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SVMs, Generative Kernels and Maximum Margin Statistical Models

Overview

e Dependency Modelling in Speech Recognition:
— latent variables
— exponential family

e Augmented Statistical Models

— Gaussian mixture models and hidden Markov models

e Support Vector Machines

— Generative Kernels
— maximum margin training

e Preliminary LVCSR experiments
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Dependency Modelling

e Speech data is dynamic - observations are not of a fixed length

e Dependency modelling essential part of speech recognition:

p(o1,...,01;A) = p(o1;A)p(oz|o1; A) ... plor|oy,. .., 0r_1; A)
— impractical to directly model in this form
— make extensive use of conditional independence
e Two possible forms of conditional independence used:

— observed variables
— latent (unobserved) variables

e Even given dependency (form of Bayesian Network):

— need to determine how dependencies interact
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Bayesian networks

Yield conditional-independence assumptions
e round node: continuous variable;
e square node: discrete variable;
e shaded node: observable;
e no arrow: conditional independence.
Examples:
1. Factor Analysis:
p(ot|xs) = N(Ot; Cix; + Hgo)a 21(50))

2. Gaussian Mixture Model:
p(otlws =n) = N(Ot; M Zn)
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Hidden Markov Model - A Dynamic Bayesian Network
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(a) Standard HMM phone topology (b) HMM Dynamic Bayesian Network
e Notation for DBNs:

circles - continuous variables shaded - observed variables
squares - discrete variables non-shaded - unobserved variables

e Observations conditionally independent of other observations given state.
e States conditionally independent of other states given previous states,

e Poor model of the speech process - piecewise constant state-space.
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Dependency Modelling using Latent Variables

Switching linear dynamical system:

e discrete and continuous state-spaces

e observations conditionally independent given
continuous and discrete state;

e exponential growth of paths, O(N1)
— approximate inference required.

Multiple data stream DBN:

e e.g. factorial HMM /mixed memory model;

e asynchronous data common:

— speech and video/noise;
— speech and brain activation patterns.

e observation depends on state of both streams

Q..

—

Cambridge University

) X Institute of Statistical Mathematics
Engineering Department




SVMs, Generative Kernels and Maximum Margin Statistical Models

SLDS Trajectory Modelling
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e Unfortunately doesn’t currently classify better than an HMM!
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Adaptive Training

e Observations conditionally independent:

— state that generated the observation i i
— continuous latent variable(s) s

e Latent variable: ~_

— represents the speaker/environment
— various forms CMN/CVN/VTLN

e One powerful form is Speaker Adaptive Training using constrained MLLR

T
p(O: ) = Z/ 1] P(6:/6:—1)|Alp(Ao+b|6:; A) | p(A, b|X)dAdb
pco /R" \t=1

— ML/MAP estimation commonly used for A, b
— exact Bayesian inference intractable (at the moment)
— used in many state-of-the-art speech recognition systems
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Dependency Modelling using Observed variables
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e Commonly use member (or mixture) of the exponential family

p(0; @) = ~h(O) exp (a'T(0)

— h(O) is the reference distribution

— « are the natural parameters

— 7 iIs the normalisation term

— the function T(O) is a sufficient statistic.

e Hard to determine the appropriate form of statistics (T(O)) to use ...
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Sufficient Statistic Example

e For the one-dimensional observation sequences O = o4, ..., o extract:

- T1(0) = X o5 To(0) = Y1501 .
- T3(0) = Zt:Q 010¢—1; T4(0) = Zt:2 0%3 T5(0) = Zt:2 0%—1

e Probability (given the first observation) by

p(og, ..., or|o1; ) = exp (Z aq;TZ-(O)) /T

— « and 7 directly found from the joint distribution of {0, 0,1}

1 [ T, (O) ] ; 1 [ T,(0) T3(0)

