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SVMs, Generative Kernels and Maximum Margin Statistical Models

Overview

• Dependency Modelling in Speech Recognition:

– latent variables
– exponential family

• Augmented Statistical Models

– Gaussian mixture models and hidden Markov models

• Support Vector Machines

– Generative Kernels
– maximum margin training

• Preliminary LVCSR experiments

Cambridge University
Engineering Department

Institute of Statistical Mathematics 1



SVMs, Generative Kernels and Maximum Margin Statistical Models

Dependency Modelling

• Speech data is dynamic - observations are not of a fixed length

• Dependency modelling essential part of speech recognition:

p(o1, . . . ,oT ; λ) = p(o1; λ)p(o2|o1; λ) . . . p(oT |o1, . . . , oT−1; λ)

– impractical to directly model in this form
– make extensive use of conditional independence

• Two possible forms of conditional independence used:

– observed variables
– latent (unobserved) variables

• Even given dependency (form of Bayesian Network):

– need to determine how dependencies interact
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Bayesian networks

Yield conditional-independence assumptions

• round node: continuous variable;

• square node: discrete variable;

• shaded node: observable;

• no arrow: conditional independence.

Examples:

1. Factor Analysis:

p(ot|xt) = N (
ot; Ctxt + µ

(o)
t ,Σ(o)

t

)

2. Gaussian Mixture Model:
p(ot|ωt = n) = N (

ot; µn,Σn

)

ot

xt

ω t

ot

1

2
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Hidden Markov Model - A Dynamic Bayesian Network
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(a) Standard HMM phone topology
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(b) HMM Dynamic Bayesian Network

• Notation for DBNs:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

• Observations conditionally independent of other observations given state.

• States conditionally independent of other states given previous states,

• Poor model of the speech process - piecewise constant state-space.
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Dependency Modelling using Latent Variables

Switching linear dynamical system:

• discrete and continuous state-spaces

• observations conditionally independent given
continuous and discrete state;

• exponential growth of paths, O(NT
s )

⇒ approximate inference required.

t+1x

ot ot+1

tx

qt qt+1

Multiple data stream DBN:

• e.g. factorial HMM/mixed memory model;

• asynchronous data common:

– speech and video/noise;
– speech and brain activation patterns.

• observation depends on state of both streams

ot ot+1

t
(1)q

t+1

t+1

q(2) (2)

(1)q

qt
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SLDS Trajectory Modelling

Frames from phrase:
SHOW THE GRIDLEY’S ...

Legend

• True

• HMM

• SLDS
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• Unfortunately doesn’t currently classify better than an HMM!
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Adaptive Training

• Observations conditionally independent:

– state that generated the observation
– continuous latent variable(s) s

• Latent variable:

– represents the speaker/environment
– various forms CMN/CVN/VTLN

ot+2

t+2q

ot−1 to o

tq qt+1

s

qt−1

t+1

• One powerful form is Speaker Adaptive Training using constrained MLLR

p(O; λ) =
∑

θ∈Θ

∫

Rn

(
T∏

t=1

P (θt|θt−1)|A|p(Aot+b|θt; λ)

)
p(A,b|λ)dAdb

– ML/MAP estimation commonly used for A,b
– exact Bayesian inference intractable (at the moment)
– used in many state-of-the-art speech recognition systems
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Dependency Modelling using Observed variables

ot+2

t+2q

ot−1 to o

tq qt+1qt−1

t+1

• Commonly use member (or mixture) of the exponential family

p(O; α) =
1
τ
h(O) exp (α′T(O))

– h(O) is the reference distribution
– α are the natural parameters
– τ is the normalisation term
– the function T(O) is a sufficient statistic.

• Hard to determine the appropriate form of statistics (T(O)) to use ...
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Sufficient Statistic Example

• For the one-dimensional observation sequences O = o1, . . . , oT extract:

– T1(O) =
∑T

t=2 ot; T2(O) =
∑T

t=2 ot−1

– T3(O) =
∑T

t=2 otot−1; T4(O) =
∑T

t=2 o2
t ; T5(O) =

∑T
t=2 o2

t−1

• Probability (given the first observation) by

p(o2, . . . , oT |o1; α) = exp

(
5∑

i=1

αiTi(O)

)
/τ

– α and τ directly found from the joint distribution of {ot, ot−1}

µ =
1

T − 1

[
T1(O)
T2(O)

]
; Σ =

1
T − 1

[
T4(O) T3(O)
T3(O) T5(O)

