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Abstract

We investigate the problem of obtaining a dense reconstruction in real-time, from a live
video stream. In recent years, Multi-view stereo (MVS) has received considerable at-
tention and a number of methods have been proposed. However, most methods operate
under the assumption of a relatively sparse set of still images as input and unlimited
computation time. Video based MVS has received less attention despite the fact that
video sequences offer significant benefits in terms of usability of MVS systems. In this
paper we propose a novel video based MVS algorithm that is suitable for real-time,
interactive 3d modeling with a hand-held camera. The key idea is a per-pixel, proba-
bilistic depth estimation scheme that updates posterior depth distributions with every
new frame. The current implementation is capable of updating 15 million distributions
per second. We evaluate the proposed method against the state-of-the-art real-time
MVS method and show improvement in terms of accuracy.

1. Introduction

In the last few years, binocular and multi-view stereo (MVS) research has reached
a certain level of maturity where high quality reconstruction results can readily be
obtained for a variety of scenes [23, 26]. However, the possibility of applying MVS
methods to video streams has received less attention. There are several reasons why a
video based, real-time MVS system is an interesting alternative to still image systems.
For small scale reconstructions, video acquisition can potentially be faster and more
user-friendly than acquiring still pictures e.g. rapid prototyping or industrial modeling.
Similarly, for very large scene reconstructions like city-wide 3d models, where large
quantities of data are required, video can offer an affordable way of capturing a massive
amount of data in a user-friendly manner. Since large scale reconstruction algorithms
are very data hungry, it is no surprise that the two main paradigms used to feed them are
either video [6, 22] or community photo collections [1, 21, 24]. Photo collections have
the big advantage of being constantly updated. The main disadvantage is that, for the
moment, only touristic places such as the Colosseum in Rome or the city of Dubrovnik

Email addresses: g.vogiatzis@aston.ac.uk (George Vogiatzis),
carloshernandez@google.com (Carlos Hernández)

Preprint submitted to Image and Vision Computing Journal November 17, 2010



have enough photographs to achieve high quality reconstructions [1]. Video on the
other hand can be used to reconstruct any scene of interest on demand.

From an algorithmic point of view, video has several characteristics that distinguish
it from still image capture. Firstly, the quality of data is typically lower than that of still
images in terms of image resolution, motion blur or compression artifacts. Secondly,
the quantity of data is orders of magnitude bigger than a still image sequence. Most of
the top-performing MVS techniques would not cope in terms of memory and compu-
tation time with a relatively small video sequence. The large amounts of data however
is also an advantage because it resolves many of the ambiguities inherent in MVS that
arise from repeated texture, texture-less regions or occlusion. This is in contrast to the
traditional approach of addressing ambiguities in MVS through computationally ex-
pensive regularization. Finally, the baseline between successive frames is small which
means that image flow is limited to a few pixels between successive frames. The search
for correspondences is therefore easier because there are less image locations to search.

In this paper we present an algorithm that exploits the advantages of video input
whilst also being resilient to the challenges it poses. The system we describe maintains
a large set of candidate 3d features (∼ 250, 000 of them) at any given point in time. It
has an estimate of their 3d position that is improved with every incoming frame. When
confidence in this estimate is sufficiently high, the candidate 3d feature is consolidated
into a 3d point and leaves the candidate pool while a new one is introduced in its place.

The key requirements of this strategy are:

1. a sequential update scheme to obtain intermediate 3d estimates as video frames
are acquired,

2. a precision measure to assert the accuracy of the 3d estimates,
3. an outlier rejection scheme to reliably reject outliers that arise in MVS due to

occlusion, lack of texture, etc,
4. efficiency both in terms of memory and computation time.

