:

k(r)
pci =

∑
m∈rr

γ(m)µ
(m)
xi

σ
(m)2
xi

[
1

E{y|m}
]

– normally the expectations obtained from observed data (adaptive)
– could also use model-compensation schemes to obtain values (predictive)

– γ(m) either based on observations γ
(m)
yt or training data counts γ

(m)
x

E{y|m} =

∑
t γ

(m)
yt yt∑

t γ
(m)
yt

or E{y|m} = µ(m)
y

• Schemes such as JUD can be used to efficiently obtain “pseudo” statistics

∑
m∈rr

γ
(m)
x

σ
(m)2
xi

E{y|m} = A(r)-1

( ∑
m∈rr

γ
(m)
x µ

(m)
x

σ
(m)2
xi

)
−A(r)-1b(r)

( ∑
m∈rr

γ
(m)
x

σ
(m)2
xi

)
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“Adaptive” vs “Predictive” Schemes

• Adaptive and predictive schemes complementary to one another

Adaptive Predictive
general approach applicable to noise

linear assumption mismatch function required
- use many linear transforms - may be inaccurate

transform parameters estimated noise model estimated
- large numbers of parameters - small number of parameters

• Obvious approach is to combine the two in a fashion similar to MAP [42]:

– limited data predictive approaches used
– increased data adaptive approaches used

• Count smoothing simple approach to use (parent transforms also possible)

k(r)
pai =

k(r)
pci∑

m∈rr
γ

(m)
x

+ τsmk(r)
i
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PCMLLR vs MMSE Schemes

• Both MMSE and PCMLLR yield liner transforms of the feature-space

x̂t = Ayt + b

– both make use of the joint distribution between clean and corrupted speech

• However motivation for the two approaches very different

– MMSE is the expected value of the clean speech
– PCMLLR is the linear transform that minimises the KL-divergence

• Theoretically should use:

– MMSE: when enhancing data for additional processing
– PCMLLR: when transformed data directly for recognition

• Initial AURORA results show that PCMLLR out-performs MMSE
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Adaptive Training

• In practice training data comes from multiple sources

– various levels and sources of background noise
– various speakers and channel conditions

• Multistyle (multi-environment) models required to represent all variabilities

– for wide-range of noises models become very “broad”
– previously seen issues with applying VTS/JUD to multi-style models

• Adaptive training one approach to handling this

– adaptive training with various transforms previously investigated
– generic transforms: MLLR, CMLLR, CAT
– noise targeted transform: Noisy CMLLR

• Perform adaptive training with VTS and JUD

– Joint Adaptive Training examined on Broadcast News transcription [43]
– interested in applying VTS-adaptive training/JAT in lower SNR conditions
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VTS/JOINT based Adaptive Training

Canonical
Model

Transform Model

Transform Model

Condition 2

Condition H

Condition 1
ModelTransform

Condition 1

Condition 2

Condition H

Condition 1

Condition 2

Condition H

Data

Data

Data

• Same general framework as other adaptive training schemes

– partition data into H homogeneous subsets
– interleave updates of transform and canonical model

• Canonical model update (more) interesting with VTS/JUD transforms
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VTS/JOINT Adaptive Training

• System trained by interleaving transform (VTS/JUD) and HMM estimates

– VTS/JUD estimates usual approach using current canonical model
– canonical model estimation based on second-order optimisation [43]
– also possible to use EM-based [21]

• Derivative wrt to mean of canonical model given by

∂Qj

∂µ
(m)
xi

=
H∑

h=1

T (h)∑
t=1

γ
(m)
yt

(
â

(rh)
i yt+b̂

(rh)
i −µ

(m)
xi

σ
(m)2
xi + σ̂

(rh)2
bi

)

– σ̂
(rh)2
bi is larger in low-SNR regions

– impact of observation on derivative decreases for low-SNR
– agrees with intuition

• VAT implementation is JAT with #regression classes = #system components
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Incremental Noise Estimation

• Batch-mode adaptation introduces latency into decoding process

– for some tasks, e.g. in-car command/control, need to minimise latency
– many tasks require multiple interactions over a short period

• Incremental adaptation introduces no latency-

Utterance
Adapt/Recognise

Accumulate
Statistics

Transform

Estimate

Hypothesis

Statistics

Initial Transform

Transform

• generate hypothesis using current transform

• accumulate statistics O(m)
i using hypothesis

O(m)
i =

∑
t

γ
(m)
yt y

(i)
t + α O(m)

i−1

– 0 ⇒ no smoothing
– 1 ⇒ “complete” smoothing

• estimate transform for next utterance
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Combined Incremental/Adaptive Processing

• Adaptive training requires a test-condition transform for good performance

– normally requires a multi-pass system
– multiple models may be required (where to get initial htypothesis)
– sensitivity to initial hypothesis/transform

