SVMs, Generative Kernels & Maximum Margin Statistical Models

Mark Gales & Martin Layton

16 December 2004

Cambridge University Engineering Department

Institute of Statistical Mathematics

Overview

- Dependency Modelling in Speech Recognition:
 - latent variables
 - exponential family
- Augmented Statistical Models
 - Gaussian mixture models and hidden Markov models
- Support Vector Machines
 - Generative Kernels
 - maximum margin training
- Preliminary LVCSR experiments

Dependency Modelling

- Speech data is dynamic observations are not of a fixed length
- Dependency modelling essential part of speech recognition:

$$p(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_T;\boldsymbol{\lambda}) = p(\boldsymbol{o}_1;\boldsymbol{\lambda})p(\boldsymbol{o}_2|\boldsymbol{o}_1;\boldsymbol{\lambda})\ldots p(\boldsymbol{o}_T|\boldsymbol{o}_1,\ldots,\boldsymbol{o}_{T-1};\boldsymbol{\lambda})$$

- impractical to directly model in this form
- make extensive use of conditional independence
- Two possible forms of conditional independence used:
 - observed variables
 - latent (unobserved) variables
- Even given dependency (form of Bayesian Network):
 - need to determine how dependencies interact

Bayesian networks

Yield conditional-independence assumptions

- round node: continuous variable;
- square node: discrete variable;
- shaded node: observable;
- no arrow: conditional independence.

Examples:

- 1. Factor Analysis: $p(\boldsymbol{o}_t | \boldsymbol{x}_t) = \mathcal{N} \left(\boldsymbol{o}_t; \boldsymbol{C}_t \boldsymbol{x}_t + \boldsymbol{\mu}_t^{(o)}, \boldsymbol{\Sigma}_t^{(o)} \right)$
- 2. Gaussian Mixture Model: $p(o_t | \omega_t = n) = \mathcal{N}(o_t; \mu_n, \Sigma_n)$

Hidden Markov Model - A Dynamic Bayesian Network

(a) Standard HMM phone topology

(b) HMM Dynamic Bayesian Network

- Notation for DBNs:
 - circles continuous variables shaded observed variables squares - discrete variables non-shaded - unobserved variables
- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states,
- Poor model of the speech process piecewise constant state-space.

Dependency Modelling using Latent Variables

Switching linear dynamical system:

- discrete and continuous state-spaces
- observations conditionally independent given continuous and discrete state;
- exponential growth of paths, $O(N_s^T)$ \Rightarrow approximate inference required.

Multiple data stream DBN:

- e.g. factorial HMM/mixed memory model;
- asynchronous data common:
 - speech and video/noise;
 - speech and brain activation patterns.
- observation depends on state of both streams

• Unfortunately doesn't currently classify better than an HMM!

Adaptive Training

- Observations conditionally independent:
 - state that generated the observation
 - continuous latent variable(s) s
- Latent variable:
 - represents the speaker/environment
 - various forms CMN/CVN/VTLN

• One powerful form is Speaker Adaptive Training using constrained MLLR

$$p(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{\theta \in \Theta} \int_{\mathcal{R}^n} \left(\prod_{t=1}^T P(\theta_t | \theta_{t-1}) | \mathbf{A} | p(\mathbf{A} \boldsymbol{o}_t + \mathbf{b} | \theta_t; \boldsymbol{\lambda}) \right) p(\mathbf{A}, \mathbf{b} | \boldsymbol{\lambda}) d\mathbf{A} d\mathbf{b}$$

- ML/MAP estimation commonly used for \mathbf{A}, \mathbf{b}
- exact Bayesian inference intractable (at the moment)
- used in many state-of-the-art speech recognition systems

Dependency Modelling using Observed variables

• Commonly use member (or mixture) of the exponential family

$$p(\mathbf{O}; \boldsymbol{\alpha}) = \frac{1}{\tau} h(\mathbf{O}) \exp(\boldsymbol{\alpha}' \mathbf{T}(\mathbf{O}))$$

- $h(\mathbf{O})$ is the reference distribution
- lpha are the natural parameters
- τ is the normalisation term
- the function $\mathbf{T}(\mathbf{O})$ is a sufficient statistic.
- Hard to determine the appropriate form of statistics $(\mathbf{T}(\mathbf{O}))$ to use ...

