Sequence Kernels for Speaker and Speech Recognition

Mark Gales - work with Martin Layton, Chris Longworth, Federico Flego

8 July 2009

Cambridge University Engineering Department

JHU Workshop 2009

Overview

- Support Vector Machines and kernels
 - "static" kernels
 - text-independent speaker verification
- Sequence (dynamic) kernels
 - discrete-observation kernels
 - distributional kernels
 - generative kernels and scores
- Kernels and Score-Spaces for Speech Recognition
 - dependency modelling in speech recognition
 - parametric models
 - non-parametric models
- Noise Robust Speech Recognition

Support Vector Machines

- SVMs are a maximum margin, binary, classifier [1]:
 - related to minimising generalisation error;
 - unique solution (compare to neural networks);
 - use kernels: training/classification function of inner-product $< x_i, x_j >$.
- Can be applied to speech use a kernel to map variable data to a fixed length.

The "Kernel Trick"

- General concept indicated below
 - a range of standard static kernels described and used in literature

- linear: $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$
- polynomial, order d: $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle + 1)^d$

• Gaussian, width
$$\sigma$$
:
 $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{||\boldsymbol{x}_i - \boldsymbol{x}_j||^2}{2\sigma^2}\right)$

• Linear/non-linear transformations of fixed-length observations

Second-Order Polynomial Kernel

- SVM decision boundary linear in the feature-space
 - may be made non-linear using a non-linear mapping $oldsymbol{\phi}()$ e.g.

$$\boldsymbol{\phi}\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}x_1^2\\\sqrt{2}x_1x_2\\x_2^2\end{array}\right], \quad K(\boldsymbol{x}_i,\boldsymbol{x}_j) = \langle \boldsymbol{\phi}(\boldsymbol{x}_i), \boldsymbol{\phi}(\boldsymbol{x}_j) \rangle$$

• Efficiently implemented using a Kernel: $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i. \boldsymbol{x}_j)^2$

Speaker Verification with SVMs

• GMM-based text-independent speaker verification common form used:

$$p(\boldsymbol{o};\boldsymbol{\lambda}) = \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o};\boldsymbol{\mu}^{(m)},\boldsymbol{\Sigma}^{(m)})$$

- compares likelihood from speaker model and general model (UBM)
- how to integrate SVMs into the process [2]

Sequence Kernels

Sequence Kernel

- Sequence kernels are a class of kernel that handles sequence data
 - also applied in a range of biological applications, text processing, speech
 - in this talk a these kernels will be partitioned into three classes
- Discrete-observation kernels
 - appropriate for text data
 - string kernels simplest form
- Distributional kernels
 - distances between distributions trained on sequences
- Generative kernels:
 - parametric form: use the parameters of the generative model
 - derivative form: use the derivatives with respect to the model parameters

String Kernel

- For speech and text processing input space has variable dimension:
 - use a kernel to map from variable to a fixed length;
 - string kernels are an example for text [3].
- Consider the words cat, cart, bar and a character string kernel

	c-a	c-t	c-r	a-r	r-t	b-a	b-r
$\phi(ext{cat})$	1	λ	0	0	0	0	0
$oldsymbol{\phi}(t cart)$	1	λ^2	λ	1	1	0	0
$oldsymbol{\phi}(t bar)$	0	0	0	1	0	1	λ
	I						

 $K(\texttt{cat},\texttt{cart}) = 1 + \lambda^3, \quad K(\texttt{cat},\texttt{bar}) = 0, \quad K(\texttt{cart},\texttt{bar}) = 1$

- Successfully applied to various text classification tasks:
 - how to make process efficient (and more general)?

Rational Kernels

- Rational kernels [4] encompass various standard feature-spaces and kernels:
 - bag-of-words and N-gram counts, gappy N-grams (string Kernel),
- A transducer, T, for the string kernel (gappy bigram) (vocab {a, b})

The kernel is: $K(O_i, O_j) = w \left[O_i \circ (T \circ T^{-1}) \circ O_j \right]$

- This form can also handle uncertainty in decoding:
 - lattices can be used rather than the 1-best output (O_i) .
- Can also be applied for continuous data kernels [5].

