Modelling Dependencies in Sequence Classification: Augmented Statistical Models

Mark Gales - work with Martin Layton

9 November 2006

Cambridge University Engineering Department

University of East Anglia Seminar

Overview

- Dependency Modelling in Sequence Data:
- Augmented Statistical Models
 - augments standard models, e.g. GMMs and HMMs
 - extends representation of dependencies
- Augmented Statistical Model Training
 - use maximum margin training
 - relationship to "dynamic" kernels
- Conditional augmented models
 - "relationship" to CRFs/HCRFs
- Speaker verification and ASR experiments

Dependency Modelling

- Range of applications require classification of sequence data:
 - observation sequences are not of a fixed length
 - examples include text/speech processing, computational biology etc
- Dependency modelling essential part of modelling sequence data:

$$p(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_T;\boldsymbol{\lambda}) = p(\boldsymbol{o}_1;\boldsymbol{\lambda})p(\boldsymbol{o}_2|\boldsymbol{o}_1;\boldsymbol{\lambda})\ldots p(\boldsymbol{o}_T|\boldsymbol{o}_1,\ldots,\boldsymbol{o}_{T-1};\boldsymbol{\lambda})$$

- impractical to directly model in this form
- Two possible forms of conditional independence used:
 - observed variables
 - latent (unobserved) variables
- Even given dependencies (form of Bayesian Network):
 - need to determine how dependencies interact

Hidden Markov Model - A Dynamic Bayesian Network

• Notation for DBNs:

(b) HMM Dynamic Bayesian Network

circles - continuous variables shaded - observed variables squares - discrete variables non-shaded - unobserved variables

- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states.
- Poor model of the speech process piecewise constant state-space.

Dependency Modelling using Latent Variables

Switching linear dynamical system:

- discrete and continuous state-spaces
- observations conditionally independent given continuous and discrete state;
- approximate inference required
 ⇒ Rao-Blackwellised Gibbs sampling.

Multiple data stream DBN:

- e.g. factorial HMM/mixed memory model;
- asynchronous data common:
 - speech and video/noise;
 - speech and brain activation patterns.
- observation depends on state of both streams

SLDS Speech Trajectory Modelling

• Unfortunately doesn't currently classify speech better than an HMM!

Linear Transform as the Latent Variable

- Linear adaptation in speech recognition can be viewed as a latent variable
 - interesting interaction of latent variables and distribution

"Adaptive" HMMs:

- impact of "continuous-space" on distribution

$$p(\mathbf{o}_t | \mathbf{W}_t, q_t) = \sum_{m=1}^{M} c_m(\mathbf{o}_t; \mathbf{W}_t \boldsymbol{\mu}_m^{(q_t)}, \boldsymbol{\Sigma}_m^{(q_t)})$$

- restrict $\mathbf{W}_{t+1} = \mathbf{W}_t$ (homogeneous blocks)

- Inference performed by marginalising over prior distribution $p(\mathbf{W})$
 - approximate inference required, e.g. lower-bound Variational Bayes

Adaptive HMMs works for speech recognition!

Dependency Modelling using Observed Variables

• Commonly use member (or mixture) of the exponential family

$$p(\mathbf{O}; \boldsymbol{\alpha}) = \frac{1}{\tau} h(\mathbf{O}) \exp\left(\boldsymbol{\alpha}' \mathbf{T}(\mathbf{O})\right)$$

- $h(\mathbf{O})$ is the reference distribution; τ is the normalisation term
- lpha are the natural parameters
- the function $\mathbf{T}(\mathbf{O})$ is a sufficient statistic.
- What is the appropriate form of statistics $(\mathbf{T}(\mathbf{O}))$ needs DBN to be known
 - for example in diagram, $T(\mathbf{O}) = \sum_{t=1}^{T-2} \mathbf{o}_t \mathbf{o}_{t+1} \mathbf{o}_{t+2}$

Constrained Exponential Family

- Could hypothesise all possible dependencies and prune
 - discriminative pruning found to be useful (buried Markov models)
 - impractical for wide range (and lengths) of dependencies
- Consider constrained form of statistics
 - local exponential approximation to the reference distribution
 - ρ^{th} -order differential form considered (related to Taylor-series)
- Distribution has two parts
 - reference distribution defines latent variables
 - local exponential model defines statistics ($\mathbf{T}(\mathbf{O}; \boldsymbol{\lambda})$)
- Slightly more general form is the augmented statistical model
 - train all the parameters (including the reference, base, distribution)