Sufficient Statistic Example

• For the one-dimensional observation sequences $\mathbf{O} = o_1, \ldots, o_T$ extract:

$$- T_1(\mathbf{O}) = \sum_{t=2}^T o_t; \quad T_2(\mathbf{O}) = \sum_{t=2}^T o_{t-1} \\ - T_3(\mathbf{O}) = \sum_{t=2}^T o_t o_{t-1}; \quad T_4(\mathbf{O}) = \sum_{t=2}^T o_t^2; \quad T_5(\mathbf{O}) = \sum_{t=2}^T o_{t-1}^2$$

• Probability (given the first observation) by

$$p(o_2,\ldots,o_T|o_1;\boldsymbol{\alpha}) = \exp\left(\sum_{i=1}^5 \alpha_i T_i(\mathbf{O})\right)/\tau$$

– $oldsymbol{lpha}$ and au directly found from the joint distribution of $\{o_t, o_{t-1}\}$

$$\boldsymbol{\mu} = \frac{1}{T-1} \begin{bmatrix} T_1(\mathbf{O}) \\ T_2(\mathbf{O}) \end{bmatrix}; \quad \boldsymbol{\Sigma} = \frac{1}{T-1} \begin{bmatrix} T_4(\mathbf{O}) & T_3(\mathbf{O}) \\ T_3(\mathbf{O}) & T_5(\mathbf{O}) \end{bmatrix} - \boldsymbol{\mu} \boldsymbol{\mu}'$$

- has the form of a single component single-state buried Markov model

Constrained Exponential Family

- Could hypothesise all possible dependencies and prune
 - discriminative pruning found to be useful (buried Markov models)
 - impractical for wide range (and lengths) of dependencies
- Consider constrained form of statistics
 - local exponential approximation to the reference distribution
 - ρ^{th} -order differential form considered (related to Taylor-series)
- Distribution has two parts
 - reference distribution defines latent variables
 - local exponential model defines statistics $\big(\mathbf{T}(\mathbf{O})\big)$
- Slightly more general form is the augmented statistical model
 - train all the parameters (including the reference, base, distribution)

Augmented Statistical Models

• Augmented statistical models (related to fibre bundles)

$$p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{1}{\tau} \check{p}(\mathbf{O}; \boldsymbol{\lambda}) \exp \left(\boldsymbol{\alpha}' \begin{bmatrix} \boldsymbol{\nabla}_{\lambda} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \\ \frac{1}{2!} \operatorname{vec} \left(\boldsymbol{\nabla}_{\lambda}^{2} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \right) \\ \vdots \\ \frac{1}{\rho!} \operatorname{vec} \left(\boldsymbol{\nabla}_{\lambda}^{\rho} \log(\check{p}(\mathbf{O}; \boldsymbol{\lambda})) \right) \end{bmatrix} \right)$$

- Two sets of parameters
 - λ parameters of base distribution ($\check{p}(\mathbf{O}; \lambda)$)
 - α natural parameters of local exponential model
- Normalisation term au ensures that

$$\int_{\mathcal{R}^n} p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) d\mathbf{O} = 1; \qquad p(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \overline{p}(\mathbf{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) / \tau$$

- can be very complex to estimate

Augmented Gaussian Mixture Model

- Use a GMM as the base distribution: $\check{p}(\boldsymbol{o}; \boldsymbol{\lambda}) = \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$
 - considering only the first derivatives of the means

$$p(\boldsymbol{o};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \frac{1}{\tau} \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o};\boldsymbol{\mu}_m,\boldsymbol{\Sigma}_m) \exp\left(\sum_{n=1}^{M} P(n|\boldsymbol{o};\boldsymbol{\lambda})\boldsymbol{\alpha}_n' \boldsymbol{\Sigma}_n^{-1}(\boldsymbol{o}-\boldsymbol{\mu}_n)\right)$$