An elegant framework that satisfies the first three requirements is probabilistic in-
ference [16]. In this paper we propose a novel, parametric, Bayesian approximation
to the MVS problem that complies with all of the above requirements, including being
extremely fast to compute and having a very low memory footprint (each 3d feature
uses 9 floats to model the position plus 25 bytes for the reference image patch). The
main contributions of this paper are:

1. a probabilistic treatment of occlusion robust photo-consistency [13],
2. a parametric approximation to the full probabilistic inference problem that makes

the real-time Bayesian MVS problem tractable,
3. a video based MVS system that is shown to process video input in real-time

(60Hz) while providing intermediate reconstruction results as user feedback.

2. Previous work

This paper is primarily related to MVS literature but also to real-time pose and
scene reconstruction from video. We start by referring to the MVS evaluation by [23].
Looking at the top performers in that evaluation, we can distinguish two main trends:
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region growing methods [8, 11, 12, 20] and occlusion-robust photo-consistency meth-
ods [3, 5, 10, 13, 18, 27]. The best performing region growing method [8] uses a
combination of photo-consistency based patch fitting, growing and filtering in order to
reconstruct the scene of interest. This approach is successful since plane-based photo-
consistency performs very well on low textured regions or sparse data sets. However it
is not obvious how the patch growing step could be transferred to a video setting. This
is because by the time a patch has been optimized and new patches must be generated in
its vicinity the camera will have already moved away from that region. The algorithm
would therefore have to keep previous images in memory which is not feasible for long
sequences at 30-60fps. Alternatively the system would have to wait until the camera
revisits the patches which makes it difficult to use in camera drive-through scenarios
(e.g. a car-mounted MVS system reconstructing parts of a city).

Occlusion-robust photo-consistency methods provide a very simple pipeline using
off-the-shelf algorithms such as dense stereo and 3d segmentation algorithms. How-
ever, they rely on a much simpler window-based photo-consistency, less robust to
sparse images and lack of texture. The top performer in this group [13] estimates depth
by histogram voting of local maxima of a photo-consistency measure. In a real-time
video setting however, depth estimation using histograms presents the following diffi-
culties: (a) As new frames are acquired and the histogram is updated with new local
maxima, it is not clear how to measure confidence in the current depth estimate. (b)
Estimation accuracy depends on bin size. (c) Histograms tend to be memory intensive.
Our method is inspired by this second group of methods and proposes a probabilistic
interpretation of occlusion-robust photo-consistency. We derive a parametric approxi-
mation to the posterior depth distribution which overcomes the difficulties of the his-
togram approach: (a) The probabilistic framework offers confidence measures for the
estimates computed while (b) estimates are not quantized. Finally (c) our representa-
tion of the depth posterior has a low memory footprint.

Our work is also related to real-time urban reconstruction methods [6, 22]. While
[6] assumes a very simple shape model for the buildings, the method of [22] could
be used to reconstruct general 3d scenes. The main differences with their approach
are twofold: robustness to camera motion and improved accuracy. The core of their
algorithm is based on producing a dense stereo depth-map every 0.5 seconds using the
frames captured during that time. The depth-map is then fused in 3d with the previously
generated structure resolving any inconsistencies that may arise. This system works
very well for car-mounted cameras where the motion of the camera is smooth and with
slow-varying speed. If the baseline of the cameras is too small (the car stops) or too big
(the car is too fast), the system just drops those frames. This makes their algorithm less
suitable for hand-held interactive MVS, our goal, where the camera motion is generally
not smooth. In contrast, our formulation is independent of the type of camera motion.
Each bit of the geometry is only generated whenever a certain degree of confidence and
3d accuracy is reached. This means that a given part of the geometry with good focus
and enough baseline could be generated in just a few tenths of a second while other
parts, with occlusions or with shaky camera motion may take longer.

