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Abstract

We address the problem of image-to-video retrieval. Given a query image, the aim
is to identify the frame or scene within a collection of videos that best matches the vi-
sual input. Matching images to videos is an asymmetric task in which specific features
for capturing the visual information in images and, at the same time, compacting the
temporal correlation from videos are needed. Methods proposed so far are based on the
temporal aggregation of hand-crafted features. In this work, we propose a deep learning
architecture for learning specific asymmetric spatio-temporal embeddings for image-to-
video retrieval. Our method learns non-linear projections from training data for both
images and videos and projects their visual content into a common latent space, where
they can be easily compared with a standard similarity function. Experiments conducted
here show that our proposed asymmetric spatio-temporal embeddings outperform state-
of-the-art in standard image-to-video retrieval datasets.

1 Introduction
In this work, we address the task of image-to-video retrieval. With billions of images and
videos generated online every day, it is essential to build specific tools for indexing and
accessing multimedia content efficiently. In the context of multimedia retrieval, image-to-
video retrieval is the task for which a specific frame or scene within a video collection is
identified from a static query image. Identifying a certain frame from a collection of videos
has been successfully exploited in many different applications, such as video search [5],
content augmentation [14] or video bookmark [10].

Image-to-video retrieval is an asymmetric problem. Whereas images contain static con-
tent, richer visual information can be extracted from videos, such as optical flow or temporal
motion. Standard techniques for extracting video descriptors [20, 23, 28, 32] cannot be di-
rectly used on static images, due to the lack of temporal information. On the other hand,
standard features for image retrieval [7, 19, 25, 31] are applied to video data by processing
each frame as an independent image. When frames are processed as independent images,
the temporal correlation within a video is not being considered and potentially unnecessary
visual data is computed. This becomes extremely inefficient in large-scale datasets. Thus,
specific asymmetric embeddings for extracting the visual content of images and compressing
the temporal information of videos are needed.
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Figure 1: Image-to-video retrieval. Image and video embeddings obtained from query im-
ages and video clips, respectively, are projected into a common embedding space to compute
similarities and find a specific video clip.

In image-to-video retrieval, temporal information is usually compressed either by reduc-
ing the number of local features or by encoding multiple frames into a single global rep-
resentation. Methods based on the aggregation of local features obtain better performance
than methods that encode several frames into a single global representation, at the expense
of a lower data compression and an increased search time. In large-scale datasets, mem-
ory requirements and search time are crucial, so techniques based on global representations
are preferred. Traditionally, image-to-video retrieval methods [1, 2, 14] are based on hand-
crafted features (SIFT [22], BRIEF [9], etc.) and not much effort has been put so far into
the adaptation of deep learning techniques, such as convolutional neural networks (CNN) or
recurrent neural networks (RNN). In [3] there was an attempt to use pre-trained CNN archi-
tectures to extract features for image-to-video retrieval, but the reported performance was
systematically worse than the one obtained with SIFT and Fisher Vectors [27] features.

This paper tries to fill this gap by proposing a deep learning architecture for learning
asymmetric spatio-temporal visual embeddings specifically for the image-to-video retrieval
task. Our proposed architecture generates an image embedding with a CNN model for im-
ages and a video embedding based on RNN for short video clips. Video embeddings com-
press the spatio-temporal visual information on videos into a global vector and image em-
beddings extracts the meaningful visual information from static images. The model learns
from training data to project images and video clips into a common embedding space where
they can be easily compared, as shown in Figure 1. In this common space, image and video
embeddings are matched by using a standard similarity function. Videos, then, can be ranked
according to their similarity score with respect a given query image. Our proposed model
outperforms state-of-the-art methods based on global representations on several image-to-
video retrieval datasets.

2 Related Work
Image-to-video retrieval started to attract attention since the early 2000s. With relatively
small datasets, early work in the field [24, 30] processed frames as independent images by
applying image retrieval techniques. For example, Sivic and Zisserman [30] indexed frames
from two different movies by using a bag-of-words (BoW) and Nister et al. [24] introduced
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vocabulary trees to index BoW from video frames. These early methods did not consider
the temporal structure of videos to compress video data, which makes them unsuitable for
scaling over hundreds of hours of video in large-scale datasets.