• Simple two component one-dimensional example:

Augmented Gaussian Mixture Model Example

• Maximum likelihood training of A-GMM on symmetric log-normal data

- 2-component base-distribution (poor model of data)
- A-GMM better model of distribution (log-likelihood -1.45 vs -1.59 GMM)
- approx. symmetry obtained without symmetry in parameters!

Augmented Hidden Markov Model

- For an HMM: $\check{p}(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \left\{ \prod_{t=1}^{T} a_{\theta_{t-1}\theta_t} \left(\sum_{m \in \theta_t} c_m \mathcal{N}(\mathbf{o}_t; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m) \right) \right\}$
 - The form of the statistics when an HMM used as the base distribution

$$\boldsymbol{\nabla}_{\mu_{jm}} \log \check{p}(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{t=1}^{T} \gamma_{jm}(t) \boldsymbol{\Sigma}_{jm}^{-1} \left(\mathbf{o}_t - \boldsymbol{\mu}_{jm} \right)$$

 $\gamma_{jm}(t)=P(\theta_t=\{s_j,m\}|\mathbf{O};\pmb{\lambda})$, θ_t is the state/component pairing at time t

- An example higher order derivative has the form

$$\boldsymbol{\nabla}_{\mu_{in}} \boldsymbol{\nabla}'_{\mu_{jm}} \log \left(\check{p}(\mathbf{O}; \boldsymbol{\lambda}) \right) = \\ \sum_{t=1}^{T} \sum_{\tau=1}^{T} \left\{ \left(\gamma_{\{jm,in\}}(t,\tau) - \gamma_{jm}(t)\gamma_{in}(\tau) \right) \boldsymbol{\Sigma}_{in}^{-1} \left(\mathbf{o}_{\tau} - \boldsymbol{\mu}_{in} \right) \left(\mathbf{o}_{t} - \boldsymbol{\mu}_{jm} \right)' \boldsymbol{\Sigma}_{jm}^{-1} \right\}$$

where $\gamma_{\{jm,in\}}(t,\tau)$ is the joint state/component posterior.

Augmented Model Dependencies

• If the base distribution is a mixture of members of the exponential family

$$\check{p}(\mathbf{O};\boldsymbol{\lambda}) = \prod_{t=1}^{T} \sum_{m=1}^{M} c_m \exp\left(\sum_{j=1}^{J} \lambda_j^{(m)} T_j^{(m)}(\boldsymbol{o}_t)\right) / \tau^{(m)}$$

- consider a first order differential

$$\frac{\partial}{\partial \lambda_k^{(n)}} \log\left(\check{p}(\mathbf{O}; \boldsymbol{\lambda})\right) = \sum_{t=1}^T P(n | \mathbf{o}_t; \boldsymbol{\lambda}) \left(T_k^{(n)}(\mathbf{o}_t) - \frac{\partial}{\partial \lambda_k^{(n)}} \log(\tau^{(m)}) \right)$$

- Augmented models of this form
 - keep independence assumptions of the base distribution
 - remove conditional independence assumptions of the base model
 - the local exponential model depend on a posterior ...
- Same applies for dynamic models such as HMMs

Augmented Model Summary

- Extension to standard forms of statistical model
- Consists of two parts:
 - base distribution determines the latent variables
 - local exponential distribution augments base distribution
- Base distribution:
 - standard form of statistical model
 - examples considered Gaussian mixture models and hidden Markov models
- Local exponential distribution:
 - currently based on $\rho^{th} \text{-order}$ differential form
 - gives additional dependencies not present in base distribution
- Normalisation term may be highly complex to calculate
 - maximum likelihood training may be very awkward

Support Vector Machines

- SVMs are a maximum margin, binary, classifier:
 - related to minimising generalisation error;
 - unique solution (compare to neural networks);
 - may be kernelised training/classification a function of dot-product $(\mathbf{x}_i.\mathbf{x}_j)$.
- Successfully applied to many tasks how to apply to speech?

