
A LANGUAGE SPACE REPRESENTATION FOR SPEECH RECOGNITION

A. Ragni, M. J. F. Gales and K. M. Knill

Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ, UK

{ar527,mjfg,kate.knill}@eng.cam.ac.uk

ABSTRACT

The number of languages for which speech recognition systems have
become available is growing each year. This paper proposes to view
languages as points in some rich space, termed language space,
where bases are eigen-languages and a particular selection of the
projection determines points. Such an approach could not only re-
duce development costs for each new language but also provide au-
tomatic means for language analysis. For the initial proof of the
concept, this paper adopts cluster adaptive training (CAT) known for
inducing similar spaces for speaker adaptation needs. The CAT ap-
proach used in this paper builds on the previous work for language
adaptation in speech synthesis and extends it to Gaussian mixture
modelling more appropriate for speech recognition. Experiments
conducted on IARPA Babel program languages show that such lan-
guage space representations can outperform language independent
models and discover closely related languages in an automatic way.

Index Terms— language space, cluster adaptive training, babel

1. INTRODUCTION

Recently there has been interest in developing speech recognition
systems simultaneously for multiple languages [1, 2, 3, 4, 5, 6, 7, 8].
One example is the IARPA Babel program [9]. Building systems
from scratch for each new language however is time consuming.
This has promoted the use of schemes that may help to reduce de-
velopment costs. One example are language independent approaches
[8, 10]. The performance of these approaches may become unsatis-
factory when the new language is not well represented by any of the
training languages [8]. Though these approaches could alternatively
be used for bootstrapping language dependent systems [10], the de-
velopment cost remains high. This makes schemes capable of rapid
adaptation to any given language of particular interest.

The concept of rapid adaptation is well known in speaker adap-
tation where schemes such as maximum likelihood linear regression
(MLLR) [11, 12] and cluster adaptive training (CAT) [13] have been
developed. In MLLR, a set of linear transforms are used to map
an existing model set into a new adapted model set such that the
likelihood of adaptation data is maximised [14]. The same concept
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could be applied in training, in the form of speaker adaptive train-
ing (SAT) [15], to factorise speaker variability from the model set
[16]. Though a powerful approach, it treats training data as a single
block [14] which may be suboptimal if multiple languages occur in
the training data. In these situations the use of CAT schemes may
be more appropriate. In CAT schemes [13, 17], training speakers are
clustered together to form a relatively small number of clusters or
eigen-speakers which combined would yield the adapted model set
[14]. One popular way of combining clusters is to linearly interpo-
late the underlying cluster parameters [18, 17, 13]. As the parame-
ters themselves can be clustered [19] this offers flexibility to adapt
as few parameters as there are clusters [13].

The previous work with CAT has focused on sharing the un-
derlying parameter tying structure, such as phonetic decision trees,
among clusters. Though for speaker adaptation this may be reason-
able [20], for language adaptation this is expected to be suboptimal
as different eigen-languages may have different acoustic realisations
of context-dependencies. This constraint was relaxed in [21, 22] by
letting each cluster maintain its own set of trees. The use of CAT
with cluster-dependent trees has been examined for rapid language
adaptation in speech synthesis [23]. This paper extends that work
to speech recognition. More generally, it tries to establish the pos-
sibility of representing languages as points in a rich language space
where bases are eigen-languages and a particular projection into the
space determines points. The use of CAT clusters and linear projec-
tion aims to facilitate the proof of this concept.

The rest of this paper is organised as follows. Section 2 dis-
cusses language spaces. Section 3 provides details on training and
adaptation with the particular form of language space examined in
this work. Section 4 presents experimental results. Section 5 pro-
vides conclusions and outlines future work.