Augmented Statistical Models

• Augmented statistical models (related to fibre bundles)

$$p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{\tau} \check{p}(\mathbf{O}; \boldsymbol{\lambda}) \exp \left(\boldsymbol{\alpha}' \begin{bmatrix} \boldsymbol{\nabla}_{\lambda} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \\ \frac{1}{2!} \operatorname{vec} \left(\boldsymbol{\nabla}_{\lambda}^{2} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \right) \\ \vdots \\ \frac{1}{\rho!} \operatorname{vec} \left(\boldsymbol{\nabla}_{\lambda}^{\rho} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \right) \end{bmatrix} \right)$$

- Two sets of parameters
 - λ parameters of base distribution ($\check{p}(\mathbf{O}; \lambda)$)
 - α natural parameters of local exponential model
- Normalisation term au ensures that

$$\int_{\mathcal{R}^{nT}} p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) d\mathbf{O} = 1; \qquad p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \overline{p}(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) / \tau$$

- can be very complex to estimate

Augmented Gaussian Mixture Model

- Use a GMM as the base distribution: $\check{p}(\boldsymbol{o}; \boldsymbol{\lambda}) = \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$
 - considering only the first derivatives of the means

$$p(\boldsymbol{o};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \frac{1}{\tau} \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o};\boldsymbol{\mu}_m,\boldsymbol{\Sigma}_m) \exp\left(\sum_{n=1}^{M} P(n|\boldsymbol{o};\boldsymbol{\lambda})\boldsymbol{\alpha}_n' \boldsymbol{\Sigma}_n^{-1}(\boldsymbol{o}-\boldsymbol{\mu}_n)\right)$$

• Simple two component one-dimensional example:

Augmented Gaussian Mixture Model Example

• Maximum likelihood training of A-GMM on symmetric log-normal data

- 2-component base-distribution (poor model of data)
- A-GMM better model of distribution (log-likelihood -1.45 vs -1.59 GMM)
- approx. symmetry obtained without symmetry in parameters!

Augmented Model Dependencies

• If the base distribution is a mixture of members of the exponential family

$$\check{p}(\mathbf{O};\boldsymbol{\lambda}) = \prod_{t=1}^{T} \sum_{m=1}^{M} c_m \exp\left(\sum_{j=1}^{J} \lambda_j^{(m)} T_j^{(m)}(\boldsymbol{o}_t)\right) / \tau^{(m)}$$

- consider a first order differential

$$\frac{\partial}{\partial \lambda_k^{(n)}} \log\left(\check{p}(\mathbf{O}; \boldsymbol{\lambda})\right) = \sum_{t=1}^T P(n | \mathbf{o}_t; \boldsymbol{\lambda}) \left(T_k^{(n)}(\mathbf{o}_t) - \frac{\partial}{\partial \lambda_k^{(n)}} \log(\tau^{(n)})\right)$$

- Augmented models of this form
 - keep independence assumptions of the base distribution
 - remove conditional independence assumptions of the base model
 - the local exponential model depends on a posterior ...
- Augmented GMMs do not improve temporal modelling ...

Augmented HMM Dependencies

- For an HMM: $\check{p}(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{\mathbf{q} \in \boldsymbol{\Theta}} \left\{ \prod_{t=1}^{T} a_{q_{t-1}q_t} \left(\sum_{m \in q_t} c_m \mathcal{N}(\mathbf{o}_t; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m) \right) \right\}$
- Derivative depends on posterior, $\gamma_{jm}(t) = P(q_t = \{s_j, m\} | \mathbf{O}; \boldsymbol{\lambda})$,

$$T_{jm}(\mathbf{O};\boldsymbol{\lambda}) = \sum_{t=1}^{T} \gamma_{jm}(t) \boldsymbol{\Sigma}_{jm}^{-1} \left(\mathbf{o}_t - \boldsymbol{\mu}_{jm} \right)$$

- posterior depends on complete observation sequence, ${\bf O}$
- introduces dependencies beyond conditional state independence
- compact representation of effects of all observations
- Higher-order derivatives incorporate higher-order dependencies
 - increasing order of derivatives increasingly powerful trajectory model
 - systematic approach to incorporating additional dependencies