Support Vector Machine Training

• For non-linearly separable data a soft margin classifier is used: minimise

$$\tau(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

- two terms: $k/margin^2$ and error rate bound (C balances importance)
- The dual is commonly optimised (based only on $lpha^{ extsf{svm}}$)

$$\hat{\boldsymbol{\alpha}}^{\texttt{svm}} = \max_{\boldsymbol{\alpha}^{\texttt{svm}}} \left\{ \sum_{i=1}^{n} \alpha_i^{\texttt{svm}} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i^{\texttt{svm}} \alpha_j^{\texttt{svm}} y_i y_j \left(\mathbf{x}_i . \mathbf{x}_j \right) \right\}$$

subject to $0 \le \alpha_i^{\text{svm}} \le C$, $\sum_{i=1}^m \alpha_i^{\text{svm}} y_i = 0$, $y_i \in \{-1, 1\}$ indicates the class.

$$\mathbf{w} = \sum_{i=1}^n \alpha_i^{\texttt{svm}} y_i \mathbf{x}_i$$

The "Kernel Trick"

- SVM decision boundary linear in the feature-space
 - may be made non-linear using a non-linear mapping $oldsymbol{\phi}()$ e.g.

$$\boldsymbol{\phi}\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}x_1^2\\\sqrt{2}x_1x_2\\x_2^2\end{array}\right], \quad K(\mathbf{x}_i,\mathbf{x}_j) = \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j)\rangle$$

• Efficiently implemented using a Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j)^2$

Handling Speech data

• Speech data has inherent variability in the number of samples:

The	cat		sat	on	tl	ne	mat] 1200 frames
$\mathbf{O}_1 = \{oldsymbol{o}_1, \dots, oldsymbol{o}_{1200}\}$								
Г						1	_	
	The	cat	sat	on	the	mat		900 frames
$\mathbf{O}_2 = \{oldsymbol{o}_1, \dots, oldsymbol{o}_{900}\}$								

- Kernels can be used to map from variable to fixed length data.
- Generative models are an obvious candidate:
 - HMMs and GMMs handle variable length data
 - view as "mapping" sequence to a single dimension (log-likelihood)

$$\phi\left(\mathbf{O};\boldsymbol{\lambda}\right) = \frac{1}{T}\log\left(p(\mathbf{O};\boldsymbol{\lambda})\right) = \frac{1}{T}\sum_{t=1}^{T}\log p\left(\boldsymbol{o}_{t};\boldsymbol{\lambda}\right)$$

Generative Kernels

- SVMs can handle large dimensional data robustly:
 - higher dimensions data more separable;
 - how to increase dimensionality?
- Have a generative model for each class: parameters ω_1 : $\lambda^{(1)}$ and ω_2 : $\lambda^{(2)}$
- Use a score-space:
 - add derivatives with respect to the model parameters
 - example is a log-likelihood ratio plus first derivative score-space:

$$\phi^{\texttt{ll}}(\mathbf{O}; \boldsymbol{\lambda}) = \frac{1}{T} \begin{bmatrix} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) - \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \\ \nabla_{\boldsymbol{\lambda}^{(1)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) \\ -\nabla_{\boldsymbol{\lambda}^{(2)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \end{bmatrix}$$

- dimensionality of feature-space: 1+ parameters $oldsymbol{\lambda}^{(1)}$ + parameters $oldsymbol{\lambda}^{(2)}$