Distributional Kernels

- General family of kernel that operates on distances between distributions
 - using the available estimate a distribution given the sequence

$$\boldsymbol{\lambda}^{(i)} = \operatorname*{argmax}_{\boldsymbol{\lambda}} \left\{ \log(p(\mathbf{O}_i; \boldsymbol{\lambda})) \right\}$$

- Forms of kernel normally based (f_i distribution with parameters $oldsymbol{\lambda}^{(i)}$)
 - Kullback-Leibler divergence:

$$\mathcal{KL}(f_i||f_j) = \int f_i(\mathbf{O}) \log\left(\frac{f_i(\mathbf{O})}{f_j(\mathbf{O})}\right) d\mathbf{O}$$

- Bhattacharyya affinity measure:

$$\mathcal{B}(f_i||f_j) = \int \sqrt{f_i(\mathbf{O})f_j(\mathbf{O})} \, d\mathbf{O}$$

GMM Mean-Supervector Kernel

- GMM-mean supervector derived from a range of approximations [6]
 - use symmetric KL-divergence: $\mathcal{KL}(f_i||f_j) + \mathcal{KL}(f_j||f_i)$
 - use matched pair KL-divergence approximation
 - GMM distributions only differ in terms of the means
 - use polarisation identity
- Form of kernel is

$$K(\mathbf{O}_i, \mathbf{O}_j; \boldsymbol{\lambda}) = \sum_{m=1}^M c_m \boldsymbol{\mu}^{(im)\mathsf{T}} \boldsymbol{\Sigma}^{(m)-1} \boldsymbol{\mu}^{(jm)}$$

– $\mu^{(im)}$ is the mean (ML or MAP) for component m using sequence \mathbf{O}_i

- Used in a range of speaker verification applications
 - BUT required to explicitly operate in feature-space

Generative Kernels

• Generative kernels are based on generative models (GMMs/HMMs):

 $K(\mathbf{O}_i, \mathbf{O}_j; \boldsymbol{\lambda}) = \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})^{\mathsf{T}} \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_j; \boldsymbol{\lambda})$

- $\phi(\mathbf{O}; \boldsymbol{\lambda})$ is the score-space for \mathbf{O} using parameters $\boldsymbol{\lambda}$
- ${\bf G}$ is the appropriate metric for the score-space
- Parametric generative kernels use scores of the following form [7]

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \operatorname*{argmax}_{\boldsymbol{\lambda}} \{ \log(p(\mathbf{O}; \boldsymbol{\lambda})) \}$$

- possible to concatenate parameters of competing GMMs $\lambda = \{\lambda^{(i)}, \lambda^{(j)}\}$
- using the appropriate metric, this is the GMM-supervector kernel
- Also possible to use different parameters derived from sequences.
 - MLLR transform kernel [8]/Cluster adaptive training kernel [9]

Derivative Generative Kernels

• An alternative score-space can be defined using

 $\boldsymbol{\phi}\left(\mathbf{O};\boldsymbol{\lambda}\right) = \boldsymbol{\nabla}_{\boldsymbol{\lambda}}\log\left(p(\mathbf{O};\boldsymbol{\lambda})\right)$

- using just the "UBM" same as the Fisher kernel [10]
- can be trained on unsupervised data
- Possible to extend this using competing models: log-likelihood ratio score-space

$$\boldsymbol{\phi}(\mathbf{O}; \boldsymbol{\lambda}) = \begin{bmatrix} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(i)}) \right) - \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(j)}) \right) \\ \boldsymbol{\nabla}_{\boldsymbol{\lambda}^{(i)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(i)}) \right) \\ - \boldsymbol{\nabla}_{\boldsymbol{\lambda}^{(j)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(j)}) \right) \end{bmatrix}$$

