Machine Learning for Speech & Language Processing

Mark Gales

28 June 2004

Cambridge University Engineering Department

Foresight Cognitive Systems Workshop

Overview

- Machine learning.
- Feature extraction:
 - Gaussianisation for speaker normalisation.
- Dynamic Bayesian networks:
 - multiple data stream models
 - switching linear dynamical systems for ASR.
- SVMs and kernel methods:
 - rational kernels for text classification.
- Reinforcement learning and Markov decision processes:
 - spoken dialogue system policy optimisation.

Machine Learning

• One definition is (Mitchell):

"A computer program is said to learn from experience (E) with some class of tasks (T) and a performance measure (P) if its performance at tasks in T as measured by P improves with E"

alternatively

"Systems built by analysing data sets rather than by using the intuition of experts"

- Multiple specific conferences:
 - {International, European} Conference on Machine Learning;
 - Neural Information Processing Systems;
 - International Conference on Pattern Recognition etc etc;
- as well as sessions in other conferences:
 - ICASSP machine learning for signal processing.

"Machine Learning" Community

"You should come to NIPS. They have lots of ideas. The Speech Community has lots of data."

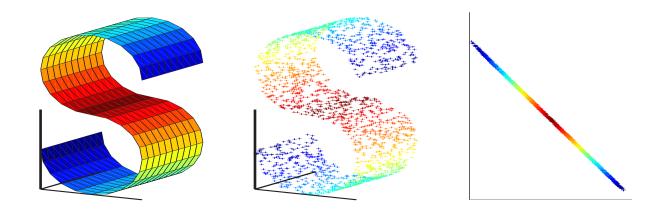
- Some categories from Neural Information Processing Systems:
 - clustering;
 - dimensionality reduction and manifolds;
 - graphical models;
 - kernels, margins, boosting;
 - Monte Carlo methods;
 - neural networks;
 - ...
 - speech and signal processing.
- Speech and language processing is just an application

Too Much of a Good Thing?

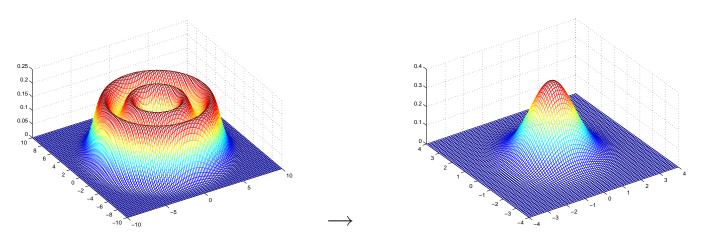
"You should come to NIPS. They have lots of ideas. Unfortunately, the Speech Community has lots of data."

- Text data: used to train the ASR language model:
 - large news corpora available;
 - systems built on > 1 billion words of data.
- Acoustic data: used to train the ASR acoustic models:
 - > 2000 hours speech data
 - (\sim 20 million words, \sim 720 million frames of data);
 - rapid transcriptions/closed caption data.
- Solutions required to be scalable:
 - heavily influences (limits!) machine learning approaches used;
 - additional data masks many problems!

Feature Extraction



Low-dimensional non-linear projection (example from LLE)



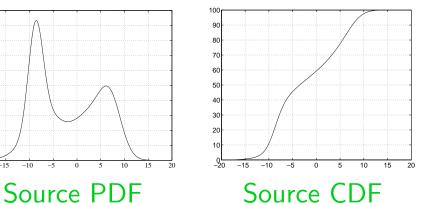
Feature transformation (Gaussianisation)

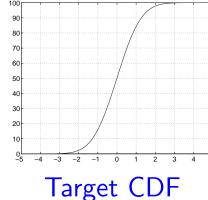
Cambridge University Engineering Department

Foresight Cognitive Systems Workshop

Gaussianisation for Speaker Normalisation

- 1. Linear projection and "decorrelation of the data" (heteroscedastic LDA)
- 2. Gaussianise the data for each speaker:





- (a) construct a Gaussian mixture model for each dimension;
- (b) non-linearly transform using cumulative density functions.
- May view as higher-moment version of mean and variance normalisation:
 - single component/dimension GMM equals CMN plus CVN
- Performance gains on state-of-the-art tasks

0.09

0.08

0.06

0.05

0.04

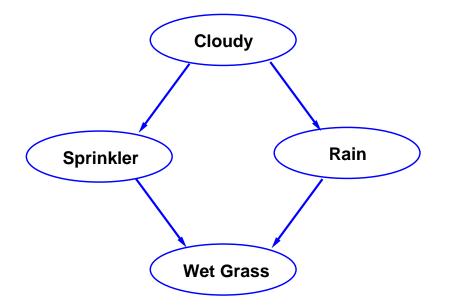
0.03

0.02

0.01

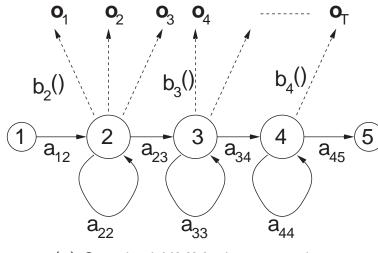
Bayesian Networks

• Bayesian networks are a method to show conditional independence:

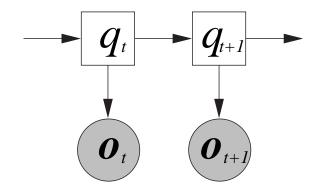


- whether the grass is wet, W, depends on :
 - whether the sprinkler used, S, and whether it has rained; R.
- whether sprinkler used (or it rained) depends on: whether it is cloudy C.
- W is conditionally independent of C given S and R.
- Dynamic Bayesian networks handle variable length data.

Hidden Markov Model - A Dynamic Bayesian Network



(a) Standard HMM phone topology



(b) HMM Dynamic Bayesian Network

- Notation for DBNs:
 - circles continuous variables squares discrete variables shaded observed variables non-shaded unobserved variables
- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states,
- Poor model of the speech process piecewise constant state-space.

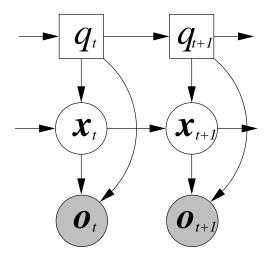
Alternative Dynamic Bayesian networks

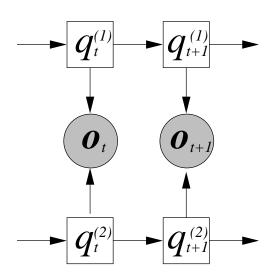
Switching linear dynamical system:

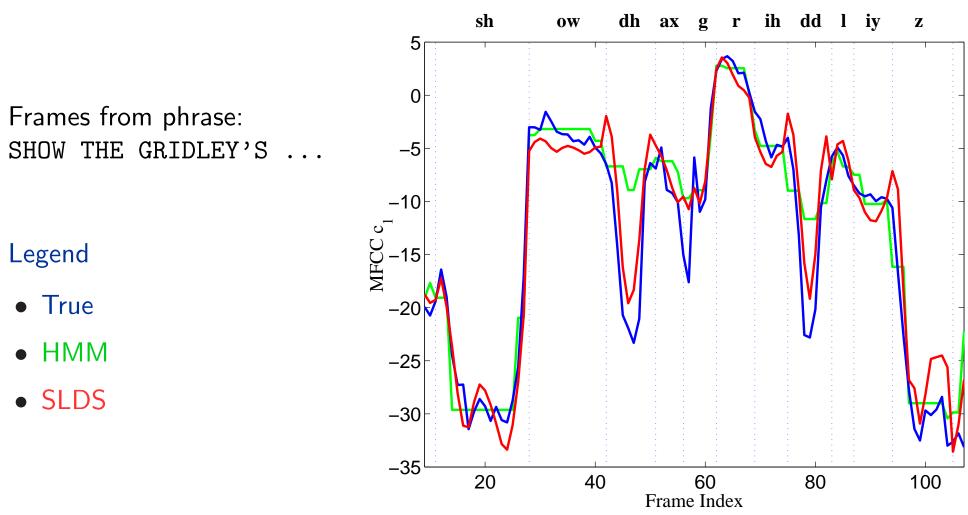
- discrete and continuous state-spaces
- observations conditionally independent given continuous and discretes state;
- exponential growth of paths, $O(N_s^T)$ \Rightarrow approximate inference required.