Score-Space Metrics

- SVM training involves a distance from the decision boundary
 - need to determine appropriate distance metric
- Choose a maximally non-committal metric

$$K(\mathbf{O}_i, \mathbf{O}_j; \boldsymbol{\lambda}) = \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})' \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_j; \boldsymbol{\lambda})$$

where O_i and O_j are sequences of length T_i and T_j respectively, and

$$\mathbf{G} = \mathcal{E}\left\{ \left(oldsymbol{\phi}(\mathbf{O};oldsymbol{\lambda}) - oldsymbol{\mu}_{\phi}
ight) \left(oldsymbol{\phi}(\mathbf{O};oldsymbol{\lambda}) - oldsymbol{\mu}_{\phi}
ight)'
ight\}$$

where $\boldsymbol{\mu}_{\phi} = \mathcal{E}\left\{ \boldsymbol{\phi}(\mathbf{O}; \boldsymbol{\lambda})
ight\}$.

 \bullet In practice ${\bf G}$ is usually set to be a diagonal matrix

Augmented Model Training

- Only consider simplified two-class problem
- Bayes' decision rule for binary case (prior $P(\omega_1)$ and $P(\omega_2)$):

$$\frac{P(\omega_1)\tau^{(2)}\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(1)},\boldsymbol{\alpha}^{(1)})}{P(\omega_2)\tau^{(1)}\overline{p}(\mathbf{O};\boldsymbol{\lambda}^{(2)},\boldsymbol{\alpha}^{(2)})} \underset{\omega_2}{\overset{\omega_1}{\underset{\omega_2}{\overset{$$

-
$$b = \frac{1}{T} \log \left(\frac{P(\omega_1) \tau^{(2)}}{P(\omega_2) \tau^{(1)}} \right)$$
 - no need to explicitly calculate τ

• Can express decision rule as the following scalar product

$$\begin{bmatrix} \mathbf{w} \\ w_0 \end{bmatrix}' \begin{bmatrix} \phi(\mathbf{O}; \boldsymbol{\lambda}) \\ 1 \end{bmatrix} \begin{array}{c} \omega_1 \\ > \\ \omega_2 \\ \omega_2 \end{array} 0$$

- form of score-space and linear decision boundary
- SVM good choice as possibly high dimensional score-space

Augmented Model Training - Binary Case (cont)

• Score-space is given by (first order derivatives)

$$\phi(\mathbf{O}; \boldsymbol{\lambda}) = \frac{1}{T} \begin{bmatrix} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) - \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \\ \nabla_{\boldsymbol{\lambda}^{(1)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(1)}) \right) \\ -\nabla_{\boldsymbol{\lambda}^{(2)}} \log \left(p(\mathbf{O}; \boldsymbol{\lambda}^{(2)}) \right) \end{bmatrix}$$

- this is the generative kernel $\phi^{\texttt{ll}}(\mathbf{O}; \boldsymbol{\lambda})$
- only a function of the base-distribution parameters λ
- Linear decision boundary given by

$$\mathbf{w}' = \begin{bmatrix} 1 & \boldsymbol{\alpha}^{(1)\prime} & \boldsymbol{\alpha}^{(2)\prime} \end{bmatrix}'$$

- only a function of the exponential model parameters lpha
- Bias is represented by w_0
 - depends on both lpha and $oldsymbol{\lambda}$

Estimating Model Parameters

- Two sets of parameters to be estimated using training data $\{O_1, \ldots, O_n\}$:
 - generative models (Kernel) $\boldsymbol{\lambda} = \left\{ \boldsymbol{\lambda}^{(1)}, \boldsymbol{\lambda}^{(2)} \right\}$
 - SVM (Lagrange multipliers) $\alpha^{\text{svm}} = \{\alpha_1^{\text{svm}}, \dots, \alpha_n^{\text{svm}}\}$
 - direction of decision boundary ($y_i \in \{-1, 1\}$ label of training example)

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i^{\texttt{svm}} y_i \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})$$

- SVM parameters trained using maximum margin training (to find $lpha^{ ext{svm}}$)
- Kernel parameters may be estimated using:
 - maximum likelihood (ML) training;
 - discriminative training (e.g. maximum mutual information)
 - maximum margin (MM) training.