K=T7"7| 10) | *T7-1| 13(0) T5(0) ] i

— has the form of a single component single-state buried Markov model
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Constrained Exponential Family

e Could hypothesise all possible dependencies and prune

— discriminative pruning found to be useful (buried Markov models)
— impractical for wide range (and lengths) of dependencies

e Consider constrained form of statistics

— local exponential approximation to the reference distribution
— pt'-order differential form considered (related to Taylor-series)

e Distribution has two parts

— reference distribution defines latent variables
— local exponential model defines statistics (T(O))

e Slightly more general form is the augmented statistical model

— train all the parameters (including the reference, base, distribution)
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Augmented Statistical Models
e Augmented statistical models (related to fibre bundles)

1
p(O; A, a) = =p(O; X)exp | &

T

e Two sets of parameters

V log(5(0; X))
Lvec (V3 10.82(25(03 A))

%vec (v~ 16%(25(05 A)))

— X - parameters of base distribution (p(O; A))
— « - natural parameters of local exponential model

e Normalisation term 7 ensures that

/ P(O; A, a)dO=1; p(O; A, a) =p(O; N\, a)/T

— can be very complex to estimate
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Augmented Gaussian Mixture Model
e Use a GMM as the base distribution: p(o; A) = Zi\f:l N (05 i, i)

— considering only the first derivatives of the means

M M
1
p(0; A ) ==} enmN (05 pm, Zm) exp | D P(nloi X)o7 (0 — pan)

e Simple two component one-dimensional example:
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Cambridge Universit ) . )
& y Institute of Statistical Mathematics 12

Engineering Department



SVMs, Generative Kernels and Maximum Margin Statistical Models

Augmented Gaussian Mixture Model Example

e Maximum likelihood training of A-GMM on symmetric log-normal data

0.5

— GMM (2comp)
0.45- — Augmented GMM{
Data Distribution

0.4
0.35-
0.3
0.25-
0.2
0.15-

0.1

) ]

-5 -4 -3 -2 -1 0 1

— 2-component base-distribution (poor model of data)
— A-GMM better model of distribution (log-likelihood -1.45 vs -1.59 GMM)
— approx. symmetry obtained without symmetry in parameters!
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Augmented Hidden Markov Model
e For an HMM: p(O; X)) = > 4.0 {Hthl ag, 10, (Zmegt cmN (045 tm, Em))}
— The form of the statistics when an HMM used as the base distribution

V115 108 (05 A) = > im ()5, (08 — pjm)

Yim(t) = P(0; = {s;, m}|O; ), 0, is the state/component pairing at time
t

— An example higher order derivative has the form

V., Vi, log (p(O; X)) =

Him

Z Z { Y{jm, zn} t 7_) ’ij(t)/yin(T)) 2;11 (0’7' — “zn) (Ot — H'jm)/ 2;%}

t=1 =1

where V¢, in)(f, 7) is the joint state/component posterior.
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Augmented Model Dependencies

e |f the base distribution is a mixture of members of the exponential family

. T M J m m m
PO ) =T1L, M ¢, exp (Zj:1 AT >(Ot)) J(m)

— consider a first order differential

0 < . (n) 0 (m)
108 (B(0:X) = D P(nlo; A) | T,"(0r) — 5 log(r™)
k t=1 k

e Augmented models of this form

— keep independence assumptions of the base distribution
— remove conditional independence assumptions of the base model
- the local exponential model depend on a posterior ...

e Same applies for dynamic models such as HMMs
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Augmented Model Summary

e Extension to standard forms of statistical model
e Consists of two parts:

— base distribution determines the latent variables
— local exponential distribution augments base distribution

e Base distribution:

— standard form of statistical model
— examples considered Gaussian mixture models and hidden Markov models

e Local exponential distribution:

— currently based on pt"-order differential form
— gives additional dependencies not present in base distribution

e Normalisation term may be highly complex to calculate

— maximum likelihood training may be very awkward
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Support Vector Machines

® support vector
@ support vector

margin
width-..