Multiple data stream DBN:

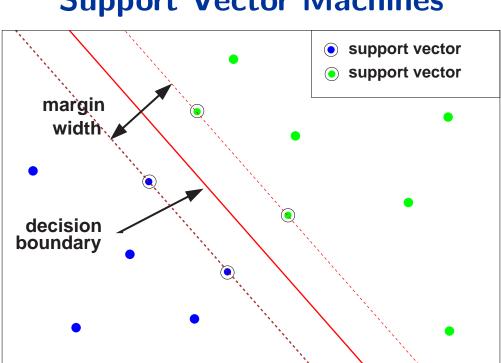
- e.g. factorial HMM/mixed memory model;
- asynchronous data common:
 - speech and video/noise;
 - speech and brain activation patterns.
- observation depends on state of both streams





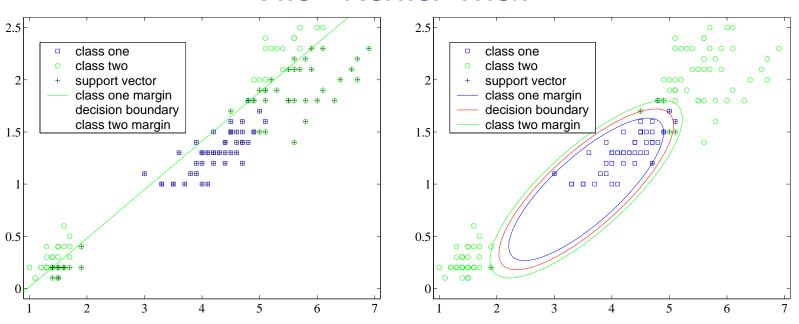


• Unfortunately doesn't currently classify better than an HMM!



Support Vector Machines

- SVMs are a maximum margin, binary, classifier:
 - related to minimising generalisation error;
 - unique solution (compare to neural networks);
 - may be kernelised training/classification a function of dot-product $(\mathbf{x}_i, \mathbf{x}_j)$.
- Successfully applied to many tasks how to apply to speech and language?



The "Kernel Trick"

- SVM decision boundary linear in the feature-space
 - may be made non-linear using a non-linear mapping $\phi()$ e.g.

$$\phi\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{c}x_1^2\\\sqrt{2}x_1x_2\\x_2^2\end{array}\right], \quad K(\mathbf{x}_i,\mathbf{x}_j) = \phi(\mathbf{x}_i).\phi(\mathbf{x}_j)$$

• Efficiently implemented using a Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i, \mathbf{x}_j)^2$

String Kernel

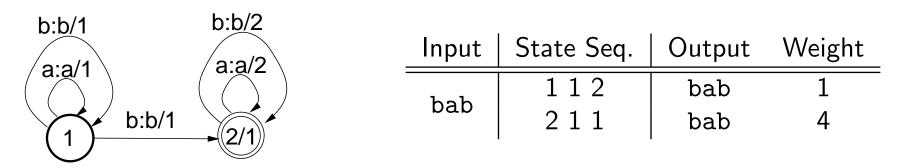
- For speech and text processing input space has variable dimension:
 - use a kernel to map from variable to a fixed length;
 - Fisher kernels are one example for acoustic modelling;
 - String kernels are an example for text.
- Consider the words cat, cart, bar and a character string kernel

 $K(\texttt{cat},\texttt{cart}) = 1 + \lambda^3, \quad K(\texttt{cat},\texttt{bar}) = 0, \quad K(\texttt{cart},\texttt{bar}) = 1$

- Successfully applied to various text classification tasks:
 - how to make process efficient (and more general)?