]
− µµ′

– has the form of a single component single-state buried Markov model

Cambridge University
Engineering Department

Institute of Statistical Mathematics 9



SVMs, Generative Kernels and Maximum Margin Statistical Models

Constrained Exponential Family

• Could hypothesise all possible dependencies and prune

– discriminative pruning found to be useful (buried Markov models)
– impractical for wide range (and lengths) of dependencies

• Consider constrained form of statistics

– local exponential approximation to the reference distribution
– ρth-order differential form considered (related to Taylor-series)

• Distribution has two parts

– reference distribution defines latent variables
– local exponential model defines statistics (T(O))

• Slightly more general form is the augmented statistical model

– train all the parameters (including the reference, base, distribution)
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Augmented Statistical Models
• Augmented statistical models (related to fibre bundles)

p(O; λ, α) =
1
τ
p̌(O; λ) exp


α′




∇λ log(p̌(O; λ))
1
2!vec

(∇2
λ log(p̌(O; λ))

)
...

1
ρ!vec (∇ρ

λ log(p̌(O; λ)))







• Two sets of parameters

– λ - parameters of base distribution (p̌(O; λ))
– α - natural parameters of local exponential model

• Normalisation term τ ensures that
∫

Rn
p(O; λ, α)dO = 1; p(O; λ, α) = p(O; λ, α)/τ

– can be very complex to estimate
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Augmented Gaussian Mixture Model

• Use a GMM as the base distribution: p̌(o; λ) =
∑M

m=1 cmN (o; µm,Σm)

– considering only the first derivatives of the means

p(o; λ, α) =
1
τ

M∑
m=1

cmN (o; µm,Σm) exp

(
M∑

n=1

P (n|o; λ)α′nΣ
−1
n (o− µn)

)

• Simple two component one-dimensional example:
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Augmented Gaussian Mixture Model Example

• Maximum likelihood training of A-GMM on symmetric log-normal data

−5 −4 −3 −2 −1 0 1 2 3 4 5
0
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0.35

0.4

0.45

0.5
GMM (2comp)
Augmented GMM
Data Distribution

– 2-component base-distribution (poor model of data)
– A-GMM better model of distribution (log-likelihood -1.45 vs -1.59 GMM)
– approx. symmetry obtained without symmetry in parameters!
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Augmented Hidden Markov Model

• For an HMM: p̌(O; λ) =
∑

θ∈Θ

{∏T
t=1 aθt−1θt

(∑
m∈θt

cmN (ot; µm,Σm)
)}

– The form of the statistics when an HMM used as the base distribution

∇µjm
log p̌(O; λ) =

T∑
t=1

γjm(t)Σ−1
jm (ot − µjm)

γjm(t) = P (θt = {sj,m}|O; λ), θt is the state/component pairing at time
t

– An example higher order derivative has the form

∇µin
∇′

µjm
log (p̌(O; λ)) =

T∑
t=1

T∑
τ=1

{ (
γ{jm,in}(t, τ)− γjm(t)γin(τ)

)
Σ−1

in (oτ − µin) (ot − µjm)′Σ−1
jm

}

where γ{jm,in}(t, τ) is the joint state/component posterior.
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Augmented Model Dependencies

• If the base distribution is a mixture of members of the exponential family

p̌(O; λ) =
∏T

t=1

∑M
m=1 cm exp

(∑J
j=1 λ

(m)
j T

(m)
j (ot)

)
/τ (m)

– consider a first order differential

∂

∂λ
(n)
k

log (p̌(O; λ)) =
T∑

t=1

P (n|ot; λ)

(
T

(n)
k (ot)− ∂

∂λ
(n)
k

log(τ (m))

)

• Augmented models of this form

– keep independence assumptions of the base distribution
– remove conditional independence assumptions of the base model

- the local exponential model depend on a posterior ...

• Same applies for dynamic models such as HMMs
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Augmented Model Summary

• Extension to standard forms of statistical model

• Consists of two parts:

– base distribution determines the latent variables
– local exponential distribution augments base distribution

• Base distribution:

– standard form of statistical model
– examples considered Gaussian mixture models and hidden Markov models

• Local exponential distribution:

– currently based on ρth-order differential form
– gives additional dependencies not present in base distribution

• Normalisation term may be highly complex to calculate

– maximum likelihood training may be very awkward
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Support Vector Machines

support vector
support vector

width

decision
boundary

margin

• SVMs are a maximum margin, binary, classifier:

– related to minimising generalisation error;
– unique solution (compare to neural networks);
– may be kernelised - training/classification a function of dot-product (xi.xj).