To perform large-scale image-to-video retrieval and reduce the amount of data to be pro-
cessed, the temporal redundancy in similar looking frames needs to be exploited. Methods
for aggregating and exploiting temporal features are classified into two different groups:
techniques that aggregate local features into a smaller number of features, and techniques
that compacts multiple frames into a global vector representation.

In the first group, local features (commonly a few hundred) are extracted from each
frame. Each of these local features is tracked along time and aggregated into a reduced
number of vectors. For example, Anjulan and Nishan [1] averaged SIFT [22] descriptors
within the same track to get a single vector per track, Araujo et al. [2] explored different
methods of aggregation such as averaging, keeping just one or computing the minimum
distance and Garcia and Vogiatzis [14] aggregated binary features using majorities. At query
time, all these methods perform a matching between local query features and aggregated
video features, which involves performing multiple searches per query.

On the other hand, global aggregation methods compact the visual information of a short
video segment into a single vector. For example, Zhu and Satoh [34] aggregate all the SIFT
local features in a video clip into a single high-dimensional BoW vector and Araujo and
Girod [3] compute compact Fisher Vectors [27] per frame and aggregate them into a single
vector using Bloom Filters [8]. At query time, a single search between the query vector
and the video descriptors is conducted, which requires less memory than the search involved
when using local features.

Most of the image-to-video techniques are based on hand-crafted features, such as SIFT
[22], BRIEF [9], etc. Araujo and Girod [3] compared pre-trained CNN architectures as fea-
ture extraction models against systems based on SIFT and Fisher Vectors, obtaining worse
performance with the deep learning methods. However, considering the outstanding results
of deep learning in many retrieval tasks, such as image-to-image [15] or text-to-image re-
trieval [33], we suspect that the lack of success of deep learning models in [3] might be due
the model architecture and the lack of training. In a preliminary work [13], we show that pre-
trained deep learning features for image retrieval such as RMAC [31] are more convenient
for image-to-video retrieval than standard neural network outputs. In this work, we propose
a model based on CNN and RNN to learn asymmetric spatio-temporal embeddings so that
images and videos are projected into a common embedding space, in where the matching is
performed with a simple similarity function. Unlike [3, 13], we train our architecture using
related video data, which allows us to learn specific non-linear functions for the image-to-
video retrieval problem.

3 Asymmetric Spatio-Temporal Embeddings
In this section, we present an architecture for learning asymmetric spatio-temporal embed-
dings for image-to-video retrieval. We project images and videos into a common embedding
space where a standard similarity function is used to rank videos according to their similarity
with respect a query image. Our model is described in Figure 2. With a spatial encoder based
on convolutional neural networks (CNN), query images and video frames are independently
mapped into image embeddings. Image embeddings from frames within the same video clip
are then input into a temporal encoder, which is based on recurrent neural networks (RNN),
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Figure 2: Proposed model. Images and frames are mapped into image embeddings with
a Spatial Encoder. Videos are mapped into video embeddings with a Temporal Encoder. A
margin loss function between image and video embeddings is computed to learn the weights.

to obtain a set of video or shot embeddings describing the visual content of the scene. Image
and shot embeddings are compared in a common embedding space by using cosine similar-
ity. During training, a contrastive or margin loss is computed between pairs of images and
video clips to learn the network parameters. A detailed description of each of the components
of our model is provided in the following subsections.

3.1 Spatial Encoder

To capture the spatial visual content of query images and frames and compute meaningful
image embeddings, we use the RMAC descriptor proposed in [31]. RMAC is an image
representation method obtained from the last convolutional layer of a CNN pre-trained for
image classification. When an image is fed into the neural network, the last convolutional
layer outputs a W×H×K dimensional response, where K is the number of filters and W and
H are the spatial width and height of the output that depend on the network architecture and
on the size of the input image. The response of the k-th filter of the last convolutional layer
can be represented by Ωk, a 2D tensor of size W ×H. If Ωk(p) is the response at a particular
position p, and R is a spatial region within the feature map, the regional feature vector fR is
defined as:

fR = [ fR,1 . . . fR,k . . . fR,K ]
> (1)

where fR,k = maxp∈R Ωk(p). Thus, fR consists of the maximum activation of each filter
inside the region R. Several regional features are extracted at different multi-scale over-
lapping regions. Each of these regional vectors is independently post-processed with `2-
normalization, PCA-whitening and `2-normalization. Regional vectors are summed up and
`2-normalized once again to obtain the final compact vector, whose dimensionality is K (i.e.
the number of filters in the last convolutional layer) and it is independent of the size of the
input image, its aspect ratio or the number of regions used.