• Noise parameters can be estimated using a single utterance

• Incremental adaptation a good framework for VTS/JUD adaptive systems

– no need for multiple-passes
– output can be generated in a causal fashion
– hypothesis/initial transforn may be “good” (depending on form of noise)
– only an adaptively trained system needed

• BUT still need an initial transform for first utterance to get things started
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Toshiba In-Car Task
• TREL-CRL04 small/medium sized recognition task

– Speech collected in the office and in vehicles (enon, city, highway)

– phone numbers (PH) task used for initial evaluations

∗ 30 English speakers (15 male, 15 female) uttering 30 sentences each

∗ 35, 18 SNR averages for the enon, highway condition, respectively

– 4 digits (4D), command & control (CC) and city names (CN) also used

# PH 4D CC CN

utt 861 757 1916 958
words/utt 9.5 4.0 5.5 1.2
secs/utt 6.9 3.6 4.7 3.2

vocabulary 11 11 119 544

averaged between enon/hway (no city)

• Range of lengths (total not speech) and vocabularies
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System Configuration

• Acoustic training data - 486 hours of data

– mixture of real in-car data and clean data artificially corrupted
– approx 283 hours artificially corrupted data (from WSJ data)
– approx 203 hours “real” data

• Acoustic model characteristics

– MFCC-parameters plus delta/delta-delta features (39-dimensional)
– ≈650 states, 12 components/state, ≈7800 components
– acoustic models: decision tree clustered states, cross-word triphones

• compact system (embedded market is possible target domain)

• Both multi-style (multi) and adaptively trained (adapt) system built
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Batch Multi-Style vs VTS Adaptive Training
(phone-numbers)

Iteration
ENON HWY

multi adapt multi adapt

0 1.1 4.5
1 1.5 0.5 3.2 1.6
2 1.4 0.5 2.4 1.5

• VTS adaptation applied to both multi-style and adaptively trained systems

– update hypothesis and transform at each iteration

• Multi-style performance degraded by VTS for high SNR conditions

– mismatch function not suitable for multi-style training

• VTS Adaptive training consistent gains

– better than multi-style training, worked at higher SNR conditions
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Adaptively-Trained VTS Performance Summary

ENON HWY
Avg

PH 4D CC CN PH 4D CC CN

iter
0 1.1 1.0 0.9 3.9 4.5 3.0 2.0 14.5 3.86
1 0.5 0.3 0.7 3.6 1.6 1.5 1.4 13.6 2.90
2 0.5 0.2 0.7 3.7 1.5 1.3 1.3 11.0 2.53

ETSI-adv 1.2 1.1 0.9 4.5 3.1 1.8 1.2 8.2 2.75

• Batch VTS adaptation evaluated on full range of tasks

– compared to ETSI-advanced front-end with same training data

• For ENON consistent gains for all conditions

• For HWY mixed results are more mixed

– City-Names (CN) very poor performance
– related to sensitivity to initial hypothesis/noise estimate
– can get similar performance to ETSI advanced front-end eventually
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Incremental vs Batch with Adaptively Trained System

System
ENON HWY

Avg
PH 4D CC CN PH 4D CC CN

VAT-batch 0.5 0.2 0.7 3.7 1.5 1.3 1.3 11.0 2.53
VAT-INC 0.6 0.3 0.8 3.8 2.0 1.9 1.5 6.8 2.21
JAT-INC 1.2 0.7 0.8 3.6 2.5 2.3 1.7 6.9 2.46

ETSI-adv 1.2 1.1 0.9 4.5 3.1 1.8 1.2 8.2 2.75

• Incremental adaptation applied to adaptively trained systems

– smoothing factor of α = 0.6, 2-iteration batch results
– also used JAT - highly efficient noise estimation/adaptation
– initial hypothesis from multi-style system ...

• Slight degradation from batch to incremental for ENON

– issues with City-Names addressed for HWY

• Incremental adaptation yields good overall performance

Cambridge University
Engineering Department

Tsinghua University April 2009 56



Model-Based Approaches to Speaker and Environment Adaptation

Predictive and Adaptive Incremental Adaptation

System
HWY

PH 4D CC CN

VAT-INC 2.0 1.9 1.5 6.8
+CMLLR 1.7 2.0 1.1 6.7

ETSI-adv 3.1 1.8 1.2 8.2

• Predictive with Adaptive incremental adaptation

– use VTS compensated models to get prior statistics for CMLLR

• Combination of predictive and adaptive provides gains

– problem with command & controls task “fixed”
– Phone numbers also improved using combined compensation approach

• Only preliminary results - need real data to test schemes
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Summary Model-Based Noise Robustness

• Model-based compensation approaches

– good theoretical motivation
– but requires a mismatch function
– slow compared to feature-enhancement

• Range of extensions to standard approaches

– joint uncertainty decoding for faster compensation
– predictive linear transforms - additional flexibility
– adaptive training - handle multi-style data
– incremental adaptation

• Interesting area - still problems

– efficiency still needs to be improved
– improved compensation (full covariance matrices)
– improved use of adaptive training
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