SVMs and Class Posteriors

- Common objection to SVMs no probabilistic interpretation
 - use of additional sigmoidal mapping/relevance vector machines
- Generative kernels distance from the decision boundary is the posterior ratio

$$\frac{1}{w_1} \left(\begin{bmatrix} \mathbf{w} \\ w_0 \end{bmatrix}' \begin{bmatrix} \phi(\mathbf{O}; \boldsymbol{\lambda}) \\ 1 \end{bmatrix} \right) = \frac{1}{T} \log \left(\frac{P(\omega_1 | \mathbf{O})}{P(\omega_2 | \mathbf{O})} \right)$$

- w_1 is required to ensure first element of ${f w}$ is 1
- augmented version of the kernel PDF becomes the class-conditional PDF
- Decision boundary also yields the exponential natural parameters

$$\begin{bmatrix} 1\\ \boldsymbol{\alpha}^{(1)}\\ \boldsymbol{\alpha}^{(2)} \end{bmatrix} = \frac{1}{w_1} \mathbf{w} = \frac{1}{w_1} \sum_{i=1}^n \alpha_i^{\text{svm}} y_i \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{o}_i; \boldsymbol{\lambda})$$

Maximum Margin Kernel Estimation

- Using maximum margin training to estimate Kernel appealing:
 - optimising $lpha^{ ext{svm}}$ yields local exponential parameters
 - optimising $oldsymbol{\lambda}$ yields parameters of the base distribution
- Modified version of the standard SVM dual used:

$$\{\hat{\boldsymbol{\alpha}}^{\texttt{svm}}, \hat{\boldsymbol{\lambda}}\} = \arg\max_{\boldsymbol{\alpha}^{\texttt{svm}}} \min_{\boldsymbol{\lambda}} \left\{ \sum_{i=1}^{n} \alpha_{i}^{\texttt{svm}} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}^{\texttt{svm}} \alpha_{j}^{\texttt{svm}} y_{i} y_{j} K(\mathbf{O}_{i}, \mathbf{O}_{j}; \boldsymbol{\lambda}) \right\}$$

- Iterative optimisation required:
 - given values of λ perform standard SVM training
 - given values of $lpha^{ ext{svm}}$ perform gradient descent optimisation of $oldsymbol{\lambda}$

Maximum Margin Training (detail)

- Training procedure used:
 - 1. Initialise parameters, λ_0 , of generative model using MLE
 - 2. Train SVM to locate initial support vectors, $\alpha_0^{
 m svm}$
 - 3. Calculate initial value of objective function, $W^{(0)} = W(\lambda_0, \alpha_0^{\text{svm}})$
 - 4. For each iteration k:
 - (A) $\lambda_k = \arg \min_{\lambda} W(\lambda; \alpha_{k-1}^{\text{svm}})$
 - (B) $\boldsymbol{\alpha}_{k}^{\texttt{svm}} = \arg \max_{\boldsymbol{\alpha}^{\texttt{svm}}} W(\boldsymbol{\alpha}^{\texttt{svm}}; \boldsymbol{\lambda}_{k})$
 - Recalculate objective function, $W^{(k)} = W(\lambda_k, \alpha_k^{\text{svm}})$ Repeat until convergence: $|W^{(k)} - W^{(k-1)}| < \epsilon$
- (A) is a gradient descent scheme involving backing-off
 - back-off required to ensure that KKT conditions still satisfied
- (B) is standard SVM training

Maximum Margin Example

• Artificial example training class-conditional Gaussian with LLR score-space:

$$\phi(\boldsymbol{o};\boldsymbol{\lambda}) = \left[\log\left(\check{p}(\boldsymbol{o};\boldsymbol{\lambda}^{(1)})\right) - \log\left(\check{p}(\boldsymbol{o};\boldsymbol{\lambda}^{(2)})\right)\right]$$

- Decision boundary closer to Bayes' decision boundary (dotted line)
 - can also be obtained by optimising $\pmb{lpha}^{ t ext{svm}}$ using $\pmb{\phi}^{ t ext{ll}}(\mathbf{O}; \pmb{\lambda})$ score-space ...

