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Abstract. The IARPA Babel program ran from March 2012 to Novem-
ber 2016. The aim of the program was to develop agile and robust speech
technology that can be rapidly applied to any human language in order to
provide effective search capability on large quantities of real world data.
This paper will describe some of the developments in speech recognition
and keyword-spotting during the lifetime of the project. Two technical
areas will be briefly discussed with a focus on techniques developed at
Cambridge University: the application of deep learning for low-resource
speech recognition; and efficient approaches for keyword spotting. Fi-
nally a brief analysis of the Babel speech language characteristics and
language performance will be presented.

1 Introduction

In recent years there has been an increasing interest in Automatic Speech Recog-
nition (ASR) and Key Word Spotting (KWS) for low resource languages. One of
the driving forces for this research direction was the IARPA Babel project [13]
which ran from March 2012 until November 2016. To quote from the BAA:

“The Babel Program will develop agile and robust speech recognition
technology that can be rapidly applied to any human language in order
to provide effective search capability for analysts to efficiently process
massive amounts of real-world recorded speech.”

The particular form of speech technology assessed as a realisation of this aim
was Key Word, or phrase, Spotting (KWS). The funding for, and evaluations
of, the project was split into four phases, a base period (BP) followed by three
“option” periods (OP1, OP2 and OP3). During the project 25 languages were re-
leased spanning a wide range of language groups, writing schemes, and linguistic
attributes. Conversational telephone speech data was recorded either directly, or
using a microphone. Each side of the conversation was recorded separately.

Language packs were released for each language with various quantities of
data:

– Full Language Pack (FLP): 40-80 hours of transcribed audio data;
– Limited Language Pack (LLP): 10 hours of transcribed audio data, se-
lected from a subset of conversation sides in the FLP;
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– Very Limited Language Pack (VLLP): 3 hours of transcribed audio data,
selected from all sides in the FLP. This was a baseline for active learning
approaches.

In addition untranscribed audio data was made available, yielding approximately
100-150 hours of audio data in total per language. For each phase of the pro-
gramme the evaluation concentrated on different configurations: BP FLP; OP1
LLP; OP2 VLLP; and OP3 FLP. The results presented in this paper are based
on the FLP configuration as this was the focus in the final phase of the project.
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Fig. 1. Key Word, or Phrase, Spotting Pipeline

The vast majority of systems developed followed the pipeline shown in fig-
ure 1. An Automatic Speech Recognition (ASR) system is initially run to gen-
erate lattices, with nodes at phone, morph or word level. Using lattices to prop-
agate information from the ASR system to the KWS stage makes the system
less sensitive to errors; words and phrases can be found even if they do not ap-
pear in the 1-best ASR output. Given the quantities of data available in these
low resource scenarios the Word Error Rates (WERs) can be very high, 30% to
70%, which means that very rich deep lattices are required for high performance
KWS.

Error mitigation between the ASR and search module is only one of the
problems that must be dealt with. Current state of the art speech recognition
systems are based around deep learning [16]. These approaches operate best
when there are large quantities of training data, the opposite of the situation in
the Babel project. To address this problem approaches have been developed for
both the acoustic and language models used in the majority of ASR systems;
examples of these will be discussed in section 2. Another factor that impacts the
development of low-resource systems is the lack of linguistic resources. Unlike
more frequently investigated languages, there are unlikely to be well defined
lexicons, morphological analysers or parts of speech taggers. To address this the
impact of using purely graphemic systems [17,18] on a range of languages using
both Latin and non-Latin scripts is discussed. In addition, approaches for system
combination for both ASR [8,6,27] and KWS [22,30,28,19] and their impact in
a low-resource scenario will be described.

One of the interesting aspects of the Babel data is that there are 25 languages
with a wide range of attributes, with all the data collected and annotated in a
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consistent fashion on a highly challenging task. The final part of this paper
discusses the performance over a number of these languages in a consistent con-
figuration.