This paper also shares similarities with visual SLAM [7] in the way we sequentially
update a pool of 3d features. The main difference is that we aim to maximize the
production of 3d features and we assume the camera pose estimation is given so we
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Figure 1: Searching for a match along an optic ray. For a given pixel p we wish to find the depth Z along
the optic ray through p such that the 3d point x(Z) projects to similar image regions in images I and I′.
We can measure this similarity by computing a matching score between the two image patches W and W ′.

can exploit epipolar geometry.
Finally, a probabilistic approach to MVS has already been proposed in a number

of papers [2, 4, 9, 14, 25]. However, while these methods model occlusion explicitly,
our approach assumes probabilistic independence of the depth of different pixels and
occlusion is implicitly modeled as another source of noise. The independence assump-
tion is key in order to make the real-time MVS problem tractable and we believe that
our results justify it in practice.

3. Probabilistic depth sensor

Let p be a pixel of image I that has been calibrated for pose and internal camera
parameters. For a particular depth value Z one can obtain the corresponding 3d point
x(Z) that is located Z units away from I, along the optic ray of p (see figure 1).
Let I ′ be another calibrated image acquired from a nearby viewpoint while W and
W ′ denote two square patches centered on the projection of 3d point x(Z) onto I
and I ′ respectively. We can evaluate the photo-consistency [19] at 3d location x(Z)
using Normalized Cross Correlation (NCC). Figure 2 shows a plot of NCC scores for
a pixel across depth as well as a histogram of the local maxima of these curves for 60
neighboring images.

We observe that the histogram is concentrated on a single mode corresponding to
the true depth with a uniform component that corresponds to occlusion, image warping,
repetitive texture etc. This picture suggests a probability distribution that is a mixture
between a good measurement and a bad measurement model. The good measurement
model places nearly all its probability mass around the correct depth location while the
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Figure 2: Depth estimation with NCC maxima. (a) NCC score across depth along optic ray. The black
dots correspond to local maxima. (b) Histogram of local maxima for 60 neighboring images. Local maxima
are either generated in the vicinity of the true depth or are uniformly generated across the depth range.

bad measurement model uniformly distributes its mass in all possible depth locations.
The next section explains this in more detail.

We view the local maxima x1, . . . , xN as a set of noisy measurements coming from
a depth sensor. We model the sensor as a distribution that mixes a good measurement
model with a bad one as is common in robust sensor fusion problems (e.g. chapter
21 of [16]). Our sensor can produce two types of measurement with a probability π
and 1 − π respectively: (1) a good measurement that is normally distributed around
the correct depth Z or (2) an outlier measurement that is uniformly selected from the
interval [Zmin, Zmax]. The limits Zmin and Zmax can be determined by some prior
knowledge of the scene geometry. The object of interest is guaranteed to be entirely
contained between Zmin and Zmax. The following Gaussian + Uniform mixture
model describes the probability distribution of the n-th measurement given the correct
depth location Z and the inlier probability π

p (xn|Z, π) = πN
(
xn|Z, τ2n

)
+ (1− π)U (xn|Zmin, Zmax) . (1)

The variance of a good measurement τ2n can be obtained from the relative position of
the cameras at frame I and I ′ that produced the measurement. This is because we
assume that the measurement xn has a fixed variance of one pixel when projected in
I ′. We then back-project this variance in 3d space to compute the variance of the
measurement in distance units.

3.1. Bayesian inference
The likelihood introduced in (1) is a typical mixture model and, as such, its pa-

rameters could be estimated from the data x1, . . . , xN in a maximum likelihood frame-
work using Expectation Maximization. However, it is crucial to have a measure of
confidence in our depth estimate as it can be used to inform the system when enough
measurements have been collected as well as to detect when the estimation has failed.
This is not offered by a maximum likelihood approach. Also, in our experiments EM
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Figure 3: Non-parametric vs. parametric modeling of posterior distribution. The first row shows the
posterior distribution that is modeled non-parametrically as a 2d histogram. The four columns represent
four time instances (after 5, 10, 20 and 100 updates). The second row shows the evolution of our parametric
Gaussian×Beta approximation. Even though our model cannot capture the multi-modal nature of the true
posterior, after a few iterations it converges to the same point estimate. The third row shows the histogram
of measurements that have been seen by the system in each time instance. The last three rows show one of
the few cases where the parametric model cannot follow the non-parametric one. When this happens it can
be detected because the parametric posterior predicts a very low inlier ratio. We can therefore safely discard
it. The x axis denotes depth along optic ray for all images.

was trapped in a local optimum for a significant percentage of cases. We therefore
opt for a Bayesian approach where we define a prior over depth and inlier ratio and
then calculate the posterior distribution given all measurements. The estimated depth
is then the maximum of this posterior distribution while its shape (through 2nd order
moments) determines the confidence in our estimation.