Weighted Finite-State Transducers

- A weighted finite-state transducer is a weighted directed graph:
 - transitions labelled with an input symbol, output symbol, weight.
- An example transducer, T, for calculating binary numbers: a=0, b=1

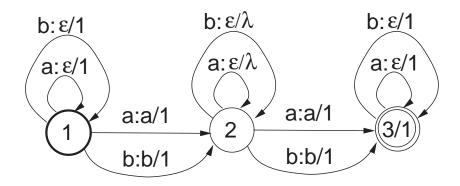


For this sequence output weight: $w \left[\texttt{bab} \circ T \right] = 5$

- Standard (highly efficient) algorithms exist for various operations:
 - combining transducer, $T_1 \circ T_2$;
 - inverse, T^{-1} , swap the input and output symbols in the tranducer.
- May be used for efficient implementation of string kernels.

Rational Kernels

• A transducer, T, for the string kernel (gappy bigram) (vocab {a, b})

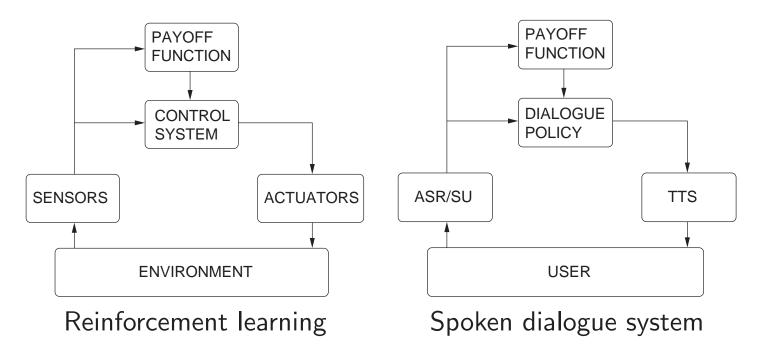


The kernel is: $K(O_i, O_j) = w \left[O_i \circ (T \circ T^{-1}) \circ O_j \right]$

- This form can also handle uncertainty in decoding:
 - lattices can be used rather than the 1-best output (O_i) .
- This form encompasses various standard feature-spaces and kernels:
 - bag-of-words and N-gram counts, gappy N-grams (string Kernel),
- Successfully applied to a multi-class call classification task.

Reinforcement Learning

- Reinforcement learning is a class of training methods:
 - problem defined by payoffs;
 - aims to learn the policy that maximises the payoff;
 - no need for a mathematical model of environment.



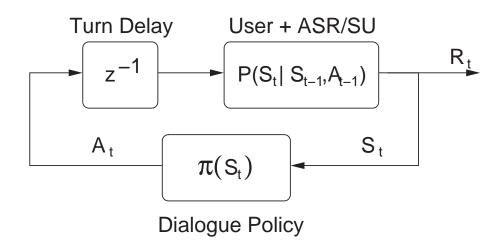
• Dialogue policy learning fits nicely within this framework.

Example Dialogue

- S1: Welcome to NJFun. How may I help you?
- U1: I'd like to find um winetasting in Lambertville in the morning
- [ASR: I'd like to find out wineries in the Lambertville in the morning]
- S2: Did you say you are interested in Lambertville?
- U2: Yes.
- S3: Did you want to go in the morning?
- U3: Yes.
- S4: I found a winery near Lambertville that is open in the morning It is Poor Richard's Winery in Lambertville.
- Variety of action choices available:
 - mixed versus system initiative;
 - explicit versus implicit confirmation.

Markov Decision Process

- SDS modelled as a MDP:
 - system state and action at time t: S_t and A_t ;
 - transition function: user and ASR/SU model, $P(S_t|S_{t-1}, A_{t-1})$.