Discrete Augmented Model Example

- Consider a simple 2-class, 2-symbol $\{A, B\}$ problem:
 - Class ω_1 : AAAA, BBBB
 - Class ω_2 : AABB, BBAA

Feature	Class ω_1		Class ω_2		
	AAAA	BBBB	AABB	BBAA	
Log-Lik	-1.11	-1.11	-1.11	-1.11	
$ abla_{2A}$	0.50	-0.50	0.33	-0.33	
$\nabla_{2A} \nabla'_{2A}$	-3.83	0.17	-3.28	-0.61	
$\nabla_{2A} \nabla_{3A}^{\overline{\prime}}$	-0.17	-0.17	-0.06	-0.06	

- ML-trained HMMs are the same for both classes
- First derivative classes separable, but not linearly separable
 - also true of second derivative within a state
- Second derivative across state linearly separable

Augmented Model Summary

- Extension to standard forms of statistical model
- Consists of two parts:
 - base distribution determines the latent variables
 - local exponential distribution augments base distribution
- Base distribution:
 - standard form of statistical model
 - examples considered: Gaussian mixture models and hidden Markov models
- Local exponential distribution:
 - currently based on $\rho^{th} \text{-order}$ differential form
 - gives additional dependencies not present in base distribution
- Normalisation term may be highly complex to calculate
 - maximum likelihood training may be very awkward

Augmented Model Training

- Normalisation term makes ML training of augmented models difficult
 - use discriminative training approaches instead
- Two forms of discriminative training have been examined:
- Maximum Margin based approaches:
 - implemented using Support Vector Machines (SVMs)
 - applicable to binary classification tasks
- Conditional Maximum Likelihood based approaches:
 - directly applicable to multi-class problems

Augmented Model Training- Binary Case

- Only consider simplified two-class problem
- Bayes' decision rule for binary case (prior $P(\omega_1)$ and $P(\omega_2)$):

$$\frac{P(\omega_1)\tau^{(2)}\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(1)},\boldsymbol{\alpha}^{(1)})}{P(\omega_2)\tau^{(1)}\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(2)},\boldsymbol{\alpha}^{(2)})} \underset{\omega_2}{\overset{\omega_1}{\underset{\omega_2}{\overset{$$

- $b = \frac{1}{T} \log \left(\frac{P(\omega_1) \tau^{(2)}}{P(\omega_2) \tau^{(1)}} \right)$ no need to explicitly calculate τ
- Can express decision rule as the following scalar product

$$\begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}' \begin{bmatrix} \phi(\mathbf{O}; \boldsymbol{\lambda}) \\ 1 \end{bmatrix} \begin{bmatrix} \omega_1 \\ > \\ < \\ \omega_2 \end{bmatrix} 0$$

- form of score-space and linear decision boundary
- Note restrictions on α 's to ensure a valid distribution.

Augmented Model Training - Binary Case (cont)

• Generative score-space is given by (first order derivatives)

$$\boldsymbol{\phi}(\mathbf{O};\boldsymbol{\lambda}) = \frac{1}{T} \begin{bmatrix} \log\left(\check{p}(\mathbf{O};\boldsymbol{\lambda}^{(1)})\right) - \log\left(\check{p}(\mathbf{O};\boldsymbol{\lambda}^{(2)})\right) \\ \boldsymbol{\nabla}_{\lambda^{(1)}}\log\left(\check{p}(\mathbf{O};\boldsymbol{\lambda}^{(1)})\right) \\ -\boldsymbol{\nabla}_{\lambda^{(2)}}\log\left(\check{p}(\mathbf{O};\boldsymbol{\lambda}^{(2)})\right) \end{bmatrix}$$

- only a function of the base-distribution parameters λ
- Linear decision boundary given by

$$\mathbf{w}' = \begin{bmatrix} 1 & \boldsymbol{\alpha}^{(1)\prime} & \boldsymbol{\alpha}^{(2)\prime} \end{bmatrix}'$$

- only a function of the exponential model parameters lpha
- Bias is represented by b depends on both ${\boldsymbol \alpha}$ and ${\boldsymbol \lambda}$
- Possibly large number of parameters for linear decision boundary
 - maximum margin (MM) estimation good choice SVM training

Support Vector Machines

- SVMs are a maximum margin, binary, classifier:
 - related to minimising generalisation error;
 - unique solution (compare to neural networks);
 - may be kernelised training/classification a function of dot-product $(\mathbf{x}_i.\mathbf{x}_j)$.
- Can be applied to speech use a kernel to map variable data to a fixed length.

