

Adventures in 3d Computer Vision

George Vogiatzis

Thursday, 5 April 2012

UNIVERSITY OF CAMBRIDGE

Outline

- 3d vision for capturing 3d shape
 - Applications, mature technologies and their limitations
- Video-based multi-view stereo
- Automatic calibrated multi-segmentation
- Face capture with multi-spectral photometric stereo

Outline

- 3d vision for capturing 3d shape
 - Applications, mature technologies and their limitations
- Video-based multi-view stereo
- Automatic calibrated multi-segmentation
- Face capture with multi-spectral photometric stereo

Models of 3d shape

- There is a ever growing need for photorealistic 3d models
- 3d model = "digital copy" of real object
- Allows us to
 - inspect details
 - measure properties
 - reproduce in different material

Cultural heritage preservation

• Computer games and Film

Developing "assets"

Nokia Maps 3D WebGL

• City modelling

• E-commerce

• www.metail.co.uk

3d vision for capturing shape

- Best example of "comp. vision in the real world"
- Why is it successful?

3d vision for capturing shape

- Best example of "comp. vision in the real world"
- Why is it successful?

Synthesized visuals

3d vision technologies

- Shape from X, where X=
 - Shading,
 - Photometric stereo,
 - Silhouettes,
 - Vanishing points,
 - Optic flow,
 - Polarization,
 - Texture,
 - Defocus,
 - Refraction paterns,
 - Atmospheric perpective,
 - Learning photo-popups,

grade solutions

Thursday, 5 April 2012

• Some of these are already maturing into commercial-

Mature technologies

- Photometric/Polarimetric surface capture
 - Image metrics, Light Stage 1-6
 - high-end Film Industry applications

- + high-quality results
 - complex setup
 - expensive

Mature technologies

- Multi-View Stereo
 - Capture 10-100 high-res stills (>12 Mpx)
 - + Very cheap, lightweight method
 - + Easy to deploy outdoors

MVS systems

- Accurate, dense, and robust multiview stereopsis (PMVS) [ENS, Furukawa & Ponce '07]
 - Binaries available, widely downloaded and used
- Using Multiple Hypotheses to Improve Depth-Maps for MVS [Cambridge, Campbell et al '08]
 - Several commercial implementations
- Towards high-resolution large-scale multi-view stereo [IMAGINE, Vu et al '09]
 - Licensed to Autodesk "123D Catch" Free to use

Agisoft's Photoscan (basic version \$179)

Multi-view stereo

- Key Limitations:
 - Sensors constantly evolve. High-res stills not the final answer. What about Video? RGB-D?
 - Types of objects: world does not consist of well textured, granite-like objects.
 - What about deformations?

Outline

- 3d vision for capturing 3d shape
 - Applications, mature technologies and their limitations
- Video-based multi-view stereo
- Automatic calibrated multi-segmentation
- Face capture with multi-spectral photometric stereo

Video-based Multi-View Stereo?

Immediate feedback

- Interactive reconstruction
- Feedback leads to better models
- Still passive & cheap •
- Requirements:
- online camera pose estimation (visual SLAM)
- real-time
- interactive
- lots of data

Pixel = depth sensor

- Reference pixel fixed during depth inference (we store the patch)
- NCC search along each incoming video frame
- Peaks in NCC score correspond to 'measurements' in depth.
- Our aim: to *infer* the unknown depth behind the reference pixel sensor

matching score

Measurement model

 Model sensor probabilistically as a Gaussian+Uniform mixture

$$p(x|Z,\pi)=\pi N(x|Z,\tau^2) + (I-\pi) U(x)$$

- -Z is the actual depth we are looking for $-\pi$ is the inlier ratio, also unknown -x is the measurement (data)
- Can fit using EM but not in one pass!