For the Babel project the performance of the system was evaluated in two
ways. The primary metric reflected KWS performance. The Term Weighted
Value (TWV) [9] is defined as

TWV (θ) = 1− [Pmiss(θ) + βPfa(θ)] (1)

where Pmiss(θ) and Pfa(θ) denote the probability of miss and false alarm, re-
spectively, and β is 999.9. For the evaluation a single threshold was required to
be specified. To avoid the impact of threshold selection, in this paper the Max-
imum TWV (MTWV) score is given which is the maximum TWV achievable
for that system. The second metric used is related to the WER for ASR. As
the specification of a word can be poorly defined for some languages, the metric
used is the Token Error Rate (TER). This is defined in the same way as the
WER, but with the generalisation of handling tokens rather than words. For
most languages TER and WER are the same.

2 Low-Resource Speech Recognition

Speech recognition for low-resource languages has followed the same directions
as more general speech technology. Deep learning is a central aspect of all com-
ponents of these systems: feature extraction [15,12]; acoustic modelling [16]; and
language modelling [21]. To address the lack of training data, however, a num-
ber of modifications have been made to the standard pipeline. These approaches
include data augmentation [23,5,14]; the use of web data [20]; extensive system
combination [31]; and the use of multiple languages [4,24]. Furthermore the con-
cept of low resource can be applied beyond the availability of training data to
include linguistic resources such as an accurate lexicon.

This section briefly describes some of the approaches adopted for implement-
ing the lexicon, acoustic and language models in those low-resource scenarios
at CUED to support the evaluation systems developed over the Babel pro-
gramme [11,26,25]. For the sake of brevity the baseline ASR system will not
be described in detail. For details of the systems used see the associated refer-
ences.

2.1 Graphemic Lexicon

For the OP2 and OP3 evaluations no phonetic lexicon was supplied. To ad-
dress this a graphemic lexicon was used. Here, the spelling of the word is used
to directly determine the sub-word units. Prior to the Babel program, most
graphemic systems have been built either for Latin script languages or the script
has been converted to Romanised form before creation of the graphemic lexicon,
e.g. [17,18]. One of the challenges was to examine whether a graphemic system
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could be applied to a wide range of languages with minimal, or preferably no
knowledge of phonology of the language.

The approach adopted at CUED to constructing graphemic systems was to
use the attributes of unicode [1] to define the attributes of each of the graphemes.
These attributes are then used to map the character into a root grapheme and
associated attributes [10]. For example, for Kazakh, which is a mixture of Cyril-
lic and Latin scripts, a subset of the graphemes associated with the letter “I” are

i G6;D2D3D6 LATIN SMALL LETTER I

I G6;D8D3D6 LATIN CAPITAL LETTER I

и G6;D1D2D3 CYRILLIC SMALL LETTER I

ѝ G6;D1D2D3D4 CYRILLIC SMALL LETTER I WITH GRAVE

й G6;D1D2D3D5 CYRILLIC SMALL LETTER SHORT I

where the following attributes are defined

D1 CYRILLIC D2 SMALL D3 LETTER D4 WITH GRAVE

D5 SHORT D6 LATIN D8 CAPITAL

All graphemes are thus mapped into a set of core graphemes, and attributes
associated with the set of graphemes. This mimics the set of attributes associated
with phones that can be obtained for all phones using, for example, X-SAMPA
phonetic look-up tables.

The above scheme has assumed that all unicode characters have a distinct
acoustic realisation. Unicode characters that do not have an acoustic realisation,
or alter the realisation of an adjoining grapheme, can be split into two distinct
groups. The first set are language-dependent graphemes, and are related to di-
acritics, but written as separate unicode characters, denoted by the word SIGN

in the character descriptor. Note VOWEL SIGN characters in for example Abugida
written languages are kept as separate symbols with acoustic realisations. In
addition to the unicode attributes additional markers indicating the position of
the grapheme in the word (beginning/middle/end) was added.