Estimating Model Parameters

- Two sets of parameters to be estimated using training data $\{O_1, \ldots, O_n\}$:
 - base distribution (Kernel) $\boldsymbol{\lambda} = \left\{ \boldsymbol{\lambda}^{(1)}, \boldsymbol{\lambda}^{(2)}
 ight\}$
 - direction of decision boundary $(y_i \in \{-1, 1\}$ label of training example)

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i^{\texttt{svm}} y_i \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})$$

 $\alpha^{\text{svm}} = \{\alpha_1^{\text{svm}}, \dots, \alpha_n^{\text{svm}}\}$ set of SVM Lagrange multipliers G associated with distance metric for SVM kernel

- Kernel parameters may be estimated using:
 - maximum likelihood (ML) training;
 - discriminative training, e.g. maximum mutual information (MMI)
 - maximum margin (MM) training (consistent with α 's).

Maximum Margin α Example

• Artificial example training class-conditional Gaussian with score-space:

$$\phi(\mathbf{o}; \boldsymbol{\lambda}) = \begin{bmatrix} \log \left(\check{p}(\mathbf{o}; \boldsymbol{\lambda}^{(1)}) \right) - \log \left(\check{p}(\mathbf{o}; \boldsymbol{\lambda}^{(2)}) \right) \\ \nabla_{\mu, \Sigma} \log \left(\check{p}(\mathbf{o}; \boldsymbol{\lambda}^{(1)}) \right) \\ \nabla_{\mu, \Sigma} \log \left(\check{p}(\mathbf{o}; \boldsymbol{\lambda}^{(2)}) \right) \end{bmatrix}$$

• Decision boundary closer to Bayes' decision boundary (dotted line)

Relationship to "Dynamic Kernels"

- Estimating augmented model parameters using an SVM is similar to using dynamic kernels
- Dynamic kernels map sequence data into a fixed dimensionality
 - standard SVM training can then be used
- Some standard kernels are related to augmented models:
 - generative kernels
 - Fisher kernel
 - marginalised count kernel

The "Kernel Trick"

- SVM decision boundary linear in the feature-space
 - may be made non-linear using a non-linear mapping $oldsymbol{\phi}()$ e.g.

$$\phi\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}x_1^2\\\sqrt{2}x_1x_2\\x_2^2\end{array}\right], \quad K(\mathbf{x}_i,\mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

• Efficiently implemented using a Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j)^2$

Handling Sequence Data

• Sequence data (e.g. speech) has inherent variability in the number of samples:

Thecatsatonthemat1200 frames
$$O_1 = \{o_1, \dots, o_{1200}\}$$
Thecatsatonthemat900 frames $O_2 = \{o_1, \dots, o_{900}\}$

- Kernels can be used to map from variable to fixed length data.
- SVMs can handle large dimensional data robustly:
 - higher dimensions data more separable;
 - how to obtain high dimensional space?

Generative Kernels

- Generative models, e.g. HMMs and GMMs, handle variable length data
 - view as "mapping" sequence to a single dimension (log-likelihood)

$$\phi\left(\mathbf{O}; \boldsymbol{\lambda}\right) = \frac{1}{T} \log\left(p(\mathbf{O}; \boldsymbol{\lambda})\right)$$

- Extend feature-space:
 - add derivatives with respect to the model parameters
 - example is a log-likelihood ratio plus first derivative score-space:

$$\boldsymbol{\phi}(\mathbf{O}; \boldsymbol{\lambda}) = \frac{1}{T} \begin{bmatrix} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) - \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \\ \nabla_{\boldsymbol{\lambda}^{(1)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) \\ -\nabla_{\boldsymbol{\lambda}^{(2)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \end{bmatrix}$$

- Unrestricted form of Maximum Margin Augmented Model training

Fisher Kernel

• Fisher Kernels have the form

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \frac{1}{T} \left[\boldsymbol{\nabla}_{\boldsymbol{\lambda}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}) \right) \right]$$

Fisher kernel useful with large amounts of unsupervised data:

- extracts general structure of data
- Generative kernels may be viewed as a supervised version of Fisher Kernels
 - are equivalent when two base distributions the same

$$\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) = \check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(2)})$$

and only using first order derivatives.