• Successfully applied to many tasks - how to apply to speech?
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Support Vector Machine Training
• For non-linearly separable data a soft margin classifier is used: minimise

τ(w, ξ) =
1
2
||w||2 + C

n∑

i=1

ξi

subject to yi (〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0

– two terms: k/margin2 and error rate bound (C balances importance)

• The dual is commonly optimised (based only on αsvm)

α̂svm = max
αsvm





n∑

i=1

αsvm
i − 1

2

n∑

i=1

n∑

j=1

αsvm
i αsvm

j yiyj (xi.xj)





subject to 0 ≤ αsvm
i ≤ C,

∑m
i=1 αsvm

i yi = 0, yi ∈ {−1, 1} indicates the class.

w =
n∑

i=1

αsvm
i yixi
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The “Kernel Trick”
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• SVM decision boundary linear in the feature-space

– may be made non-linear using a non-linear mapping φ() e.g.

φ

([
x1

x2

])
=




x2
1√

2x1x2

x2
2


 , K(xi,xj) = 〈φ(xi), φ(xj)〉

• Efficiently implemented using a Kernel: K(xi,xj) = (xi.xj)2
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Handling Speech data

• Speech data has inherent variability in the number of samples:

cat sat on mattheThe 1200 frames

O1 = {o1, . . . , o1200}

The cat sat on the mat 900 frames

O2 = {o1, . . . , o900}
• Kernels can be used to map from variable to fixed length data.

• Generative models are an obvious candidate:

– HMMs and GMMs handle variable length data
– view as “mapping” sequence to a single dimension (log-likelihood)

φ (O; λ) =
1
T

log (p(O; λ)) =
1
T

T∑
t=1

log p (ot; λ)
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Generative Kernels

• SVMs can handle large dimensional data robustly:

– higher dimensions - data more separable;
– how to increase dimensionality?

• Have a generative model for each class: parameters ω1: λ(1) and ω2: λ(2)

• Use a score-space:

– add derivatives with respect to the model parameters
– example is a log-likelihood ratio plus first derivative score-space:

φll(O; λ) =
1
T




log
(
p(O; λ(1))

)− log
(
p(O; λ(2))

)
∇λ(1) log

(
p(O; λ(1))

)
−∇λ(2) log

(
p(O; λ(2))

)




– dimensionality of feature-space: 1+ parameters λ(1) + parameters λ(2)
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Score-Space Metrics

• SVM training involves a distance from the decision boundary

– need to determine appropriate distance metric

• Choose a maximally non-committal metric

K(Oi,Oj; λ) = φ(Oi; λ)′G−1φ(Oj; λ)

where Oi and Oj are sequences of length Ti and Tj respectively, and

G = E {
(φ(O; λ)− µφ) (φ(O; λ)− µφ)′

}

where µφ = E {φ(O; λ)}.

• In practice G is usually set to be a diagonal matrix
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Augmented Model Training

• Only consider simplified two-class problem

• Bayes’ decision rule for binary case (prior P (ω1) and P (ω2)):

P (ω1)τ (2)p(O; λ(1), α(1))
P (ω2)τ (1)p(O; λ(2), α(2))

ω1
>
<
ω2

1;
1
T

log
(

p(O; λ(1), α(1))
p(O; λ(2), α(2))

)
+ b

ω1
>
<
ω2

0

– b = 1
T log

(
P (ω1)τ

(2)

P (ω2)τ
(1)

)
- no need to explicitly calculate τ

• Can express decision rule as the following scalar product

[
w
w0

]′ [
φ(O; λ)

1

] ω1
>
<
ω2

0

– form of score-space and linear decision boundary
– SVM good choice as possibly high dimensional score-space
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Augmented Model Training - Binary Case (cont)
• Score-space is given by (first order derivatives)

φ(O; λ) =
1
T




log
(
p(O; λ(1))

)− log
(
p(O; λ(2))

)
∇λ(1) log

(
p(O; λ(1))

)
−∇λ(2) log

(
p(O; λ(2))

)




– this is the generative kernel φll(O; λ)
– only a function of the base-distribution parameters λ

• Linear decision boundary given by

w′ =
[

1 α(1)′ α(2)′ ]′

– only a function of the exponential model parameters α

• Bias is represented by w0

– depends on both α and λ
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Estimating Model Parameters

• Two sets of parameters to be estimated using training data {O1, . . . ,On}:
– generative models (Kernel) λ =

{
λ(1), λ(2)

}
– SVM (Lagrange multipliers) αsvm = {αsvm

1 , . . . , αsvm
n }

– direction of decision boundary (yi ∈ {−1, 1} label of training example)

w =
n∑

i=1

αsvm
i yiG−1φ(Oi; λ)