2. LANGUAGE SPACE REPRESENTATION

Speech recognition systems have started to appear for an increasing
number of languages. For instance, the IARPA Babel program has
so far released resources for 17 languages. Given the wide range of
the world’s languages, it is clear that treating each language as a new
task is becoming too costly to follow. This paper asks and attempts
to answer the following question - is there a space where languages
could be represented as points in that space? Figure 1 (a) shows an
imaginary three dimensional language space employing linear pro-
jection with one point representing a language. An affirmative an-
swer to this question may provide a systematic approach to speech
recognition for a large number of the world’s languages. In addi-
tion, it may provide insights into the nature of eigen-languages and
contribute to the knowledge about language similarity.

For the initial investigation, this paper adopts cluster adaptive

4634978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



(a) language space

λ P−1

λ 0

λ P

...

bias cluster

cluster #P−1

cluster #P

prior

mean

covariance

mean #P

mean #0

mean #P−1

(b) cluster adaptive training

Fig. 1. Language space representation using cluster adaptive training.

training (CAT) [13, 23] to induce the language space and project
languages into it. CAT can be viewed as a multiple-cluster scheme
where the adapted model set is obtained by combining the clusters
together [14]. There are many options to select the form of rep-
resentation of the clusters and the combination method to employ
[18, 17, 13, 24, 25]. One popular option is to use hidden Markov
models (HMM) and apply linear interpolation to combine the mean
parameters of Gaussian mixture model (GMM) state output distri-
butions [13]. This is illustrated for one Gaussian component in Fig-
ure 1 (b) where P + 1 cluster means are interpolated using P + 1
weights to give the language adapted mean. For robust estimation
it is important to tie these parameters appropriately. The weights
could be tied among the components by clustering them using re-
gression class trees [19] similar to the MLLR schemes [12]. The
cluster means could be tied using phonetic decision trees [26]. Thus
the language adapted mean in this work may be expressed as

µl,m =

P∑
p=0

λl,r(m),pµcp(m) (1)

where r(m) is a weight regression class for component m, cp(m)
is a cluster p tree leaf node to which m belongs. The priors and
covariances usually are not interpolated in CAT and tied along with
the means of one of the clusters such as p = 0.

Phonetic decision trees in CAT are borrowed from a speaker-
independent system and shared among clusters [13, 18, 17]. For
language adaptation, where languages may have different acoustic
realisation of context-dependencies, such an approach may not be
advantageous [23]. One option to address this issue would be to
borrow language-dependent trees. This however has a drawback
of promoting languages to adopt ”hard” rather than ”soft” assign-
ments to the clusters. Another option would be to re-build the trees
during training thus letting each cluster have trees that best repre-
sent the current assignment [21, 23]. Figure 2 shows two language
spaces with cluster-independent and cluster-dependent trees. The
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Fig. 2. Intersection of cluster dependent and independent trees.

difference between these approaches lies in the number of language

adapted means at the intersection of tree leaves (shaded squares). For
the cluster-dependent tree language space in Figure 2 (b), any pair
of leaves could be selected as the topology and questions need not
be the same. Such an inter-dependency between language adapted
means however makes cluster parameter estimation and tree build-
ing more complicated than in the original CAT approaches [13, 17]
in Figure 2 (a). Another issue is that standard clustering procedures
assume a Gaussian distribution in the leaves [26] whereas GMMs
are commonly used in speech recognition. Although mixing-up pro-
cedures [27] could be applied they are costly to perform. This paper
proposes to maintain GMMs in the first p = 0 cluster, termed the
bias cluster [13], and Gaussians in the rest. This requires no modi-
fication to the form of the language adapted mean in equation (1) if
GMM bias cluster tree leaves are split into the constituent Gaussians.
The bias cluster trees can be borrowed from language independent
systems and only non-bias cluster trees need to be built.