Language Id Script TER (%)
Phon Grph CNC

Tok Pisin 207 Latin 40.6 41.1 39.4
Kazakh 302 Cyrillic/Latin 53.5 52.7 51.5
Telugu 303 Telugu 69.1 69.5 67.5

Table 1. Babel FLP Tandem-SAT Performance: with confusion network (CN) decoding
and CNC CN-combination.

Table 1 contrasts the performance of three OP2 languages with scripts rang-
ing from Latin (Tok Pisin) mixed Latin and Cyrillic (Kazakh) to Telugu (Tel-
ugu). The performance of the graphemic and the phonetic system is comparable
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even though no phonetic information was used for the graphemic system. Addi-
tionally the combination of the phonetic and graphemic systems using Confusion
Network Combination (CNC) [7] shows consistent gains.

2.2 Stimulated Training of Neural Networks

One of the issues with the standard training of neural networks is that the
nodes are not interpretable. This lack of interpretability can cause issues for
speaker adaptation and network generalisation as it is difficult to relate weights
from the network to each other. To address this problem stimulated network
training has been proposed [29,32,25]. The aim of stimulated training is to train
networks where nodes with similar activation functions are grouped together.
The Babel program, requiring low resources systems, should be suited to this
form of training.

In stimulated training a phone (or grapheme) dependent prior distribution
is defined over the normalised activation function outputs for each of the layers.
The nodes in each layer are reorganised into a grid, so that each node, i, of a
layer is represented as a point in a two dimensional network-grid space, si. A
point in this network-grid space is also associated with each phone sp. It is then
possible to define a normalised distance from every node to the correct phone
position. These normalised distances are used as a prior over the distribution
of the activation function values for a layer. This prior encourages activation
functions in the same locality to have the same normalised output.

To implement stimulated training, a regularisation term, R(λ), is added to
the training criterion

F(λ) = L(λ) + αR(λ)

where L(λ) is the standard training criterion for parameters λ, for an L hidden-
layer network λ = {W(1), . . . ,W(L)}, α determines the contribution of the prior,
R(λ). Here R(λ) is based on the KL-divergence of the prior distribution over
the normalised activation, g(si, ŝpt

) and the current distribution, h
(l)

ti . Thus

R(λ) =
∑
t

∑
l

∑
i

g(si, ŝpt
) log

(
g(si, ŝpt

)

h
(l)

ti

)
where the two distributions are defined as:

1. phone-specific activation distribution prior: g(si, ŝpt
) is the normalised dis-

tance of a node and the current active-phone position. For these experiments:

g(si, ŝpt
) =

exp
(
− 1

2 ||si − ŝpt
||2
)

∑
j exp

(
− 1

2 ||sj − ŝpt
||2
)

where si the position in the network-grid space of node i, ŝpt
the position

in the network-grid space of the “correct” phone at time t. The denominator
summation is over all nodes in network layer l.
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2. network activation distribution: h
(l)

ti is the normalised activation function
output for node i of layer l at time instance t

h
(l)

ti =
β
(l)
i h

(l)
ti∑

j β
(l)
j h

(l)
tj

; β
(l)
i =

√∑
k

w
(l+1)2
ik

h
(l)
ti is the output activation function value for node i of layer l at time

instance t and w(l)
ik is the weight connection from node i of layer l to node k

of layer l + 1. β(l)
i is used to reflect the impact that the activation function

has on the following layer, l + 1 and has been found to be important for
stimulated training.

This form of prior can be applied to any form of network. To generate the position
of the correct grapheme, t-SNE was applied [32].

Fig. 2. Example of the impact of stimulated training for a particular instance of the
phone /ay/. The left plot is the position of the stimulation points (/ay/ circled), the
center plot standard, unstimulated, training, the right plot stimulated training.