• SVM parameters trained using maximum margin training (to find αsvm)

• Kernel parameters may be estimated using:

– maximum likelihood (ML) training;
– discriminative training (e.g. maximum mutual information)
– maximum margin (MM) training.
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SVMs and Class Posteriors

• Common objection to SVMs - no probabilistic interpretation

– use of additional sigmoidal mapping/relevance vector machines

• Generative kernels - distance from the decision boundary is the posterior ratio

1
w1

([
w
w0

]′ [
φ(O; λ)

1

])
=

1
T

log
(

P (ω1|O)
P (ω2|O)

)

– w1 is required to ensure first element of w is 1
– augmented version of the kernel PDF becomes the class-conditional PDF

• Decision boundary also yields the exponential natural parameters




1
α(1)

α(2)


 =

1
w1

w =
1
w1

n∑

i=1

αsvm
i yiG−1φ(oi; λ)
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Maximum Margin Kernel Estimation

• Using maximum margin training to estimate Kernel appealing:

– optimising αsvm yields local exponential parameters
– optimising λ yields parameters of the base distribution

• Modified version of the standard SVM dual used:

{α̂svm, λ̂} = arg max
αsvm

min
λ





n∑

i=1

αsvm
i − 1

2

n∑

i=1

n∑

j=1

αsvm
i αsvm

j yiyjK(Oi,Oj; λ)





• Iterative optimisation required:

– given values of λ perform standard SVM training
– given values of αsvm perform gradient descent optimisation of λ
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Maximum Margin Training (detail)

• Training procedure used:

1. Initialise parameters, λ0, of generative model using MLE
2. Train SVM to locate initial support vectors, αsvm

0

3. Calculate initial value of objective function, W (0) = W (λ0, α
svm
0 )

4. For each iteration k:
- (A) λk = arg minλ W (λ; αsvm

k−1)
- (B) αsvm

k = arg maxαsvm W (αsvm; λk)
- Recalculate objective function, W (k) = W (λk, α

svm
k )

Repeat until convergence: |W (k) −W (k−1)| < ε

• (A) is a gradient descent scheme involving backing-off

– back-off required to ensure that KKT conditions still satisfied

• (B) is standard SVM training

Cambridge University
Engineering Department

Institute of Statistical Mathematics 28



SVMs, Generative Kernels and Maximum Margin Statistical Models

Maximum Margin Example

• Artificial example training class-conditional Gaussian with LLR score-space:

φ(o; λ) =
[
log

(
p̌(o; λ(1))

)− log
(
p̌(o; λ(2))

)]

−6 −4 −2 0 2 4 6
−2

0

2

4

6

−6 −4 −2 0 2 4 6
−2

0

2

4

6

Maximum Likelihood Maximum Margin

• Decision boundary closer to Bayes’ decision boundary (dotted line)

– can also be obtained by optimising αsvm using φll(O; λ) score-space ...
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Exponential Family Base Distribution

• For a single component example the form of the augmented model is

p(o; λ, α) =
1
τ

exp (λ′T(o)) exp (α′T(o)) =
1
τ

exp ((α + λ)′T(o))

– still a member of the exponential family

• Using SVM training with generative kernel

φ(o; λ) =




log
(
p̌(o; λ(1))

)− log
(
p̌(o; λ(2))

)
T(o)
−T(o)




– will yield a maximum margin estimate of the exponential model
– not true when using a model with latent variables
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Valid Statistical Model?

• For a valid statistical model τ must be bounded:

– for Gaussian covariance matrix must be positive-definite

• This places restrictions on the values of α

• Consider the simplest single-dimension, Gaussian base distribution

– score-space is LLR and first derivatives of mean and variance
– the augmented model is also Gaussian with effective variance

σ2 =
σ̌4

σ̌2 − α

if α ≥ σ̌2 then the variance is negative!