- "speaker"-specific models used
- include log-likelihood ratio in score-space
- higher-order derivatives also possible

Derivative versus Parametric Generative Kernels

- Parametric kernels and derivative kernels are closely related [11]
- Consider gradient based optimisation

$$\boldsymbol{\lambda}^{n+1} = \boldsymbol{\lambda}^n + \eta \, \boldsymbol{\nabla} \log(p(\mathbf{O}; \boldsymbol{\lambda}))|_{\boldsymbol{\lambda}^n}$$

forms become the same when:

- learning rate η independent of ${\bf O}$
- stationary kernel used: $K(\mathbf{O}_i, \mathbf{O}_j) = \mathcal{F}(\boldsymbol{\phi}(\mathbf{O}_i) \boldsymbol{\phi}(\mathbf{O}_j))$
- Both used for speaker verification [12, 6]
 - when forms are not identical, they can be beneficially combined
- BUT derivative kernels more flexible
 - higher-order derivatives can be used
 - score-space also related to other kernels, e.g. marginalised count kernel [13]

Form of Metric

- The exact form of the metric is important
 - standard form is a maximally non-committal metric

$$\boldsymbol{\mu}_{g} = \mathcal{E}\left\{\boldsymbol{\phi}(\mathbf{O};\boldsymbol{\lambda})\right\}; \quad \mathbf{G} = \boldsymbol{\Sigma}_{g} = \mathcal{E}\left\{(\boldsymbol{\phi}(\mathbf{O};\boldsymbol{\lambda}) - \boldsymbol{\mu}_{g})(\boldsymbol{\phi}(\mathbf{O};\boldsymbol{\lambda}) - \boldsymbol{\mu}_{g})^{\mathsf{T}}\right\}$$

- empirical approximation based on training data is often used
- equal "weight" given to all dimensions
- Fisher kernel with ML-trained models ${\bf G}$ Fisher Information Matrix
- Metric can be used for session normalisation in verification/classification
 - nuisance attribute projection: project out dimensions [14]
 - within class covariance normalisation [15] average within class covariance

Speech Recognition

Dependency Modelling for Speech Recognition

- Sequence kernels for text-independent speaker verification used GMMs
 - for ASR interested modelling inter-frame dependencies
- Dependency modelling essential part of modelling sequence data:

 $p(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_T;\boldsymbol{\lambda}) = p(\boldsymbol{o}_1;\boldsymbol{\lambda})p(\boldsymbol{o}_2|\boldsymbol{o}_1;\boldsymbol{\lambda})\ldots p(\boldsymbol{o}_T|\boldsymbol{o}_1,\ldots,\boldsymbol{o}_{T-1};\boldsymbol{\lambda})$

- impractical to directly model in this form
- Two possible forms of conditional independence used:
 - observed variables
 - latent (unobserved) variables
- Even given dependencies (form of Bayesian Network):
 - need to determine how dependencies interact

Hidden Markov Model - A Dynamic Bayesian Network

• Notation for DBNs [16]:

(b) HMM Dynamic Bayesian Network

circles - continuous variables shaded - observed variables

- squares discrete variables non-shaded unobserved variables
- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states.
- Poor model of the speech process piecewise constant state-space.

Dependency Modelling using Observed Variables

• Commonly use member (or mixture) of the exponential family

$$p(\mathbf{O}; \boldsymbol{\alpha}) = \frac{1}{Z} h(\mathbf{O}) \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \mathbf{T}(\mathbf{O})\right)$$

- $h(\mathbf{O})$ is the reference distribution; Z is the normalisation term
- lpha are the natural parameters
- the function $\mathbf{T}(\mathbf{O})$ is a sufficient statistic.
- What is the appropriate form of statistics $(\mathbf{T}(\mathbf{O}))$ needs DBN to be known
 - for example in diagram one feature, $T(\mathbf{O}) = \sum_{t=1}^{T-2} o_t o_{t+1} o_{t+2}$