Figure 2 shows the impact of stimulated training using phone stimulation
points on network training. The stimulation points, left figure, were obtained
using t-SNE projections of phone feature means. The center plot shows the
(scaled) network activation functions for hidden layer 3 (of 5) with standard
training and has no structure in the node activation function values. This is
expected for a randomly initialised distributed representation. The right plot
shows the impact of stimulated training. Structure is clearly visible in the form
of the activation functions 1.

Table 2 shows the impact of stimulated training on both ASR and KWS
performance. For these results both Tandem and Hybrid systems were combined
using joint decoding with stimulated training only being applied to the Hybrid
systems. See [25] for additional system configurations and results. For all lan-
guage investigated stimulated training gave performance gains for both ASR and
KWS.
1 For a complete movie of the activation functions for stimulated training see:

http://mi.eng.cam.ac.uk/∼mjfg/bneStimu.avi
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Language Id Stimu TER MTWV
Train (%) iv oov tot

Amharic 307 7 41.1 0.6500 0.5828 0.6402
3 40.8 0.6619 0.5935 0.6521

Javanese 402 7 50.9 0.4991 0.4448 0.4924
3 50.7 0.5024 0.4679 0.4993

Table 2. Impact of stimulated training on ASR and KWS performance for the OP3
languages.

2.3 Web Data and RNN Language Models

One of the major issues associated with low-resource languages is the lack of
appropriate language model training data. This has two immediate impacts.
First if only 40-80 hours of transcriptions are available the resulting vocabu-
lary will be very small resulting in high OOV rates for both ASR and KWS.
Second the robustness of the estimates of the language model probabilities will
be poor. To address this problem the web was “scraped” for data of the target
language [20,34]. This allows large amounts of training data to be collected for
many languages, with some exceptions such as Dholou. For example for Pashto
the amount of data available from the FLP was 535K words, but 105M words
could be collected from the web.

Unfortunately the availability of large amounts of data introduces two addi-
tional problems. Current state-of-the-art language models are built using Recur-
rent Neural Networks (RNNs) [21]. These models can take a significant amount
of time to train on large amounts of data. To enable rapid deployment of systems
it is necessary to improve the training time. Second the data collected from the
web is typically poorly matched to the target domain, CTS. To address these
problems modified training criteria were examined and “fine-tuning” to the FLP
data used [3].

The standard training criterion for training neural network language mod-
els, including RNN LMs is based on cross-entropy. For word sequence ω1:L =
ω1, . . . , ωL, the following criterion is optimised.

Fce = −
1

L

L∑
i=1

log
(
P (ωi|h̃i−1)

)
Though this can be efficiently implemented using GPUs if the output layer, the
prediction vocabulary size, is not large. As the size of the output vocabulary
increases the computational cost is dominated the softmax normalisation term
Z(h̃i−1)

P (ωi|h̃i−1) =
1

Z(h̃i−1)
exp

(
wT

f(ωi)
h̃i−1

)
This impacts both the training and decoding. For the word-based systems the
vocabulary associated when including the web-data, was very large, for Pashto
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273K words. Training the RNNLM using CE, the standard criterion, and then
fine-tuning to the FLP data, is impractical for the surprise language evaluation as
both training and recognition is very slow. To address this problem two different
training criteria were investigated:

– variance regularisation (VR): this ensures that the normalisation term (in the
prediction) is approximately constant for all word histories. An additional
regularisation term is added to the standard cross-entropy (CE) criterion,
Fce. The following criterion is optimised

Fvr = Fce +
γ

2

1

L

L∑
i=1

(
log(Z(h̃i−1))− log(Z)

)2
If all the normalisation terms for all histories are constrained to be the same,
it is therefore not necessary to compute it during recognition time, improving
decoding time significantly;

– noise contrastive estimation (NCE): this trains a discriminative model be-
tween classifying the word sequences and noise samples often generated by
a unigram language model. Here the following discriminative criterion is op-
timised

Fnce = −
1

L

L∑
i=1

log(P (yi = T|ωi, h̃i−1) +

k∑
j=1

log(P (yi = F|ω̂ij , h̃i−1)


where ω̂ij are noise samples for ωi, often generated by a uni-gram language-
model. In this model it is not necessary to estimate the normalisation term
during training or recognition.