N
N
N
N
§®

decision /
. .

boundary

e SVMs are a maximum margin, binary, classifier:

— related to minimising generalisation error;
— unique solution (compare to neural networks);
— may be kernelised - training/classification a function of dot-product (x;.x;).

e Successfully applied to many tasks - how to apply to speech?
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Support Vector Machine Training
e For non-linearly separable data a soft margin classifier is used: minimise

r(w, &) = liwll* + C> ¢
1=1

subject to y; ((w,x;) +b) >1-&;, & >0

— two terms: k/margin? and error rate bound (C balances importance)

svm)

e The dual is commonly optimised (based only on «

A 8svm svm - Svimm __ Ssvi
G = max §Oz § Ea o "yiy; (%i-X;)

z—i_] 1

subject to 0 < af™ < C, > ", af™y; =0, y; € {—1,1} indicates the class.

n
. svm
W = E :O%' YiX;
i=1
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e SVM decision boundary linear in the feature-space

— may be made non-linear using a non-linear mapping ¢() e.g.

X1
)

¢

2

K(xi,x;5) = (p(x:), d(x5))
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Handling Speech data

e Speech data has inherent variability in the number of samples:

The cat sat on the mat 1200 frames
O, ={o01,...,01200}
The | cat sat | on | the | mat 900 frames
O; ={o01,...,0000}

e Kernels can be used to map from variable to fixed length data.

e Generative models are an obvious candidate:

— HMMs and GMMs handle variable length data
— view as “mapping” sequence to a single dimension (log-likelihood)

1

5(0:X) = - log (p(0: X)) = 7= > logp (0: )
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Generative Kernels

e SVMs can handle large dimensional data robustly:
— higher dimensions - data more separable;
— how to increase dimensionality?

e Have a generative model for each class: parameters ws: AWM and wy: A2

e Use a score-space:

— add derivatives with respect to the model parameters
— example is a log-likelihood ratio plus first derivative score-space:

;[ log (p(0; A1) —log (p(O; A1) ~
7 V., log (p(0; A1)
—V @ log (p(0; A®)))

¢ (O;A) =

— dimensionality of feature-space: 1+ parameters A(Y) + parameters A(?)
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Score-Space Metrics

e SVM training involves a distance from the decision boundary

— need to determine appropriate distance metric
e Choose a maximally non-committal metric

K(0;,0; ) = ¢(0;;N)G (055 N)
where O; and O; are sequences of length T; and 7; respectively, and
G = £ {(P(05 ) — o) ($(0: X) — g)'}
where pgy = £ {p(O; A) }.

e In practice G is usually set to be a diagonal matrix
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Augmented Model Training

e Only consider simplified two-class problem

e Bayes’ decision rule for binary case (prior P(w1) and P(ws)):

P(w1)7@p(0; A0, ) % L (B0 A, V)
Pwn)rDp(0; XD, a®) 5 7 T \p(0;A®, o)

(2) .
- b= +log (%) - no need to explicitly calculate 7

e Can express decision rule as the following scalar product
W1

IR

W

— form of score-space and linear decision boundary
— SVM good choice as possibly high dimensional score-space

)+

Wi
>

<
%)

0
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Augmented Model Training - Binary Case (cont)
e Score-space is given by (first order derivatives)

! " log (p(O; A1) —log (p(O; A2))) ~
= Vi, log (p((); A(l)))
—V, @ log (p(O; X))

d(O; ) =

— this is the generative kernel ¢**(O; )
— only a function of the base-distribution parameters A

e Linear decision boundary given by
w = [ 1 oV 2 ]’
— only a function of the exponential model parameters o

e Bias is represented by wy

— depends on both & and A
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Estimating Model Parameters

e Two sets of parameters to be estimated using training data {Oq,...,0,}:

— generative models (Kernel) X = {}\(1), )\(2)}

— SVM (Lagrange multipliers) a®™ = {a§"™, ..., a>™}
— direction of decision boundary (y; € {—1, 1} label of training example)

W = Z oy, G (045 N)

1=1

e SVM parameters trained using maximum margin training (to find a®"™)
e Kernel parameters may be estimated using:

— maximum likelihood (ML) training;
— discriminative training (e.g. maximum mutual information)
— maximum margin (MM) training.