Assuming all the measurements x1, . . . , xN are independent, the posterior has the
form

p(Z, π|x1 . . . xN ) ∝ p(Z, π)
∏
n

p (xn|Z, π) . (2)

where p(Z, π) is our prior on depth and inlier ratio. Figure 3 (top row) shows some
snapshots from the evolution of p(Z, π|x1 . . . xn) as measurements are collected. The
prior is assumed to be uniform and the distribution is modeled using a dense 2d his-
togram. The posterior converges to the correct values for Z and π. In an experiment
described in section 5 and summarized in table 1 we show how this probabilistic for-
mulation outperforms the histogram voting approach used in [13, 27].

However modeling the posterior with a full 2d histogram for each pixel is imprac-
tical due to memory and computation limitations. Our system maintains 250,000 seeds
at any given time. A reasonable 2d histogram should be quantized with at least 500
values for depth and 100 values for the inlier ratio. To keep these histograms in mem-
ory we would need to store 12.5 billion floats (which is non-trivial). Furthermore we
found that even with a GPU implementation it was not possible to perform updates of
the full 2d histograms in real-time. Our approach is to use a parametric approximation
to the posterior as outlined next.
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3.2. Parametric approximation to the posterior
When the seed corresponds to a well-textured unoccluded pixel, the histogram of

depth observations has a single mode (see figure 5 a). This motivates the use of a
uni-modal parametric posterior. A good approximation to the depth posterior (4) is the
product of a Gaussian for the depth with a Beta distribution for the inlier ratio. In the
supplementary material we provide a variational argument for this form. In particular
we show how it has the smallest Kullback Leibler divergence from the true posterior
out of a wide set of possible approximation distributions that share a weak factorization
property. We therefore define our approximation to the posterior of Eq. (2) as

q(Z, π|an, bn, µn, σn) := Beta (π|an, bn)N
(
Z|µn, σ

2
n

)
. (3)

In (3), an and bn can be thought of as probabilistic counters of how many inlier and
outlier measurements have occurred during the lifetime of the seed. The other two,
µn and σ2

n, represent the mean and variance of our Gaussian depth estimate. Now, if
q(Z, π|an−1, bn−1, µn−1, σ

2
n−1) was the true posterior after n − 1 measurements, the

new posterior after observing xn would have the form

C × p (xn|Z, π) q(Z, π|an−1, bn−1, µn−1, σ
2
n−1) (4)

for some constant C. This distribution is no longer of the form Gaussian × Beta
but we can approximate it using moment matching. We therefore define the new pa-
rameters an, bn, µn, σ

2
n such that the product in (4) and our approximation to the true

posterior q(Z, π|an, bn, µn, σ
2
n) share the same first and second order moments for Z

and π. This update is straightforward to calculate analytically but we refer the reader to
the supplementary material for the actual formulae. The second and fifth row of figure
3 show the parametric approximation to the posterior as it evolves through the Bayesian
updates. Even though our approximation is uni-modal while the true posterior is not, it
is nearly always able to converge to the same values of Z and π. In the few cases where
it is not able to converge (fifth row of figure 3), the distribution gives high probability
to a very low inlier ratio. When this happens, we can be confident that the estimation
has failed and we can disregard the results.