Language Id Vocab RNN Crit Time (hrs) TER MTWV
Trn F-T Train Rescore (%) iv oov tot

Pashto 104

14.4K — — 44.1 0.4808 0.2412 0.4541

376.3K

— — 43.8 0.4828 0.4083 0.4750
CE CE 125.0 23.0 42.8 0.4975 0.4048 0.4871
NCE VR 10.7 2.0 43.0 0.4975 0.3953 0.4862

Table 3. Impact of web RNN LMs on KWS performance on Pashto. The RNN-
Criterion is either used for initial training (Trn) or fine-tuning (F-T).

Table 3 shows the impact of web-data on the ASR and KWS systems. For
details of the system configurations see [3]. The first line is the performance
when only using the FLP data to train an tri-gram language model. Comparing
the first and second lines, where a language model component trained on the
web-data was used, shows that the use of the web-data had little impact on ASR
performance. However the KWS performance is significantly better. The main
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reason for this is the performance on OOV KWS terms (as defined by the FLP),
as the increased vocabulary reduces the need to use “phone” search for the KWS
system.

Table 3 also shows the impact of including an RNNLM in the system. For
both configurations the RNNLM was initially trained on all the data and then
fine-tuned to the FLP data. Line three of the table shows the performance when
CE is used for both stages. Gains can be see for both ASR and KWS performance.
However examining both the training and lattice rescoring times shows that it
takes over 5 days to train the system. Using NCE for initial training, and then
VR to fine-tune, reduced this training time by more than an order-of-magnitude,
and similarly for the deciding time.

3 Improved ASR and KWS Efficiency Research at CUED

As previously discussed to minimise the impact of error propagation from the
ASR system to the KWS very large lattices are created. Additionally to max-
imise performance multiple systems need to be combined together to yield the
final result. The combination of the two can result in significant computational
cost when handling large quantities of data. This section briefly describes two
approaches that were used at CUED to reduce the computational cost: unique
arc-per-second pruning to reduce the size of the lattices; and model-merging to
reduce the number of ASR and KWS runs.

3.1 Unique-Arcs Per-Second Pruning

There are two contradictory requirements for the lattices that are used for KWS.
First they should be large and diverse, containing multiple competing paths.
Second, they should be compact so that the speed of KWS is fast. There have
been a number of approaches adopted to balance these two, including confusion
network based KWS and ensuring that all words in the best path for all word
sequences are kept. An alternative approach that is to control the distribution
of the number of unique arcs at each time instance. It is possible to apply this
process during decoding, or on lattices. The basic process is:

For each selected time instance:

– for each word (unique arc) rank order all arcs by score for that word;
– rank order all words by the best arc score for that word;
– prune arcs so that the selected distribution over words (unique arcs) is sat-
isfied, ensuring that connections to all arcs in the previous pruning time
instance are maintained.

This approach is highly flexible as it is possible to control the size of lattice
by varying the target unique-arcs-per-second distribution. Figure 3 shows the
impact of UAPS pruning. The top figure shows the total number of arcs in a
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Fig. 3. Illustration of unique-arcs-per-second pruning for a sentence

lattice. The lower figure shows the number of unique arcs. The standard beam-
pruning and UAPS pruning are configured to yield the same lattice size for
the utterance. It is clear from the diagram that UAPS pruning maintains the
number of unique arcs of the original unpruned system, but at a significantly
smaller lattice size.

All the CUED evaluation systems for OP2 and OP3 were based on UAPS
pruning. Typically the size of lattices was reduced by an order of magnitude,
with no impact on KWS performance.