Marginalised Count Kernel

- Another related kernel is the marginalised count kernel.
 - used for discrete data (bio-informatics applications)
 - score space element for second-order token pairings ab and states $\theta_a \theta_b$

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{t=1}^{T-1} \mathcal{I}(\mathbf{o}_t = \mathtt{a}, \mathbf{o}_{t+1} = \mathtt{b}) P(q_t = \theta_a, q_{t+1} = \theta_b | \mathbf{O}; \boldsymbol{\lambda})$$

compare to an element of the second derivative of PMF of a discrete HMM

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{t=1}^{T} \sum_{\tau=1}^{T} \mathcal{I}(\mathbf{o}_t = \mathtt{a}, \mathbf{o}_{\tau} = \mathtt{b}) P(q_t = \theta_a, q_{\tau} = \theta_b | \mathbf{O}; \boldsymbol{\lambda}) + \dots$$

- higher order derivatives yields higher order dependencies
- generative kernels allow "continuous" forms of count kernels

Conditional Augmented Models

• Augmented models can be trained in a discriminative fashion, i.e. maximise

$$P(\omega_i | \mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{Z(\boldsymbol{\lambda}, \boldsymbol{\alpha})} \exp\left(\begin{bmatrix} 1 \\ \boldsymbol{\alpha}^{(i)} \end{bmatrix}' \begin{bmatrix} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(i)})) \\ \boldsymbol{\nabla}_{\boldsymbol{\lambda}} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(i)})) \end{bmatrix} \right)$$

where for a $K\mbox{-}{\rm class}$ problem

$$Z(\boldsymbol{\lambda}, \boldsymbol{\alpha}) = \sum_{j=1}^{K} \exp\left(\begin{bmatrix} 1 \\ \boldsymbol{\alpha}^{(j)} \end{bmatrix}' \begin{bmatrix} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(j)})) \\ \boldsymbol{\nabla}_{\boldsymbol{\lambda}} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda}^{(j)})) \end{bmatrix} \right)$$

Simple expression for normalisation term

- Standard gradient descent approaches may be used to train parameters
 - optimising α is a convex optimisation problem unique, global solution!

Conditional Random Fields

- Conditional Random Fields (CRFs) have become popular for classification
- undirected graph (see opposite)
- features extracted from graph
 - transition features $T_k(\omega_{t-1}, \omega_t, \mathbf{O})$
 - state features $T_k(\omega_t, \mathbf{O})$

$$P(\omega_1,\ldots,\omega_T|\mathbf{O}) = \frac{1}{Z(\boldsymbol{\lambda})} \exp\left(\sum_t \boldsymbol{\lambda}_t' \mathbf{T}(\omega_{t-1},\omega_t,\mathbf{O})\right)$$

- Convex optimisation problem to find λ
- Directly applicable to some sequence classes (POS tagging)
 - additional independence assumptions useful for speech

Hidden CRFs

• Hidden CRFs have been examined for speech recognition

$$P(\omega_i | \mathbf{O}; \boldsymbol{\lambda}) = \frac{1}{Z(\boldsymbol{\lambda})} \sum_{\mathbf{q} \in \boldsymbol{\Theta}} \exp\left(\boldsymbol{\lambda}' \mathbf{T}(\omega_i, \mathbf{q}, \mathbf{O})\right)$$

- No-longer convex optimisation problem
- Both CRFs and HCRFs assume knowledge of dependencies
 - A-HMM extracts additional CRF statistics $\mathbf{T}(\omega_i, \mathbf{O}; \boldsymbol{\lambda})$

Speech Processing Experiments

- Augmented models examined on a range of speech processing tasks:
 - Speaker verification: binary classification task
 - Isolated letter classification: small number of classes (1-v-1 + voting)
 - LVCSR: mapping LVCSR task to binary task acoustic codebreaking
- Conditional augmented models examined on:
 - TIMIT phone classification: multi-class classification

Speaker Verification

- GMM-MAP based speaker verification
 - enrolment MAP-adapted GMM used as the base distribution
 - first-order mean-derivative A-GMMs
 - evaluated on NIST 2002 SRE Task

• A-GMM consistently out-performs standard GMM

ISOLET E-Set Experiments

- ISOLET isolated letters from American English
 - E-set subset {B,C,D,E,G,P,T,V,Z} highly confusable
- Standard features MFCC_E_D_A, 10 emitting state HMM 2 components/state
 - first-order mean derivatives for A-HMM, 1-v-1 training, voting