Citation
Citation
{Tolias, Sicre, and J{é}gou} 2016



GARCIA AND VOGIATZIS: ASYMMETRIC SPATIO-TEMPORAL EMBEDDINGS 5

Frame number

D
is

ta
nc

e
Distance between consecutive frames

Shot 1 Shot 2 Shot 3 Shot 4

Sh
ot

 1

Sh
ot

 2

Sh
ot

 3

Sh
ot

 4

Figure 3: Shot boundary detection algorithm. Left: Shot boundaries detected when the
distance between consecutive frames is high. Right: Frames from each detected shot.

3.2 Temporal Encoder

We capture the temporal visual information using a temporal encoder model. Videos are
composed by a set of frames, shots and scenes. Shots are sequences of consecutive frames
captured by the same camera without interruption. Commonly, frames belonging to the
same shot are highly correlated. On the other hand, scenes are groups of shots which share
a common topic or theme. Frames within different shots but in the same scene may not
share many visual similarities. With our temporal encoder, we take advantage of this inner
temporal structure of videos to first, identify shots within a video and then, encode the visual
information within a shot with a recurrent neural network.

Shot Boundary Detection: We split up each video into a collection of shots by using
a shot boundary detection (SBD) algorithm. The aim of the SBD algorithm is to detect
groups of similar looking frames to encode them into a single video embedding. Although
there exist many SBD algorithms [16, 17] to detect different kinds of transitions between
shots, such as fade in, fade out, wipes or dissolves, to the purposes of this work we are
only interested in hard cuts, i.e. when two shots are put one after the other without any
transition effect. To detect hard cuts, we use Algorithm 1. We compute the distance between
each pair of consecutive frame embeddings along the duration of a video and assign a shot
boundary when the distance is higher than a predefined threshold, Th. An example of the
frame distances computed with the SBD algorithm along with sample frames from each
detected shot can be seen in Figure 3.

Recurrent Neural Networks: To summarize the temporal visual information of frames
within a shot, we use a recurrent neural network (RNN). We explore different RNN models,
such as long short-term memory networks (LSTM) [18] and gated recurrent units (GRU)
[11]. At each state of the RNN, we input each of the frame embeddings belonging to
the shot. The RNN captures the salient temporal information in the sequence by using at
each state both the current frame embedding and the output of the previous frame embed-
dings. The output of the last state is further processed with a fully connected layer, a tanh
non-linearity and a `2-normalization to obtain the video or shot embedding. Formally, let
h|x| = RNN(x) be the output of the last state of a recurrent neural network that processes
the sequence of frame embeddings x = [x1,x2, · · · ,x|x|]. The shot embedding is computed as
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Algorithm 1 Shot Boundary Detection
1: procedure SBD(video)
2: SB← []
3: i← 0
4: img← getFrame(video, i) . Get first frame and compute image embedding
5: u← RMAC(img)
6: while hasFrame(video, i+1) do . Get new frame and compute image embedding
7: img← getFrame(video, i+1)
8: v← RMAC(img)
9: dist← 1− u·v

‖u‖2‖v‖2
. Compute similarity distance between consecutive frames

10: if dist > Th then
11: append(SB, i) . Frame is a boundary if distance is higher than a threshold
12: u← v
13: i← i+1
14: return SB

vx = norm(tanh(W ·h|x|+b)), where norm(z) = z
‖z‖2

, tanh(z) = ez−e−z

ez+e−z and W and b are the
weight matrix and the bias vector of the last fully connected layer, respectively. The shot
embedding is set to have the same dimensionality, K, as the image embedding.

3.3 Image-to-Video Retrieval

To perform image-to-video retrieval, we rank videos according to query images. We compute
image-shot similarity as the cosine similarity, cos(a,b) = a·b

‖a‖‖b‖ , between image embeddings
and shot embeddings. The visual similarity between a query and a specific video is the max-
pooled image-shot similarity between the query and all the shot embeddings in the video.