Figure 4 shows a typical evolution of this Bayesian update with the parametric
approximation. The estimates of Z and π (Fig. 4 a and b) converge to the correct values
as can be seen by superimposing the measurement histogram with the marginalized
measurement posterior p (x|x1, . . . , xn) (Fig. 4 c).

It is important to note that the success or failure of the estimation problem also
depends upon the quality of the reference patch W that stays fixed throughout the
evolution of the sensor’s depth posterior. If that patch is well textured and visible in the
subsequent frames the estimation is typically successful. If on the other hand the pixel
is either untextured or becomes occluded in the subsequent frames then the estimation
fails. Crucially, these failure cases can be detected because the estimated inlier ratio is
very low. Such cases are shown in figures 5 b and 5 c.

4. System details

One of the aims of this paper is to evaluate the feasibility and usability of a video
based multi-view stereo algorithm. In this section we describe a real-time implemen-
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Figure 4: Parametric update evolution The first two plots show the evolution of the depth estimate Z and
the inlier probability π. We show the mean ±two standard deviations. The third plot shows the measurement
histogram superimposed with the measurement posterior p (x|x1, . . . , xn). Both the mean and the outlier
level have been correctly captured.

(a) π = 14.5% (b) π = 3.7% (c) π = 3.4%

Figure 5: Three types of pixel sensors These figures show the measurement histograms and the super-
imposed measurement posterior p (x|x1, . . . , xm) for three types of pixel sensor. In (a) the pixel is a
well-textured point on the object. In (b) the pixel corresponds to a completely untextured white point on
the ground. In (c) the pixel corresponds to a point that will get occluded within the next few frames. The
estimated inlier ratio is shown in the three cases. The two pathological cases, (b) and (c), can be identified
from their low inlier ratio.
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tation of a reconstruction system based on the ideas described previously. The system
is a CUDA based, mixed CPU/GPU implementation. It can update 250,000 seeds, 60
times per second, running on an Intel XEON 2.33GHz with an NVIDIA GTX 260.
We also have a portable implementation on a dual-core laptop with an NVIDIA GTX
280M chipset. The portable version updates 250,000 seeds at 30 times per second.

4.1. Camera pose estimation
Recently, there have been major advances in visual SLAM techniques. References

to recent work can be found in [7, 17]. These methods can track the 6DOF motion of a
camera from point and line features in a video sequence of a rigid scene. In this paper
however our aim is to evaluate the dense 3d structure estimation independently from
any inaccuracies in a SLAM based camera tracker. To achieve this we chose a simple
but very accurate template based camera tracking method using [28]. This technique
which includes a per frame bundle-adjustment stage obtains reprojection errors of less
than 0.05 pixels.

4.2. Evolution of seeds
The system performs sequential inference of the depth of various pixels in the video

sequence. A seed corresponds to a particular pixel p whose depth we aim to esti-
mate. Due to memory and computation limitations we can maintain a fixed number of
seeds throughout the process. Each seed is associated with a set of parameter values(
an, bn, µn, σ

2
n,W

)
. The first four parameters that evolve during the lifetime of the

seed, describe our posterior given the first n observations according to (3). With each
seed we also store a reference image patch W around the pixel location of the seed on
the reference image, I. This patch remains constant and is used to compare against
target images and obtain depth measurements. When a seed is created we set a0 = 10
and b0 = 10. This corresponds to a prior for the inlier ratio centered on 0.5 and with a
standard deviation of approximately 0.1. The depth parameters µn and σ2

n are set such
that 99% of the prior probability mass is between some preset Zmin and Zmax. These
limits define a bounding volume which is known to contain the object of interest.