Score-Space Sufficient Statistics

- Need a systematic approach to extracting sufficient statistics
 - what about using the sequence-kernel score-spaces?

$$\mathbf{T}(\mathbf{O}) = \boldsymbol{\phi}(\mathbf{O}; \boldsymbol{\lambda})$$

- does this help with the dependencies?
- For an HMM the mean derivative elements become

$$\nabla_{\boldsymbol{\mu}^{(jm)}} \log(p(\mathbf{O}; \boldsymbol{\lambda})) = \sum_{t=1}^{T} P(\mathbf{q}_t = \{\theta_j, m\} | \mathbf{O}; \boldsymbol{\lambda}) \Sigma^{(jm)-1}(\boldsymbol{o}_t - \boldsymbol{\mu}^{(jm)})$$

- state/component posterior a function of complete sequence O
- introduces longer term dependencies
- different conditional-independence assumptions than generative model

Score-Space Dependencies

- Consider a simple 2-class, 2-symbol $\{A, B\}$ problem:
 - Class ω_1 : AAAA, BBBB
 - Class ω_2 : AABB, BBAA

Fosturo	Clas	s ω_1	Class ω_2		
Teature	AAAA	BBBB	AABB	BBAA	
Log-Lik	-1.11	-1.11	-1.11	-1.11	
$ abla_{2A}$	0.50	-0.50	0.33	-0.33	
$\nabla_{2A} \nabla_{2A}^{T}$	-3.83	0.17	-3.28	-0.61	
$\nabla_{2A} \nabla_{3A}^{\overline{T}}$	-0.17	-0.17	-0.06	-0.06	

- ML-trained HMMs are the same for both classes
- First derivative classes separable, but not linearly separable
 - also true of second derivative within a state
- Second derivative across state linearly separable

Parametric Models with Score-Spaces

- Use the score-spaces as the sufficient statistics
 - discriminative form is the conditional augmented model [17]

$$P(\omega_i | \mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{Z} \exp\left(\boldsymbol{\alpha}^{(i)\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}; \boldsymbol{\lambda}^{(i)})\right)$$

- Simple to apply to isolated/whole-segment models
- More difficult to extend to continuous tasks
 - one option is to consider all possible word alignments as latent variables

$$P(\omega_1, \dots, \omega_N | \mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{Z} \sum_{\mathbf{q}} P(\mathbf{q} | \mathbf{O}; \boldsymbol{\lambda}) \prod_{i=1}^N \exp\left(\boldsymbol{\alpha}^{(i)\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(q_i)}; \boldsymbol{\lambda}^{(i)})\right)$$

Initial results interesting, but needs more work

SVMs for Noise Robust ASR

- Alternative: use non-parametric classifier such as the SVM
 - combine parametric (HMM) and non-parametric technique (SVM)
 - combine generative model (HMM) and discriminative function (SVM)
- Parametric form allows speaker/noise compensation (remove outliers)
- Non-parametric form allows longer term dependencies
 - nature of dependencies related to kernel (and order of kernel)
- Derivative generative kernels with maximally non-committal metric used here
 - LLR ratio most discriminatory weight by ϵ (set empirically):

$$\mathcal{S}(\mathbf{O}; \boldsymbol{\lambda}) + \epsilon \left(\log \left(\frac{p(\mathbf{O}; \boldsymbol{\lambda}^{(i)})}{p(\mathbf{Y}; \boldsymbol{\lambda}^{(j)})} \right) \right)$$

– $\mathcal{S}(\mathbf{O}; \boldsymbol{\lambda})$ is the score from the SVM for classes ω_i and ω_j

Adapting SVMs to Speaker/Noise Conditions

• Decision boundary for SVM is ($z_i \in \{-1, 1\}$ label of training example)

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i^{\texttt{svm}} z_i \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})$$

- $\alpha^{\texttt{svm}} = \{\alpha_1^{\texttt{svm}}, \dots, \alpha_n^{\texttt{svm}}\}$ set of SVM Lagrange multipliers