Language Id Arcs/Sec
Decode UAPS

Mongolian 401 88,479 17,623
Javanese 402 41,880 11,109

Table 4. Example lattice size (arcs/second) of the original lattices and after unique-
arcs per-second pruning

Table 4 shows the sizes of lattice generated from the decoding process and af-
ter UAPS for two of the OP3 languages. For these systems the number of unique
arcs is approximately the same. The size of lattices after UAPS are approx-
imately an order of magnitude smaller, dramatically improving time/memory
requirements for KWS.

3.2 Model Merging or Posting-List Merging

As previously discussed one important approach to improve the performance of
both ASR and KWS is to perform system combination. Here multiple, prefer-
ably complementary systems, are combined together to yield the final result.
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An important consideration for these approaches is the computational load. The
simplest approach is to run all the systems separately and combine the final out-
puts together. This is the approach adopted with ROVER [8] and CNC [7] for
ASR, and posting-list merging for KWS [19]. If four systems were to be combined
this would requiter four ASR decodes, followed by four KWS runs.

To reduce the computational load it is possible to combine the multiple sys-
tems together. The approach adopted at CUED for the Babel programme was
log-linear model-combination [2,33]. Here the log-likelihood of a particular ob-
servation ot for state s is given by

log(p(ot|s) =
1

Z(ot)
exp

(
M∑

m=1

αm log(p(ot|s;λ(m)))

)

where log(p(ot|s;λ(m))) is the log-likelihood from model m and αm is the re-
lated weight. Only a single decode and lattice generation, and KWS search are
performed. As the normalisation term, Z(ot), is only a function of the observa-
tion it does not impact the rank ordering in decoding. Thus the weight for each
model αm can be hand selected and used for decoding. This was the approach
adopted here [31].

An interesting question is the nature of the systems to combine. For OP2
evaluation systems Tandem and Hybrid systems were combined. For OP3 mul-
tiple multi-lingual bottleneck features (BN) were made available from Aachen
(A28) and IBM (I28), see [4] for details. Two configurations were compared.
First the use of joint decoding between Tandem and Hybrid systems for each
of the BN features (labelled A28 and I28) and then output combination (CNC
for ASR and posting-list merging for KWS). Or joint decoding using all fours
models. The weights for the models were empirically selected, but consistent for
all languages.

Language Id System TER MTWV
comb. (%) iv oov tot

Javanese 402

A28 52.5 0.4787 0.4379 0.4736
I28 52.1 0.4763 0.4283 0.4712
A28⊕I28 50.9 0.4991 0.4448 0.4924
A28⊗I28 50.9 0.4979 0.4843 0.4970

Table 5. Performance of the OP2 joint decoding configuration using the Aachen BN
features (A28) and the IBM BN features (I28), ⊕ indicates CNC/posting-list merging,
⊗ indicated joint decoding.

The performance of various configurations is shown in Table 5. Though per-
forming two separate runs and then two KW searches yielded better performance
(for KWS) for all languages the differences were not large compared to the mem-
ory and computational loads. For the final evaluation joint decoding over all four
systems was used for efficiency.
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4 Language Analysis and Prediction

There is a wide range of performance over the languages distributed in the BP,
OP1, OP2 and OP3. One of the interesting aspects of these language packs is
that they are consistently annotated and are associated with challenging data,
CTS. An interesting question is whether it is possible to predict the performance
for a particular language without having to build a full system.

Fig. 4. Summary plot (MTWV vs TER) for FLP systems in a single graphemic system
OP2 configuration.