- Select policy to maximise expected total reward:
 - total reward: R_t sum of instantaneous rewards from t to end of dialogue;
 - value function (expected reward) for policy π in state S: $V^{\pi}(S)$.

Q-Learning

- In reinforcement learning use the Q-function, $Q^{\pi}(S, A)$
 - expected reward from taking action A in state S using policy π
- Best policy using π given state S_t is obtained from

$$\hat{\pi}(S_t) = \operatorname*{argmax}_A \left(Q^{\pi}(S_t, A) \right)$$

- Transition function not normally known one-step Q-learning algorithm:
 - learn $Q^{\pi}(S, A)$ rather than transition function;
 - estimate using difference between actual and estimated values.
- How to specify reward: simplest form assign to final state:
 - positive value for task success;
 - negative value for task failure.

Partially Observed MDP

- State-space required to encapsulate all information to make decision:
 - state space can become very large e.g. transcript of dialogue to date etc;
 - required to compress size usually application specific choice;
 - if state-space is too small MDP not appropriate.
- Also User beliefs cannot be observed:
 - decisions required on incomplete information (POMDP);
 - use of a belief state value function becomes

$$V^{\pi}(B) = \sum_{S} B(S) V^{\pi}(S)$$

where B(S) gives belief in a state.

- Major problem: how to obtain sufficient training data?
 - build prototype system and then refine;
 - build a user model to simulate user interaction.

Machine Learning for Speech & Language Processing

Briefly described only a few examples

- Markov chain Monte-Carlo techniques:
 - Rao-Blackwellised Gibbs sampling for SLDS one example.
- Discriminative training criteria:
 - use criteria more closely related to WER, (MMI, MPE, MCE).
- Latent variable models for language modelling:
 - Latent semantic analysis (LSA) and Probabilistic LSA.
- Boosting style schemes:
 - generate multiple complementary classifiers and combine them.
- Minimum Description Length & evidence framework:
 - automatically determine numbers of model parameters and configuration.

Some Standard Toolkits

- Hidden Markov model toolkit (HTK)
 - building state-of-art HMM-based systems
 - http://htk.eng.cam.ac.uk/
- Graphical model toolkit (GMTK)
 - training and inference for graphical models
 - http://ssli.ee.washington.edu/~bilmes/gmtk/
- Finite state transducer toolkit (FSM)
 - building, combining, optimising weighted finite state transducers
 - http://www.research.att.com/sw/tools/fsm/
- Support vector machine toolkit (SVM^{light})
 - training and classifying with SVMs
 - http://svmlight.joachims.org/

(Random) References

- *Machine Learning*, T Mitchell, McGraw Hill, 1997.
- Nonlinear dimensionality reduction by locally linear embedding, S. Roweis and L Saul Science, v.290 no.5500 , Dec.22, 2000. pp.2323–2326.
- Gaussianisation, S. Chen and R Gopinath, NIPS 2000.
- An Introduction to Bayesian Network Theory and Usage, T.A. Stephenson, IDIAP-RR03, 2000
- A Tutorial on Support Vector Machines for Pattern Recognition, C.J.C. Burges, Knowledge Discovery and Data Mining, 2(2), 1998.
- Switching Linear Dynamical Systems for Speech Recognition, A-V.I. Rosti and M.J.F. Gales, Technical Report CUED/F-INFENG/TR.461 December 2003,
- Factorial hidden Markov models, Z. Ghahramani and M.I. Jordan. Machine Learning 29:245–275, 1997.
- The Nature of Statistical Learning Theory, V. Vapnik, Springer, 2000.
- Finite-State Transducers in Language and Speech Processing, M. Mohri, Computational Linguistics, 23:2, 1997.
- Weighted Automata Kernels General Framework and Algorithms, C. Cortes, P. Haffner and M. Mohri, EuroSpeech 2003.
- An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email, M. Walker, Journal of Artificial Intelligence Research, JAIR, Vol 12., pp. 387-416, 2000.