- Choice in adapting SVM to condition, modify:
 - α^{svm} non-trivial though schemes have recently been proposed
 - λ simple, model compensation [18]
- Approach adopted in this work is to modify generative model parameters, $oldsymbol{\lambda}$
 - noise/speaker-independent SVM Lagrange multipliers
 - noise/speaker-dependent generative kernels

Model-Based Compensation Techniques

- A standard problem with kernel-based approaches is adaptation/robustness
 - not a problem with generative kernels
 - adapt generative models using model-based adaptation
- Standard approaches for speaker/environment adaptation
 - (Constrained) Maximum Likelihood Linear Regression [19]

$$\boldsymbol{x}_t = \mathbf{A} \boldsymbol{o}_t + \mathbf{b}; \quad \boldsymbol{\mu}^{(m)} = \mathbf{A} \boldsymbol{\mu}_{\mathbf{x}}^{(m)} + \mathbf{b}$$

- Vector Taylor Series Compensation [20] (used in this work)

$$\boldsymbol{\mu}^{(m)} = \mathbf{C} \log \left(\exp(\mathbf{C}^{-1}(\boldsymbol{\mu}_{\mathtt{x}}^{(m)} + \boldsymbol{\mu}_{\mathtt{h}}^{(m)})) + \exp(\mathbf{C}^{-1}\boldsymbol{\mu}_{\mathtt{n}}^{(m)}) \right)$$

• Adapting the generative model will alter score-space

Handling Continuous Digit Strings

- Using HMM-based hypothesis
 - "force-align" word start/end
- Foreach word start/end times
 - find "best" digit + silence
- Can use multi-class SVMs
- Simple approach to combining generative and discriminative models
 - related to acoustic code-breaking [21]
- Initial implementation uses a 1-v-1 voting SVM combination scheme
 - ties between pairs resolved using appropriate SVM output
 - > 2 ties back-off to standard HMM output

- Model compensation needs to "normalise" the score-spaces
 - derivative generative-kernels suited for this
 - when data "matches" models a score of zero results

Evaluation Tasks

- AURORA 2 small vocabulary digit string recognition task
 - whole-word models, 16 emitting-states with 3 components per state
 - clean training data for HMM training HTK parameterisation
 - SVMs trained on subset of multi-style data Set A N2-N4, 10-20dB SNR
 - Set A N1 and Set B and Set C unseen noise conditions
 - Noise estimated in a ML-fashion for each utterance
- Toshiba In-Car Task
 - training data from WSJ SI284 to train clean acoustic models
 - state-clustered states, cross-word triphones (650 states \approx 7k components) word-internal triphones for SVM rescoring models
 - test data collected in car (idle, city, highway), unknown length digits other test sets available, e.g. command and control
 - 35, 25, 18 SNR averages for the idle, city, highway condition, respectively
 Noise estimated in a ML-fashion for each utterance

SVM Rescoring on AURORA 2.0

System	Test Set			
	A	B	С	
VTS	9.8	9.1	9.5	
+ SVM	7.5	7.4	8.1	

WER (%) averaged over 0-20dB

- 1-v-1 majority voting
- SVM rescoring used $\epsilon=2$
- Large gains using SVM

- Noise-independent SVM performs well on unseen noise conditions
- Graph shows variation of performance with ϵ $\epsilon=0$ better than VTS

SVM Rescoring on the Toshiba Data

System	VTS	WER (%)			
Jystem	iter	ENON	CITY	HWY	
VTS	1	1.2	3.1	3.8	
+SVM		1.3	2.6	3.2	
VTS	2	1.4	2.7	3.2	
+SVM	2	1.3	2.1	2.5	

Performance on phone-number task with SVM rescoring

- More complicated acoustic models 12 components per state
 - 1-v-1 majority voting used
- SVM rescoring shows consistent over VTS compensation
 - larger gains for lower SNR conditions (CITY and HWY)