Exponential Family Base Distribution

• For a single component example the form of the augmented model is

$$p(\boldsymbol{o};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \frac{1}{\tau} \exp\left(\boldsymbol{\lambda}' \mathbf{T}(\boldsymbol{o})\right) \exp\left(\boldsymbol{\alpha}' \mathbf{T}(\boldsymbol{o})\right) = \frac{1}{\tau} \exp\left((\boldsymbol{\alpha} + \boldsymbol{\lambda})' \mathbf{T}(\boldsymbol{o})\right)$$

- still a member of the exponential family
- Using SVM training with generative kernel

$$oldsymbol{\phi}(oldsymbol{o};oldsymbol{\lambda}) = \left[egin{array}{c} \log\left(\check{p}(oldsymbol{o};oldsymbol{\lambda}^{(1)})
ight) - \log\left(\check{p}(oldsymbol{o};oldsymbol{\lambda}^{(2)})
ight) \ \mathbf{T}(oldsymbol{o}) \ -\mathbf{T}(oldsymbol{o}) \end{array}
ight]$$

- will yield a maximum margin estimate of the exponential model
- not true when using a model with latent variables

Valid Statistical Model?

- For a valid statistical model τ must be bounded:
 - for Gaussian covariance matrix must be positive-definite
- This places restrictions on the values of lpha
- Consider the simplest single-dimension, Gaussian base distribution
 - score-space is LLR and first derivatives of mean and variance
 - the augmented model is also Gaussian with effective variance

$$\sigma^2 = \frac{\check{\sigma}^4}{\check{\sigma}^2 - \alpha}$$

if $\alpha \geq \check{\sigma}^2$ then the variance is negative!

• In practice this has not been an issue with the models examined here ...

Deterding Dataset

- Data from 11 vowels in British English in context of h*d
 - steady state portions partitioned into 6 Hamming window segments
 - linear prediction analysis to yield 10 log area parameters
 - static 10-dimensional feature vector for training/testing
- Corpus consists of
 - 48 training examples per vowel (total of 528 examples)
 - 42 test examples per vowel (total of 462 examples)
- Multi-class problem handled using set of 1-v-1 SVM classifiers
 - single pair ties resolved using pair classifier decision
 - multiple ties resolved using the GMM classifier

Deterding Data Experiments

	Num.	Training (%)		Test (%)	
Classifier	Comp.	initial	final	initial	final
GMM	1	40.0		55.8	
GMM	2	27.7		45.2	
SVM (LLR)	1	38.1	1.9	58.0	47.4
SVM (LLR)	2	26.3	0.8	48.5	38.8
SVM (LLR + $oldsymbol{ abla}_{\mu}$)	1	10.6	1.0	46.3	48.1

- Maximum margin training of kernel (base distribution)
 - initial performance using ML values for λ
 - final performance using MM values for λ
- Use of maximum margin training improved performance
 - but overtraining clear with maximum margin training

SVMs and LVCSR

- SVMs are inherently binary:
 - speech recognition has a vast number of possible classes;
 - how to map to a simple binary problem?
- Use pruned confusion networks:

- use standard HMM decoder to generate word lattice;
- generate confusion networks (CN) from word lattice
 - * gives posterior for each arc being correct;
- prune CN to a maximum of two arcs (based on posteriors).