3. TRAINING AND ADAPTATION

The language space parametersM comprise HMM transition prob-
abilities, covariances, priors, cluster means and weights. For esti-
mation it is possible to use the maximum likelihood (ML) criterion.
The auxiliary function is given by [23]

Q(M;M̂) = C +Q(M; â, ĉ)− (2)
1

2

∑
l,t,m

γl,t,m
{

(ol,t − µ̂l,m)TΣ̂−1
m (ol,t − µ̂l,m) + log(|Σ̂m|)

}
Estimation is performed by interleaving optimisation of clusters and
weights. Prior to each iteration the trees associated with non-bias
clusters can be re-built as shown in Figure 3 (a). A language in-
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Fig. 3. Language space training and adaptation flow diagrams.

dependent system may be used to initialise transition probabilities,
priors, covariances and bias cluster means [23]. Each language l =
1, . . . , L defines a new cluster. Trees for non-bias clusters are ini-
tialised to have zero mean root nodes. Points for all languages are
initialised to zero for every cluster apart from the bias and the cor-
responding language, i.e., λl,r,p = 1 if p = 0 or p = l and zero
otherwise. Such an initialisation ensures that the language space
system initially yields the same log-likelihood as the language inde-
pendent system. For rapid adaptation it is possible to estimate only
the point associated with the new L + 1 language whilst keeping
clusters and trees fixed to those obtained during training as shown in
Figure 3 (b). The point is initialised to have zero elements for all but
the bias cluster, i.e., λL+1,r,p = 1 for p = 0 and zero otherwise.

The rest of this section will discuss estimation of the clusters in
Section 3.1, weights in Section 3.2 and tree building in Section 3.3.

3.1. Clusters

The cluster parameters include means µ = {µi}, covariances Σ =
{Σk}, priors c and transition probabilities a.
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For optimising means, the auxiliary function in equation (2) may
be simplified as [23]

Q(µ, µ̂) = C − 1

2

∑
m,p

(
µ̂T

cp(m)Gp,p,mµ̂cp(m)+

2
∑
b 6=p

µ̂T
cp(m)Gp,b,mµ̂cb(m) − 2µ̂T

cp(m)kp,m

)
(3)

where Gp,b,m and kp,m are statistics given by

Gp,b,m =
∑
l,t

γl,t,mλl,r(m),pΣ
−1
m λl,r(m),b (4)

kp,m =
∑
l,t

γl,t,mλl,r(m),pΣ
−1
m ol,t (5)

Due to the inter-dependency imposed by cluster-dependent trees on
language adapted means (see Figure 2 (b)), all cluster mean param-
eters should be estimated simultaneously [23]

Gµ̂ = k (6)

where G and k are block matrix and vector with elements given by

Gi,j =
∑

p,b,m:
cp(m)=i
cb(m)=j

Gp,b,m, ki =
∑
p,m:

cp(m)=i

kp,m (7)

The across-cluster statistics Gi,j serves to measure the usefulness of
node j in cluster b to node i in cluster p. The more useful nodes are
to each other the less across-cluster statistics are equal to 0. Though
dimensionality of equation (6) is expected to be high, the statistics
matrix G is sparse and hence it can be solved using sparse linear
routines [28]. The degree of sparsity thus can be used to quantify
how much of the intersect space, such as in Figure 2 (b), is covered.

The covariance parameters are updated using [23]

Σk =

∑
l,t,m:

c0(m)=k

γl,t,m(ol,t − µl,m)(ol,t − µl,m)T∑
l,t,m:

c0(m)=k

γl,t,m
(8)

The CAT estimates for priors and transition probabilities are similar
to the standard ML estimates [13].

3.2. Weights

For optimising cluster weights, the auxiliary function in equation (2)
can be expressed as [13]

Q(λ, λ̂) = C +
∑
l,r

λ̂l,rsl,r −
1

2
λ̂T

l,rZl,rλ̂l,r (9)

where Zl,r and sl,r are statistics given by

Zl,r =
∑
m∈r

MT
mΣ−1

m Mm

∑
t

γl,t,m (10)

sl,r =
∑
m∈r

γl,t,mMT
mΣ−1

m

∑
t

γl,t,m(ol,t − bm) (11)

If bias cluster is used as in this work then Mm =
[
µ1,m . . . µP,m

]
and bm = µ0,m otherwise Mm =

[
µ0,m . . . µP,m

]
and

bm = 0. Differentiating equation (9) with respect to cluster weight
vector associated with language l and regression class r, equating to
zero yields [13]

Zl,rλ̂l,r = sl,r (12)
This can be solved using standard matrix inversion since Zl,r is ex-
pected to be dense and have a low dimensionality.