Cambridge University

) X Institute of Statistical Mathematics
Engineering Department

25



SVMs, Generative Kernels and Maximum Margin Statistical Models

SVMs and Class Posteriors

e Common objection to SVMs - no probabilistic interpretation

— use of additional sigmoidal mapping/relevance vector machines

e Generative kernels - distance from the decision boundary is the posterior ratio

s ([ ] 179V ]) -1 (FES)

— wy Is required to ensure first element of w is 1
— augmented version of the kernel PDF becomes the class-conditional PDF

e Decision boundary also yields the exponential natural parameters

1 1 T
1 _ _ svm —1 )
al) | = W= ) af™yiG p(0s; A)
ol?) 1 1=
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Maximum Margin Kernel Estimation

e Using maximum margin training to estimate Kernel appealing:

— optimising "™ yields local exponential parameters
— optimising A yields parameters of the base distribution

e Modified version of the standard SVM dual used:

{&°™ A} = arg max mm Z i’ — = Z Z a; ™ot "y, K (04, O3 A)

SVIH
z—l 71=1

e lterative optimisation required:

— given values of A perform standard SVM training
— given values of a®™ perform gradient descent optimisation of A
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Maximum Margin Training (detail)

e Training procedure used:

Initialise parameters, Ag, of generative model using MLE
Train SVM to locate initial support vectors, aj™

Calculate initial value of objective function, W0 = W (\g, ag™)
For each iteration k:

- (A) Ag = argminy W(A; af'™)

- (B) ay™ = argmax,sm W (a®™; )

- Recalculate objective function, W*) = W (g, a§™)

Repeat until convergence: |[W*) — W (k=] < ¢

=W

e (A) is a gradient descent scheme involving backing-off
— back-off required to ensure that KKT conditions still satisfied
e (B) is standard SVM training
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Maximum Margin Example

e Artificial example training class-conditional Gaussian with LLR score-space:

d(0; X) = [log (p(0; A1) —log (p(0; A?))]

s 4 -2 o 2 4 6
Maximum Likelihood Maximum Margin
e Decision boundary closer to Bayes’ decision boundary (dotted line)

— can also be obtained by optimising a®"™ using ¢**(O; \) score-space ...
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Exponential Family Base Distribution

e For a single component example the form of the augmented model is

p(03 A, @) = ~ exp (NT(0)) exp (&'T(0)) = — exp (e + A)'T(0))

T T

— still a member of the exponential family

e Using SVM training with generative kernel

- log (p(o; A1) —log (p(o; A2)))
P(0; A) = T(o)
—T(o)

— will yield a maximum margin estimate of the exponential model
— not true when using a model with latent variables
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Valid Statistical Model?

e For a valid statistical model 7 must be bounded:
— for Gaussian covariance matrix must be positive-definite
e This places restrictions on the values of o
e Consider the simplest single-dimension, Gaussian base distribution

— score-space is LLR and first derivatives of mean and variance
— the augmented model is also Gaussian with effective variance

if & > &2 then the variance is negative!

e In practice this has not been an issue with the models examined here ...
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Deterding Dataset

e Data from 11 vowels in British English in context of h*d

— steady state portions partitioned into 6 Hamming window segments
— linear prediction analysis to yield 10 log area parameters
— static 10-dimensional feature vector for training/testing

e Corpus consists of
— 48 training examples per vowel (total of 528 examples)
— 42 test examples per vowel (total of 462 examples)

e Multi-class problem handled using set of 1-v-1 SVM classifiers

— single pair ties resolved using pair classifier decision
— multiple ties resolved using the GMM classifier
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Deterding Data Experiments

Num. | Training (%) Test (%)
Classifier Comp. || initial final || initial final
GMM 1 40.0 55.8
GMM 2 27.7 45.2
SVM (LLR) 1 38.1 1.9 58.0 474
SVM (LLR) 2 26.3 0.8 48.5 38.8
SVM (LLR + V) 1 10.6 1.0 46.3 48.1

e Maximum margin training of kernel (base distribution)

— initial - performance using ML values for A
— final - performance using MM values for A

e Use of maximum margin training improved performance

— but overtraining clear with maximum margin training
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SVMs and LVCSR

e SVMs are inherently binary:

— speech recognition has a vast number of possible classes;
— how to map to a simple binary problem?

e Use pruned confusion networks:

INULL BUT
BUT IT DIDN'T ELABORATE

AA il DIDN'T  ELABORATE INULL

A INULL INULL TO IN INULL

Word lattice Confusion Network Pruned confusion network

— use standard HMM decoder to generate word lattice;
— generate confusion networks (CN) from word lattice

x gives posterior for each arc being correct;
— prune CN to a maximum of two arcs (based on posteriors).
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Incorporating Posterior Information

e Useful to incorporate arc log-posterior (F(w1), F(w1)) into decision process
— posterior contains e.g. N-gram LM, cross-word context acoustic information
e Two simple approaches:

— combination of two as independent sources (3 empirically set)

Wi

L (P(O; AW, alV)) >
Tlog (]_7(07 A(Z), C¥(2)) + b+ 6 (F(wl) o F(w2)> ¢§2 0

— incorporate posterior into score-space (3 obtained from decision boundary)

~»

s7ON) = | $(0:A)
1

e Incorporating in score-space requires consistency between train/test posteriors
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LVCSR Experimental Setup
e HMMs trained on 400hours of conversational telephone speech (£sh2004sub):

— standard CUHTK CTS frontend (CMN/CVN/VTLN/HLDA)
— state-clustered triphones (~ 6000 states, ~ 28 components/state);
— maximum likelihood training

e Confusion networks generated for £sh2004sub:

— bigram language model trained on £sh2004sub

e Perform 8-fold cross-validation on 400 hours training data:

— matched training and test conditions
— ML-trained Gaussian mixture model (first derivatives) score-space
— posteriors “biased” as HMMSs trained on “test” data

e Evaluation on held-out data (eval03)

— 6 hours of test data
— decoded using either LVCSR bigram or trigram
— baseline using confusion network decoding
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8-Fold Cross-Validation LVCSR Results

Word Pair Trainin CN # Components
(examples) g post. 1 2 4

ML 58.3 | 58.4 | 56.2

A/THE SVM ¢ () 20.8 61.1 | 63.0 | 64.7

(8533) +BC(I\)I ' 79.8 | 80.0 | 80.3

SVM ¢ 80.4 | 80.1 | 80.6

ML 81.7 | 86.0 | 88.2

CAN/CAN’'T | SVM ¢*() 28 5 84.8 | 89.4 | 90.5

(3761) +6C(I\)I ' 88.5 | 91.2 | 91.9

SVM ¢ 89.0 | 91.4 | 91.6

ML 68.4 | 69.4 | 70.8

KNOW/NO | SVM ¢*() 83 1 72.1 | 73.6 | 76.6

(4475) +6CN ~ || 843 | 845 | 85.2

SVM ¢*() 85.7 | 86.2 | 86.2

e Posterior score-space best approach, maximum margin distributions useful.
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Evaluation Data LVCSR Results

e Baseline performance using Viterbi and Confusion Network decoding

Decoding Language Model
bigram | trigram

Viterbi 34.4 30.8

Confusion Network 33.9 30.1

e Rescore common confusion pairs using 4-component and ¢'*() + BCN

#corrected /#pairs (% corrected)

SVM Rescoring

bigram LM

trigram LM

9 SVMs
15 SVMs

4471401 (3.1%)
55/2116 (2.6%)

41/1310 (3.1%)
43/1954 (2.2%)

— [ roughly set - error rate relatively insensitive to exact value
— less than 3% of 76157 hypothesised words rescored - more SVMs required!
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Summary

e Dependency modelling for speech recognition
— use of latent variables
— use of sufficient statistics from the data

e Augmented statistical models

— allows simple combination of latent variables and sufficient statistics
— use of constrained exponential model to define statistics

e Support vector machines
— use of generative kernels for dynamic data
— maximum margin training of augmented statistical models
e Preliminary results of a large vocabulary speech recognition task

— SVMs/Augmented models possibly useful for speech recognition
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