Incorporating Posterior Information

- Useful to incorporate arc log-posterior ($\mathcal{F}(\omega_1), \mathcal{F}(\omega_1)$) into decision process
 - posterior contains e.g. N-gram LM, cross-word context acoustic information
- Two simple approaches:
 - combination of two as independent sources (β empirically set)

$$\frac{1}{T} \log \left(\frac{\overline{p}(\mathbf{O}; \boldsymbol{\lambda}^{(1)}, \boldsymbol{\alpha}^{(1)})}{\overline{p}(\mathbf{O}; \boldsymbol{\lambda}^{(2)}, \boldsymbol{\alpha}^{(2)})} \right) + b + \beta \left(\mathcal{F}(\omega_1) - \mathcal{F}(\omega_2) \right) \overset{\omega_1}{\underset{\omega_2}{\overset{\sim}{\sim}}} 0$$

- incorporate posterior into score-space (β obtained from decision boundary)

$$\phi^{cn}(\mathbf{O}; \boldsymbol{\lambda}) = \left[egin{array}{c} \mathcal{F}(\omega_1) - \mathcal{F}(\omega_2) \\ \phi(\mathbf{O}; \boldsymbol{\lambda}) \\ 1 \end{array}
ight]$$

• Incorporating in score-space requires consistency between train/test posteriors

LVCSR Experimental Setup

- HMMs trained on 400hours of conversational telephone speech (fsh2004sub):
 - standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
 - state-clustered triphones (~ 6000 states, ~ 28 components/state);
 - maximum likelihood training
- Confusion networks generated for fsh2004sub:
 - bigram language model trained on fsh2004sub
- Perform 8-fold cross-validation on 400 hours training data:
 - matched training and test conditions
 - ML-trained Gaussian mixture model (first derivatives) score-space
 - posteriors "biased" as HMMs trained on "test" data
- Evaluation on held-out data (eval03)
 - 6 hours of test data
 - decoded using either LVCSR bigram or trigram
 - baseline using confusion network decoding

Word Pair	Training	CN	# Components		
(examples)	Training	post.	1	2	4
	ML	79.8	58.3	58.4	56.2
A/THE	SVM $\phi^{11}()$		61.1	63.0	64.7
(8533)	$+\beta CN$		79.8	80.0	80.3
	SVM $\phi^{cn}()$		80.4	80.1	80.6
	ML	78.5	81.7	86.0	88.2
CAN/CAN'T	SVM $\phi^{ll}()$		84.8	89.4	90.5
(3761)	$+\beta CN$		88.5	91.2	91.9
	SVM $\phi^{cn}()$		89.0	91.4	91.6
	ML		68.4	69.4	70.8
KNOW/NO	SVM $\phi^{11}()$	83.1	72.1	73.6	76.6
(4475)	$+\beta CN$		84.3	84.5	85.2
	SVM $\phi^{cn}()$		85.7	86.2	86.2

8-Fold Cross-Validation LVCSR Results

• Posterior score-space best approach, maximum margin distributions useful.

Evaluation Data LVCSR Results

• Baseline performance using Viterbi and Confusion Network decoding

Decoding	Language Model			
	bigram	trigram		
Viterbi	34.4	30.8		
Confusion Network	33.9	30.1		

• Rescore common confusion pairs using 4-component and $\phi^{11}() + \beta CN$

SVM Rescoring	#corrected/#pairs (% corrected)				
SVIVI Resconing	bigram LM	trigram LM			
9 SVMs	44/1401 (3.1%)	41/1310 (3.1%)			
15 SVMs	55/2116 (2.6%)	43/1954 (2.2%)			

- β roughly set error rate relatively insensitive to exact value
- less than 3% of 76157 hypothesised words rescored more SVMs required!

Summary

- Dependency modelling for speech recognition
 - use of latent variables
 - use of sufficient statistics from the data
- Augmented statistical models
 - allows simple combination of latent variables and sufficient statistics
 - use of constrained exponential model to define statistics
- Support vector machines
 - use of generative kernels for dynamic data
 - maximum margin training of augmented statistical models
- Preliminary results of a large vocabulary speech recognition task
 - ${\rm SVMs}/{\rm Augmented}$ models possibly useful for speech recognition