3.3. Decision trees

Due to the inter-dependency between language adapted means, the
tree building should be performed for all clusters simultaneously. As
this is computationally expensive [21], an interleaving scheme could
be adopted where trees are built only for one of the clusters at a time.
Under the assumptions used for the conventional tree building [26],
the total log-likelihood associated with cluster p node k excluding
constant terms can be calculated as [23]

`(k) = −1

2

∑
m:

cp(m)=k

(
µT

cp(m)Gp,p,mµcp(m)+ (13)

2
∑
b 6=p

µcp(m)Gp,b,mµcb(m) − 2µcp(m)kp,m

)
Since all mean vectors µcp(m) associated with node k will be tied to
give µk the above expression can be simplified as [23]

`(k) =
1

2
µ̂T

k

 ∑
m:

cp(m)=k

Gp,p,m

 µ̂k (14)

where

µ̂k =

 ∑
m:

cp(m)=k

Gp,p,m


−1∑

m:
cp(m)=k

(
kp,m −

∑
b6=p

Gp,b,mµcb(m)

)
(15)

is the ML estimate of µk under the assumption that all parameters
associated with other trees remain unchanged [23]. The question q
splitting node k components into a yes k+(q, k) and no k−(q, k)
subset that results in the largest gain in the total log-likelihood

∆` = `(k+(q, k)) + `(k−(q, k))− `(k) (16)

is selected to split the node k. The procedure can be terminated
using cross-validation [23], information theoretic criteria [29], or a
heuristic threshold on the gain in the total log-likelihood [26].

4. EXPERIMENTS

This section describes the setup and presents experimental results
with the language space approach examined in this work.

4.1. Setup

Limited language packs (LLP) released within the IARPA Babel pro-
gram are used for evaluation. Table 1 provides a summary of the 11
languages used. To be consistent with previous work in [8], the same
set of 7 held-in languages is adopted. The remaining 4 languages
serve as the held-out languages. Each LLP contains roughly 10
hours of training data, an equivalent amount of development data, X-
SAMPA phone set and lexicon. Full language pack language models
are used to minimise the impact of non-acoustic phenomena.

Two baseline configurations are selected: language-independent
(LI) and language-dependent (LD) tandem [30, 31] systems [8, 9].
The topology of the multi-layer perceptron (MLP) for the LI system
is adjusted to accommodate roughly 7 times more output layer units
than the 1000 units used for LD systems. The MLP is trained us-
ing the cross-entropy criterion to produce 26 dimensional bottleneck
features [30] which are appended to perceptual linear prediction co-
efficients (PLP) [32] and pitch [33] to yield observation vectors. A
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Held Language Code Release

in

Cantonese 101 IARPA-babel101b-v0.4c
Assamese 102 IARPA-babel102b-v0.5a

Pashto 104 IARPA-babel104b-v0.4bY
Turkish 105 IARPA-babel105b-v0.4
Tagalog 106 IARPA-babel106b-v0.2g

Lao 203 IARPA-babel203b-v3.1a
Zulu 206 IARPA-babel206b-v0.1d

out

Bengali 103 IARPA-babel103b-v0.4b
Vietnamese 107 IARPA-babel107b-v0.7

Creole 201 IARPA-babel201b-v0.2b
Tamil 204 IARPA-babel204b-v1.1b

Table 1. A summary of held-in and held-out languages.

heteroscedastic linear discriminant analysis (HLDA) [34] and global
semi-tied covariance (STC) transforms [35] are used to de-correlate
PLP and BN and pitch coefficients, respectively. The language space
(LS) system is initialised from the LI system as discussed in Sec-
tion 3. A single weight vector is used for each language. A total
of 4 training cycles is performed, each consisting of tree building
followed by 5 estimations of clusters and weights. For the held-out
languages, adaptation consists of 4 estimations of the corresponding
weights only using alignments from LI system.