• In practice this has not been an issue with the models examined here ...
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Deterding Dataset

• Data from 11 vowels in British English in context of h*d

– steady state portions partitioned into 6 Hamming window segments
– linear prediction analysis to yield 10 log area parameters
– static 10-dimensional feature vector for training/testing

• Corpus consists of

– 48 training examples per vowel (total of 528 examples)
– 42 test examples per vowel (total of 462 examples)

• Multi-class problem handled using set of 1-v-1 SVM classifiers

– single pair ties resolved using pair classifier decision
– multiple ties resolved using the GMM classifier
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Deterding Data Experiments

Num. Training (%) Test (%)
Classifier Comp. initial final initial final

GMM 1 40.0 55.8
GMM 2 27.7 45.2

SVM (LLR) 1 38.1 1.9 58.0 47.4
SVM (LLR) 2 26.3 0.8 48.5 38.8

SVM (LLR + ∇µ) 1 10.6 1.0 46.3 48.1

• Maximum margin training of kernel (base distribution)

– initial - performance using ML values for λ
– final - performance using MM values for λ

• Use of maximum margin training improved performance

– but overtraining clear with maximum margin training
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SVMs and LVCSR

• SVMs are inherently binary:

– speech recognition has a vast number of possible classes;
– how to map to a simple binary problem?

• Use pruned confusion networks:

ASIL SILELABORATE

DIDN’T

DIDN’T
BUT

IN

IN

IN

TO

IT

IT

BUT

TO IN DIDN’TIT ELABORATE

!NULLA

BUT

!NULL

!NULL

DIDN’T ELABORATE

!NULLIN

BUT IT

TO

!NULL

Word lattice Confusion Network Pruned confusion network

– use standard HMM decoder to generate word lattice;
– generate confusion networks (CN) from word lattice
∗ gives posterior for each arc being correct;

– prune CN to a maximum of two arcs (based on posteriors).
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Incorporating Posterior Information

• Useful to incorporate arc log-posterior (F(ω1),F(ω1)) into decision process

– posterior contains e.g. N-gram LM, cross-word context acoustic information

• Two simple approaches:

– combination of two as independent sources (β empirically set)

1
T

log
(

p(O; λ(1), α(1))
p(O; λ(2), α(2))

)
+ b + β (F(ω1)−F(ω2))

ω1
>
<
ω2

0

– incorporate posterior into score-space (β obtained from decision boundary)

φcn(O; λ) =
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• Incorporating in score-space requires consistency between train/test posteriors
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LVCSR Experimental Setup

• HMMs trained on 400hours of conversational telephone speech (fsh2004sub):

– standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
– state-clustered triphones (∼ 6000 states, ∼ 28 components/state);
– maximum likelihood training

• Confusion networks generated for fsh2004sub:

– bigram language model trained on fsh2004sub

• Perform 8-fold cross-validation on 400 hours training data:

– matched training and test conditions
– ML-trained Gaussian mixture model (first derivatives) score-space
– posteriors “biased” as HMMs trained on “test” data

• Evaluation on held-out data (eval03)

– 6 hours of test data
– decoded using either LVCSR bigram or trigram
– baseline using confusion network decoding
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SVMs, Generative Kernels and Maximum Margin Statistical Models

8-Fold Cross-Validation LVCSR Results

Word Pair
Training

CN # Components
(examples) post. 1 2 4

A/THE
ML

79.8

58.3 58.4 56.2

(8533)
SVM φll() 61.1 63.0 64.7

+βCN 79.8 80.0 80.3
SVM φcn() 80.4 80.1 80.6

CAN/CAN’T
ML

78.5

81.7 86.0 88.2

(3761)
SVM φll() 84.8 89.4 90.5

+βCN 88.5 91.2 91.9
SVM φcn() 89.0 91.4 91.6

KNOW/NO
ML

83.1

68.4 69.4 70.8

(4475)
SVM φll() 72.1 73.6 76.6

+βCN 84.3 84.5 85.2
SVM φcn() 85.7 86.2 86.2

• Posterior score-space best approach, maximum margin distributions useful.
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Evaluation Data LVCSR Results

• Baseline performance using Viterbi and Confusion Network decoding

Decoding Language Model
bigram trigram

Viterbi 34.4 30.8
Confusion Network 33.9 30.1

• Rescore common confusion pairs using 4-component and φll() + βCN

SVM Rescoring
#corrected/#pairs (% corrected)

bigram LM trigram LM

9 SVMs 44/1401 (3.1%) 41/1310 (3.1%)
15 SVMs 55/2116 (2.6%) 43/1954 (2.2%)

– β roughly set - error rate relatively insensitive to exact value
– less than 3% of 76157 hypothesised words rescored - more SVMs required!
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Summary

• Dependency modelling for speech recognition

– use of latent variables
– use of sufficient statistics from the data

• Augmented statistical models

– allows simple combination of latent variables and sufficient statistics
– use of constrained exponential model to define statistics

• Support vector machines

– use of generative kernels for dynamic data
– maximum margin training of augmented statistical models

• Preliminary results of a large vocabulary speech recognition task

– SVMs/Augmented models possibly useful for speech recognition
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