As a starting point for the analysis a sub-set of languages were all built us-
ing a consistent, relatively advanced graphemic lexicon configuration that was
used for the OP2 FLP evaluation [31]. The subset was selected to give a spread
over the language groups and interesting language pairs for analysis. For exam-
ple: the Dravidian Languages, Tamil and Telugu generally performed poorly;
members of the Niger-Kongo languages, Swahili, Zulu and Igbo, were selected
as there was a large performance difference (ASR/KWS) between Swahili and
Zulu, and the opportunity to predict Igbo. Figure 4 shows the plot of MTWV
against TER for all these languages. It can be seen that MTWV and TER are
negatively correlated, with some outliers: Tok Pisin has a worse than expected
KWS performance given the TER; Zulu, Lithuanian and Georgian have a better
KWS performance than expected. What is also interesting is the wide spread of
performance ranging from 65% to 40% TER for ASR, and 0.30 to 0.60 MTWV
for KWS.
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A range of attributes (including SNR, number of words/phones, OOV, LM
perplexity) from the languages were evaluated to see whether performance could
be predicted using language attributes rather than building systems. Unfortu-
nately none of these showed strong correlations with the final performance.

Fig. 5. Summary plot (MTWV vs Graphemic Error Rate (GER)) for FLP systems in
an OP2 graphemic system configuration. Blue indicates Latin script alphabet. Best fit
line computed using the 7 dev Latin script languages.

Rather than looking at general language attributes, the ability to predict
final ASR and KWS performance from a simple initial ASR build was investi-
gated. The most informative attribute was Graphemic Rate (GER) 2 calculated
from a simple maximum likelihood PLP-based, speaker-independent, graphemic
system on the training data. This system is relatively fast to train, and no held-
out data is required. Figure 5 shows MTWV against GER. For all the Latin
script languages there is a strong correlation between GER and MTWV. The
previous outlier Latin script languages, Tok Pisin, Zulu and Lithuanian, are now
in-line with predictions. As the grapheme accuracy will depend on the number of
graphemes the non-Latin script languages marked in red (Kazakh, Tamil, Telugu
and Pashto) are not considered. These are expected to have a higher grapheme
error rate as there are more graphemes present (Kazakh is an exception).

It is also interesting to examine the ability to predict performance using
held-out data. the OP3 languages were treated as the held-out data, and all
2 All markers such as accents are stripped from the grapheme to yield the root
grapheme. Thus Latin scripts have 26 graphemes. These accuracies include silence
at the beginning and end of sentences, and between all words.
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Language Id Script %TER MTWV
pred obs pred obs

Dholuo 403

Latin

45.4 46.0 0.561 0.549
Guarani 305 49.5 51.1 0.490 0.496
Igbo 306 60.2 61.7 0.304 0.286
Javanese 402 54.2 59.8 0.408 0.362
Amharic 307 Ethiopic 50.5 48.5 0.473 0.528
Mongolian 401 Cyrillic 61.1 55.9 0.288 0.414
Georgian 404 Mkhedruli 43.3 49.2 0.599 0.596

Table 6. Predictions of OP2 configuration ASR and KWS performance for OP3 lan-
guages, including OP3 evaluation language Georgian (404).

the remaining Latin script languages used to generator a predictor. For MTWV
this is the dotted line in Figure 5. Similarly a linear predictor for TER was
generated. Table 6 shows the resulting predictions, and actual observed values.
For the Latin script it can be seen that GER is a good predictor for MTWV and
indicative for TER.

5 Conclusions

This paper has briefly outlined some of the approaches developed at Cambridge
University to handle low-resource keyword-spotting and speech recognition un-
der the Babel programme. Two distinct areas are discussed low-resource speech
recognition and efficient low-resource keyword-spotting. The final section of the
paper briefly examines the performance on a wide-range of languages in a con-
sistent configuration and how to predict performance.

Though significant advances were made during the Babel programme on low-
resource speech processing, it still remains a highly challenging area. The current
ability to leverage data across languages is limited despite the fact that there
is a common acoustic generation process for all languages, human physiology.
Additionally many languages have common syntactic and semantic structure.
Extracting these, and leveraging connections is still not addressed.
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