Classifier	Training		WER
	Base (λ)	Aug $(lpha)$	(%)
НММ	ML		8.7
	MMI		4.8
A-HMM	ML	MM	5.0
	MMI	MM	4.3

- Augmented HMMs outperform HMMs for both ML and MMI trained systems.
 - best performance using selection/more complex model 3.2%

Binary Classifiers and LVCSR

- Many classifiers(e.g. SVMs) are inherently binary:
 - speech recognition has a vast number of possible classes;
 - how to map to a simple binary problem?
- Use pruned confusion networks (Venkataramani et al ASRU 2003):

- use standard HMM decoder to generate word lattice;
- generate confusion networks (CN) from word lattice
 - * gives posterior for each arc being correct;
- prune CN to a maximum of two arcs (based on posteriors).

LVCSR Experimental Setup

- HMMs trained on 400hours of conversational telephone speech (fsh2004sub):
 - standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
 - state-clustered triphones (~ 6000 states, ~ 28 components/state);
 - maximum likelihood training
- Confusion networks generated for fsh2004sub
- Perform 8-fold cross-validation on 400 hours training data:
 - use CN to obtain highly confusable common word pairs
 - ML/MMI-trained word HMMs 3 emitting states, 4 components per state
 - first-order derivatives (prior/mean/variance 640 selected) A-HMMs
- Evaluation on held-out data (eval03)
 - 6 hours of test data
 - decoded using LVCSR trigram language model
 - baseline using confusion network decoding

8-Fold Cross-Validation LVCSR Results

Word Pair	Classifier	Training		WER (%)	
(Examples)		Base (λ)	Aug (α)	Trn	Tst
CAN/CAN'T (3761)	НММ	ML		10.4	11.0
		MMI		9.0	10.4
	A-HMM	ML	MM	7.1	9.2
	C-Aug	ML	CML	7.2	9.6

- A-HMM outperforms both ML and MMI HMM
 - also outperforms using "equivalent" number of parameters
- A-HMM outperforms C-Aug HMM
 - maximum margin found to (unsurprisingly) be more robust
- Difficult to split dependency modelling gains from change in training criterion

Incorporating Posterior Information

- Useful to incorporate arc log-posterior ($\mathcal{F}(\omega_1), \mathcal{F}(\omega_2)$) into decision process
 - posterior contains e.g. N-gram LM, cross-word context acoustic information
- Two simple approaches:
 - combination of two as independent sources (β empirically set)

- incorporate posterior into score-space (β obtained from decision boundary)

$$\phi^{ ext{cn}}(\mathbf{O}; oldsymbol{\lambda}) = \left[egin{array}{c} \mathcal{F}(\omega_1) - \mathcal{F}(\omega_2) \ \phi(\mathbf{O}; oldsymbol{\lambda}) \end{array}
ight]$$

• Incorporating in score-space requires consistency between train/test posteriors

Evaluation Data LVCSR Results

• Baseline performance using Viterbi and Confusion Network decoding

Decoding	trigram LM	
Viterbi	30.8	
Confusion Network	30.1	

• Rescore word-pairs using 3-state/4-component A-HMM+ β CN

# SVMs	#corrected /#pairs	% corrected	
10 SVMs	56/1250	4.5%	

- performance on eval03 CTS task
- $\bullet\,$ only 1.6% of 76157 words rescored
- more SVMs required!

TIMIT Classification Experiments

- TIMIT phone-classification experiments
 - 48 base-phones modelled (mapped to 39 for scoring)
 - context-independent phone base models. 3-emitting state HMMs

Classifier	Training		Components	
	$Base(\boldsymbol{\lambda})$	Aug(lpha)	10	20
HMM	ML	_	29.4	27.3
C-Aug	ML	CML	24.2	
HMM	MMI	_	25.3	24.8
C-Aug	MMI	CML	23.4	_

Classification error on the TIMIT core test set

• C-Aug outperforms HMMs for comparable numbers of parameters

Summary

- Dependency modelling for sequence data
 - use of latent variables
 - use of sufficient statistics from the data
- Augmented statistical models
 - allows simple combination of latent variables and sufficient statistics
 - use of constrained exponential model to define statistics
 - simple to train using an SVM related to various "dynamic" kernels
- ML-augmented model training complex
 - binary cases using linear classifier
 - C-Aug models an interesting alternative
- Evaluated on a speech processing tasks
 - interesting to see how it works on other tasks ...