During the lifetime of a seed we obtain depth measurements by evaluating NCC
between the stored patch W and patches W ′ on the epipolar line on the current frame I ′

(see fig. 1). Ideally we would like to search the entire epipolar line for local maxima in
NCC score but this is not feasible computationally with ordinary hardware. Instead, we
exploit the small inter-frame motion by only searching within a radius of w pixels away
from the projection of the prior mean µn. This violates the independence assumption
of Eq. (2) because previous measurements will now dictate the search region for new
measurements. In spite of this the approximation works well in practice. In cases
when the true depth falls outside this search window of the epipolar line the seed will
be producing erroneous depth measurements. We rely on the inlier ratio estimation
to detect that the measurements coming from this seed are outliers. The seed will
subsequently be discarded as outlined in the next section. In the experiments shown in
this paper w is set to 3 pixels for our 2 million pixel camera. In the case when no
local maximum is detected, we penalize the seed by setting bn+1 := bn + 1. This has
the same effect as observing a depth measurement which was known with certainty to
be an outlier.
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Algorithm 1 The video based MVS algorithm.
M := the maximum number of seeds that can be maintained in memory.
S := the current number of seeds in the system
For each new frame I

1. If S < M generate M − S new seeds at I.
2. For each seed

(a) Project optic ray of seed on I.
(b) Detect largest local maximum xn+1 of NCC score within search window (section 4.2).
(c) Update posterior parameters with new depth measurement xn+1 (section 3.2).

3. Remove all seeds with inlier ratio less than ηoutlier .
4. Convert into 3d points (and remove from seed list) all seeds with inlier ratio higher than ηinlier and

σn < ϵ.

4.3. Pruning of seeds

After the seed evolution step described in the previous section there are three pos-
sible outcomes:

• The seed has converged to a good estimate and therefore it is removed from the
seed list and a 3d point is generated at the current posterior mean µn.

• The seed has failed to converge due to too many outliers present. The seed is
then removed from the list.

• The seed has not been left to converge long enough and therefore it survives into
the next evolution step.

To decide on the appropriate outcome we use the variance of the depth posterior σ2
n

and the estimated inlier probability π. We employ the following criteria:

1. If according to our current posterior distribution q
(
Z, π|an, bn, µn, σ

2
n

)
the inlier

ratio π is less than ηoutlier with a probability of 99% then we can conclude
that the depth estimation has failed. This is typically the case when the seed
is initialized on an image patch that was out of focus, or there was not enough
texture to match in subsequent images (Fig 5 b,c).

2. If the mean inlier ratio of our posterior is more than ηinlier and the depth variance
σn is less than ϵ then we assume that the depth estimation has succeeded (Fig 5
a).

3. In all other cases we let the seed evolve further.

Throughout all our experiments the threshold parameters were kept fixed at ηoutlier =
0.05, ηinlier = 0.1. The variance threshold ϵ was set at 1/10000th of the bounding
volume size Zmax − Zmin. The generated 3d points are collected into an octree struc-
ture that is graphically rendered with z-buffer shading in real-time. Alg. 1 provides a
summary of our method.
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Figure 6: Comparison against ground-truth. Our algorithm was compared with [22] on a 600 frame video
sequence of a toy house. (a) Ground truth model of the house. (b) The result of [22].(c) Our result on the
entire 600 frames. (d) Result of our method running on every 20 frames (total of 30 input images). Our
results appear more detailed compared to [22] but especially in the case of the 30 frame result, less complete.
This is due to the lack of any spatial regularization in our method as well as the fact that [22] produces a
mesh while our results are 3d point-clouds. Full completeness-precision curves for these results can be found
in figure 7.
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Figure 7: Accuracy and completeness curves for ground truth experiment. (a) shows accuracy results
for our algorithm running in 30 and 600 frames of a video sequence of a house. The graph shows for a given
distance d, how much of the reconstructed model falls within d of the ground truth. (b) measures complete-
ness. I.e. for a distance d how much of the ground truth falls within d of the reconstructed model. Our results
are more accurate but somewhat less complete. This is because our method performs no regularization and
returns an unmeshed point-cloud.
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completeness 50% 80% 85% 90% 95% 100%
Histograms (mm) 0.36 0.80 0.99 1.34 2.10 4.00

Gauss+ Uniform (mm) 0.33 0.70 0.84 1.05 1.57 3.42

Table 1: Accuracy/completeness comparison between histogram voting (first row) and our probabilistic sen-
sor model on the Middlebury ground truth data [23] (second row). The probabilistic model is outperforming
the histogram approach across all completeness levels.