Sequential inference

- Likelihood of measurement at t+1, $p(x_{t+1}|Z,\pi)$
- Posterior at time t+1, $-\mathbf{p}(\mathbf{Z},\pi|\mathbf{x}_1,\ldots,\mathbf{x}_t) \propto \mathbf{p}(\mathbf{x}_{t+1}|\mathbf{Z},\pi) \times \mathbf{p}(\mathbf{Z},\pi|\mathbf{x}_1,\ldots,\mathbf{x}_t)$
- What form can $p(Z, \pi | x_1, ..., x_t)$ take?
 - Closed form is intractable, Non-parametric 2d histogram is too memory intensive
 - Approximate with a parametric N(Z) × Beta(π) form
 - -Variational argument (minimises KL divergence)
 - -Needs 4 numbers per pixel to represent posterior
 - Can't do full variational approx. in one pass
 - -moment matching

How well does it work?

non-parametric **≈** 0.5 0 parametric ₽ 0.5 0 1.5 histogram 0.5 0 7

Successful case

inlier ratio is low

Thursday, 5 April 2012

Failure case

Outline of algorithm

- Initialise a number of pixel depth sensors in first frame
- For every new incoming frame
 - I. Measure pixel depth for each sensor
 - 2. Update (Z, π) posteriors using measurements
 - 3. Remove sensors whose expected inlier ratio drops below a threshold
 - 4. Convert into 3d points sensors whose posterior depth variance drops below a threshold
 - 5. Replace removed or converted sensors by new ones on current frame

Interactive Multi-view stereo

Benefits:

-Feedback leads to better models -Still passive & cheap

Evaluation

Compared against [Merrel'08]

Pending a more thorough evaluation with [Newcombe '10] and others

- Less complete than independent depth-maps [Merrel '08] but
- More accurate

Ground-truth

Video based MVS

Video-based, real-time multi-view stereo Vogiatzis and Hernández, Image and Vision Computing, 29 (7), p.434-441, Jun 2011

TOSHIBA Leading Innovation >>>

(c) Output point cloud capture key steps.

(b) Detected features (c) Votes (d) Detected object Figure 3. Object inference key steps.

Outline

- 3d vision for capturing 3d shape
 - Applications, mature technologies and their limitations Video-based multi-view stereo
- Automatic calibrated multi-segmentation
- Face capture with multi-spectral photometric stereo

Motivat **Textureless objects** Textureless, Specular Objects

Furukawa '07

Silhouettes

- Shape-from-silhouettes can
 - handle lack of texture
 - improve MVS results
 - Outer bound [Vogiatzis '05]
 - Occlusion reasoning [Kolev'II, Herotiketico4]
- Images in the 'real world'
- Perform segmentation automatically

- Large number of images
- Avoid per-image interaction
 - Bounding boxes/brush strokes

Obtaining Silhouette

Obtaining Silhouettes

Obtaining Silhouettes Automatically

Segment Automatically

- From a set of posecalibrated images
- automatically obtain silhouettes of a rigid object

Have Camera Calibration

Segmentation Constraints Problem Analysis Problem Analysis

Campbell '07, Lee '07

- Silhouette coherence
- visual hull projection must maximally fill the silhouettes
- Fixation constraint
 - Object of interest is at centre of images

- Appearance consistency
 - FG and BG have their own colour model [Grabcuts]

Fixation Condition

Segmentation Constraints

- Limitations [Campbell '07, Lee '07]
 - Generative appearance model
 - Gaussian Mixture model in colour space
 - FG/BG not separable in the space
 Problem Analysis
 Silhouette coherency alone mat sufficients

Problem Analysis

Colour Model Limitations

Problem Analysis Input Images (600fr36) del Limitations

Result of [Campbell et al. 2007]

'Weak' stereo for multi-Segmentation

Campbell et al, CVMP 2012

- Quantize images into super-pixels (Turbopixels [Levinshtein '09])
- Label each super-pixel as FG/BG using Maxflow/Mincut
 - Unary term: colour model
 - Pairwise term: pixels encouraged to have same label if
 - they have similar colour
 - they obey epipolar constraint
 - other similar superpixels vote for same depth
- Iterate while
 - enforcing silhouette coherence,
 - refining colour models