4.2. Results

Prior to reporting results it is interesting to examine language spaces
that can be learned with this approach. Figure 4 illustrates two lan-
guage spaces obtained with tree building thresholds of 1000 and
500 respectively. Each column represents one of the clusters and
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Fig. 4. Cluster weights for held-in languages obtained with tree
building threshold (a) 1000 and (b) 500.

is marked by the code of the language used for initialisation. It can
be seen that the clusters are centred around the languages used for
initialisation and make little use of other languages’ data. This is ex-
pected since held-in languages are quite distinct from each other. It
can be also seen that the use of a tighter threshold leads to even less
usage of other languages’ data. The number of non-bias cluster leaf
nodes in the language spaces is 1031 and 3079 respectively which
represents 15% and 44% of the number of the bias cluster leaves.
The degrees of sparsity in the final systems are close to 100% which
is consistent with the language space representations in Figure 4.

It is also interesting to examine the points that can be estimated
for the held-out languages. Figure 5 illustrates these points for the
language space in Figure 4 (b). These points suggest that two In-
dian languages in the held-out set, Bengali (103) and Tamil (204),
will mostly benefit from the only Indian language in the held-in set,
Assamese (102). Whilst both Bengali (103) and Tamil (204) bene-
fit from Assamese (102), it is interesting to note that the language

101 102 104 105 106 203 206

103

107

201

204

0

0.1

0.2

0.3

>0.4

Fig. 5. Cluster weights for held-out languages obtained with the
language space in Figure 4 (b).

which is from the same family, Bengali, derives the most contribu-
tion. Apart from Cantonese (101) and Lao (203) all held-in lan-
guages seem to be useful for these held-out languages.

The LD, LI and LS systems in Figures 4 (b) and 5 are evaluated
on two held-in, Assamese (102) and Lao (203), and one held-out,
Creole (201), languages. The performance of the LI system on the
remaining three held-out languages does not go below 90% error
rate making any results unreliable. Table 2 shows speech recogni-
tion results including decoding with bigram language model (BG),
lattice rescoring with trigram language model (+TG) and confusion
network rescoring (+CN) in terms of word error rate (WER). For the

Held Language Code System WER (%)
BG +TG +CN

in

Assamese 102
LI 73.0 72.4 70.2
LS 72.7 72.2 69.9
LD 73.3 73.0 70.8

Lao 203
LI 66.4 65.7 64.5
LS 65.7 64.9 64.0
LD 69.1 68.5 67.4

out Creole 201
LI 86.0 85.4 83.6
LS 85.6 84.8 82.8
LD 68.7 67.7 65.6

Table 2. Recognition results with held-in and held-out languages.

held-in languages, the LS system shows consistent yet small gains
over LI and LD systems. This suggests the need for building more
powerful language space systems. For the held-out language, the
LS system shows small gains over the LI system, however, both LI
and LS lag far behind the LD system. This illustrates the need for
a more powerful adaptation to accommodate larger mismatches be-
tween seen and unseen languages, such as the one discussed in [23]
where a new basis can be introduced to considerably enhance lan-
guage adaptation limited in this work to only 7 free parameters.

5. CONCLUSIONS

This paper has discussed the possibility of representing the world’s
languages as points in a language space to enable efficient bootstrap-
ping and rapid adaptation of speech recognition systems to any lan-
guage. As a proof of the concept it has adopted cluster adaptive
training (CAT) to induce language spaces and the use of linear inter-
polation between cluster mean vectors to project languages into the
space. Experiments conducted on IARPA Babel program languages
showed that such an approach is capable of automatically discov-
ering related languages and exceeding language independent perfor-
mance levels. It is expected that more powerful representations, CAT
and non-CAT, will permit more expressive language spaces. In ad-
dition, more complex adaptation approaches are hoped to reduce the
current gap between language space and language dependent system
performance for unseen languages.
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