5. Evaluation

Here we present the results of two evaluations of our method against ground truth
data. In the first experiment we compare the histogram voting approach of [13] with
our probabilistic formulation. We focus on depth estimation performance, isolating
effects such as surface regularization or meshing. To that end, we generated depth esti-
mates for 1.5 million pixels randomly selected from the 312 images of the ‘fullTemple’
sequence in the Middlebury evaluation [23]. For each pixel, we estimated its depth us-
ing our probabilistic formulation as well as the histogram voting approach. We then
ran the standard completeness/precision tests on the two point-clouds. The results are
summarized in table 1. The probabilistic formulation is outperforming the histogram
approach across all completeness levels. This confirms that our model provides bet-
ter depth estimation for the same data whilst offering the benefits of a probabilistic
approach.

The second experiment involves comparing against [22], which is one of the few
MVS methods that offer real-time performance. The subject is a small toy house which
we reconstructed to a very high accuracy using a sequence of 36, 8-megapixel images
and the publicly available PMVS [8] software. This reconstruction is treated as ground
truth for the purpose of this experiment. We then captured a 600 frame video sequence
of the same object and ran our method on the full video sequence as well a sub-sampled
sequence of only 30 frames (skipping 19 out of every 20 frames) to evaluate how our
method degrades with less data. We also asked the authors of [22] to run their algorithm
on the same video sequence. The results are shown in figures 6 and 7. In summary,
Compared to [22] our results are more precise (89.6% of our reconstruction falls within
5mm of the ground truth compared to 77.0% for [22]). However, because of our lack
of regularization and the fact that [22] is providing a 3d surface our results suffer in
completeness (We cover 76.4% of the ground truth surface compared to 82.7% for [22]
for a distance threshold of 0.5mm). From the experiment on the subsampled sequence
we note that our method degrades gracefully with less data. The reconstructed points
we return are still accurate, however the algorithm manages to convert less seeds into
3d points, which leads to lower completeness figures.

Finally, figure 8 shows several challenging objects that were reconstructed by a user
operating our system. The time required (including user time and computation time)
was between 1 to 2 minutes per model. In the supplementary material we provide
additional videos of our system in action.
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Figure 8: Various 3d models acquired with our system.
Top row: Left: raw point cloud. Right: a 3d mesh extracted using a graph-cut method
similar to [15]. Bottom row: Left a well textured elephant figurine. Right: a textureless
toy car. The model is incomplete but contains few spurious points.

13



6. Conclusion

This paper presented a video MVS method based on independent per-pixel depth
estimation. We look for local maxima of correlation score along the epipolar line and
fuse these candidate 3d locations within a probabilistic framework. Our implementa-
tion of this method can process 2-megapixel video at 60Hz, producing accurate recon-
structions of small objects while providing an online feedback to the user. The validity
of our approach was evaluated against ground-truth and was found to produce accurate
reconstructions, degrading gracefully as the quantity of input data decreases.

One of the aims of this paper was to demonstrate the usability of video-based real-
time MVS systems that provide an online feedback through intermediate results. To
that end we showed how our method can be used to obtain 3d models of a variety
of objects within a few seconds. Another aim was to evaluate how well does video
data resolve ambiguities in MVS without any type of regularization. Our results show
improvement in terms of accuracy compared to regularized methods, in exchange for
lower completeness.

We believe that video-based MVS systems have great potential for reconstructing
large-scale models when acquisition time is at a premium. This is because they pro-
vide a denser coverage of the object than still photographs while the online feedback
helps avoid costly return visits to the scene. In future work we intend to verify this
by deploying our method outdoors and applying it to the reconstruction of large scale
scenes.
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