'Weak' stereo

Creating the graph

Algorithm

- 'Soft' depth information from weak superpixel stereo ullet
- Build histogram (with outlier model) ullet

Iniversity / 100011 Birmingham

Edge connections

Without depth (appearance only)

Edge connections

Depth and appearance

Results-horse

Results

Our Result Head and tail recovered

Horse Dataset

Results-plant Textureless, Specular Objects

Furukawa '07

Results-plant Textureless, Specular Objects

Campbell 'I I

Automatic Galibrated Multi-Segmentation

- Successful automatic Multi-View segmentation
- Iterative algorithm
 - Segments all images simultaneously
- Improve over existing methods
 - Addition of Depth Information
 - Enforce additional constraints

Computation Time (Matlab):

- Super-pixels: 60s / image
- W matrix: I 20s
- Graph-cut iteration: 7s

Outline

- 3d vision for capturing 3d shape
 - Applications, mature technologies and their limitations Video-based multi-view stereo
- Automatic calibrated multi-segmentation
- Face capture with multi-spectral photometric stereo

Colour photometric stereo

- Original idea proposed in 80s [Petrov 87] & [Woodham94]
- In [Hernandez 07] we applied it on moving objects of constant albedo
- Leads to very simple / low cost setup

If a white object is illuminated by a red, a green and a blue light source, the color reflected by a point on the surface is in 1-1 correspondence with the local orientation.

> A. Petrov. Light, color and shape. Cognitive Processes and their Simulation (in Russian), pages 350-358, 1987

Thursday, 5 April 2012

Calibration of photometric stereo

- Must estimate light-directions and intensities
 - Can be seen as mapping between (surface orientation, albedo) and pixel intensity profile in all images
- Can estimate light directions with complex mirror setup

- Can also fit mapping to known data points [Hertzman04]
- **Colour Photometric Stereo**
 - Estimate mapping: RGB space \rightarrow normal space [Patterson05] [Hernandez07] Material Dependent!

Colour photometric stereo for faces

• Examples of faces captured using the colour photometric stereo setup

Colour photometric stereo for faces

• ...but we can construct a partial & noisy example object using Multi View Stereo

Mono-chromaticity

- Face consists of multiple shades of same colour.
- This leads to $\mathbf{c} = \mathbf{V} \cdot \mathbf{L} \rho \mathbf{n}.$

where c is the RGB triplet, L is the matrix of light directions and V is the colour 'mixture' matrix

• we wish to estimate this mapping but do not know which data points we can use!

Robust model fitting

$$\mathbf{c} = \mathbf{V} \cdot \mathbf{L} \rho \mathbf{n}.$$

- Since we don't really care about monochromatic albedo ρ
- treat ρ **n** and **c** as vectors only defined up to a scaling factor.
- L*V maps from a 2d projective space to a 2d projective space
- This is just a 2d Homography!
 - use your favourite RANSAC + nonlinear fit!

Sample input image

light direction

Facial expressions

frame rate: 5145.217578 Thursday, 5 April 2012

Conclusion

- Colour photometric stereo for faces [Vogiatzis & Hernandez I]CV 2011]
 - Photometric stereo gives lifelike detail, but low frequency shape is not as good
 - Combine with depth sensor (see [Anderson et al 2011])
 - Some faces are remarkably Lambertian, others are not
 - The single albedo chromaticity assumption works well in practice
 - **Deformable surface registration** must be part of mocap solution. Some solutions exist but all with weaknesses
- Calibrated Multi-Segmentation [Campbell et al CVMP 2012] • Can we extend the "weak shape-from-X" idea to other algorithms?
- Video based MVS [Vogiatzis & Hernandez IVC]
 - Building higher level models: is important for many users

Collaborator Gabe Brosto Neill Campbo Roberto Cip

- Thank you
- more in <u>http://george-vogiatzis.org</u>

Thursday, 5 April 2012

<u>`S:</u>	Carlos Hernandez Bjorn Stenger Oliver Woodford
w ell	
olla	