Conclusions

- Sequence kernels are an interesting extension to standard "static" kernels
 - currently successfully applied to binary tasks such as speaker verification
- Score-spaces associates with generative kernels interesting
 - systematic way of extracting statistics from continuous data
 - different conditional independence assumptions to generative model
 - score-space/kernels can be adapted using model-based approaches
- Application of score-spaces and kernels to speech recognition
 - parametric classifiers: augmented statistical models
 - non-parametric classifiers: support vector machines

Interesting classifier options - without throwing away HMMs

References

- [1] V.N. Vapnik, Statistical learning theory, John Wiley & Sons, 1998.
- [2] W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer, and P.A. Torres-Carraquillo, "Support vector machines for speaker and language recognition," *Computer Speech Language*, vol. 20, pp. 210–229, 2005.
- [3] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, "Text classification using string kernels," *Journal of Machine Learning Research*, vol. 2, pp. 419–444, 2002.
- [4] C. Cortes, P. Haffner, and M. Mohri, "Weighted automata kernels general framework and algorithms," in Proc. Eurospeech, 2003.
- [5] Layton MI and MJF Gales, "Acoustic modelling using continuous rational kernels," *Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology*, August 2007.
- [6] W.M. Campbell, D.Sturim, D.A. Reynolds, and A. Solomonoff, "SVM based speaker verification using a GMM supervector kernel and NAP variability compensation," in *Proc. ICASSP*, 2006.
- [7] N.D. Smith and M.J.F. Gales, "Speech recognition using SVMs," in Advances in Neural Information Processing Systems, 2001.
- [8] Stolcke et al, "MLLR transforms as features in speaker recognition," in *Proc. ICASSP*, 2005.
- [9] H Yang, Y Dong, X Zhao, L Lu, and H Wang, "Cluster adaptive training weights as features in SVM-based speaker verification," in *Proceedings InterSpeech*, 2007.
- [10] T. Jaakkola and D. Haussler, "Exploiting generative models in disciminative classifiers," in Advances in Neural Information Processing Systems 11, S.A. Solla and D.A. Cohn, Eds. 1999, pp. 487–493, MIT Press.
- [11] C. Longworth and M.J.F. Gales, "Derivative and parametric kernels for speaker verification," in *Proceedings InterSpeech*, September 2007.
- [12] V. Wan and S. Renals, "Speaker verification using sequence discriminant support vector machines," *IEEE Transactions Speech and Audio Processing*, 2004.
- [13] K. Tsuda, T. Kin, and K. Asai, "Marginalized kernels for biological sequences," *Bioinformatics*, vol. 18, pp. S268–S275, 2002.
- [14] A. Solomonoff, W.M. Campbell, and I. Boradman, "Advances in channel compensation foe SVM speaker recognition," in *Proc. ICASSP*, 2005.
- [15] AO Hatch, S Kajarekar, and A Stolcke, "Within-class covariance normalisation for SVM-based speaker verification," in *Proceedings InterSpeech*, 2006.

- [16] J.A. Bilmes, "Graphical models and automatic speech recognition," in *Mathmatical Foundations of Speech and Language Processing*, 2003.
- [17] M.I. Layton and M.J.F. Gales, "Augmented statistical models for speech recognition," in *ICASSP*, 2006.
- [18] MJF Gales and F Flego, "Discriminative classiers with generative kernels for noise robust speech recognition," in Proc. ICASSP, 2009.
- [19] M J F Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer Speech and Language, vol. 12, pp. 75–98, 1998.
- [20] A Acero, L Deng, T Kristjansson, and J Zhang, "HMM Adaptation using Vector Taylor Series for Noisy Speech Recognition," in *Proc. ICSLP*, Beijing, China, 2000.
- [21] V. Venkataramani, S. Chakrabartty, and W. Byrne, "Support vector machines for segmental minimum Bayes risk decoding of continuous speech," in *ASRU 2003*, 2003.