3.4 Margin Loss Function

We train our model using pairs of images and video shots, where images are frames from
the same video collection as shots. For the i-th training pair, we denote as zi to the image
embedding representing the frame and as ϑi to the shot embedding representing the shot.
For each pair, we automatically assign a positive or a negative label, yi, as:

yi =

{
1 if zi and ϑi belong to the same shot
0 otherwise

(2)

We compute the loss of a pair as the cosine similarity with a margin, ∆, between the image
and shot embeddings:

Loss(zi,ϑi) = yi(1− cos(zi,ϑi))+(1− yi)(max(0,cos(zi,ϑi)−∆)) (3)

4 Data
We evaluate our model in standard image-to-video retrieval datasets. To learn the parameters
of our model, we use a related training dataset.
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SI2V-600k VB-600k MoviesDB

Figure 4: Left: Data graph. Nodes are frames and connections are matches. We keep frames
in the strongest component (solid green lines) and remove the rest (dashed red lines). Right:
Test data. Query images and video clip examples for each of the evaluation datasets.

4.1 Training Dataset
To train our model we use the data from the LSMDC dataset [26]. The LSMDC dataset
contains 202 movies split into 128,118 short video clips of about 5 seconds. We remove
the movies that overlap with our evaluation datasets and select a subset of 40 movies with
26,495 clips for training and 10 movies with 7,440 clips for validation, to speed up the
training. We use clips provided in LSMDC as training shots. As clips in LSMDC do not
exactly correspond to video shots (i.e. each clip is a short sequence which may contain
frames from one or more shots), we conduct a cleaning process [15] to keep only frames
from the longest shot for each clip. We extract SIFT [22] features from all the frames in the
clip and perform an all-versus-all feature matching between all possible pairs of frames in
the video clip. For each pair of frames, we assign a score as the number of shared descriptors
over the total number of descriptors, keeping only scores greater than 0.25. Next, we build
a graph where each node corresponds to a frame and each connection corresponds to their
assigned score. We extract the strongest component of the graph and remove the nodes (i.e.
frames) that do not belong to it. See Figure 4 (left) for an example of graph.

4.2 Evaluation Datasets
We evaluate our proposed model in the following datasets:

• SI2V-600k [5]: a dataset with newscast videos. It contains 164 hours of video with
3,401 clips corresponding to news stories. Queries are a set of 229 images from news
websites. For each query image, a list of all clips where it is found is provided. Results
are reported as mean average precission (mAP) and recall at 1 (R@1).

• VB-600k [6]: same videos as in SI2V-600k with 282 queries captured with an external
camera while videos are played in a screen. Results are reported as mAP and R@1.

• MoviesDB [14]: a collection of movies where queries images are captured with a
webcam while videos are being displayed in a screen. We use the lighter version,
which consists on a single movie with about 2 hours duration and 615 query images.

Examples of each of the evaluation datasets are shown in Figure 4 (right).
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Table 1: Spatial Encoder Results. Comparison between different image representa-
tions methods when frames are processed independently without temporal aggregation (i.e.
image-to-image retrieval).

SI2V-600k VB-600k
Method dim mAP R@1 mAP R@1
Edge Histogram [12] - 0.154 0.372 - -
JDC [12] - 0.174 0.384 - -
PHOG [12] - 0.223 0.450 - -
AlexNet FC6 [3] 4096 0.484 - 0.182 -
AlexNet FC7 [3] 4096 0.363 - 0.157 -
VGG16 FC6 [3] 4096 0.344 - 0.070 -
VGG16 FC7 [3] 4096 0.316 - 0.048 -
FV [3] 4096 0.715 - 0.704 -
RMAC 512 0.718 0.834 0.643 0.592

5 Experimental Evaluation

5.1 Experimental Details
Frames are extracted at three frames per second rate and resized to 1024 pixels width. In the
spatial encoder, RMAC representations are obtained with a VGG16 network [29] pre-trained
for image classification, without the last fully connected layers. The dimensionality of the
image embeddings is K = 512. PCA-whitening is implemented as a fully connected layer
and its weights are computed using American Beauty movie from the training collection. In
the temporal encoder, the dimensionality of the hidden state of the RNN is 512, as well as
the number of filters in the last fully connected layer. The maximum number of frames per
shot used in the RNN is 50. At training time, ∆ = 0.1. We assign 20% of training pairs as
positive and 80% as negative. The spatial encoder is frozen. We optimize the parameters of
the temporal encoder using Adam [21] with backpropagation, batch size of 512 and learning
rate of 0.0001. In the SBD algorithm, Th is experimentally chosen as 0.5. Query images are
resized to 960 pixels width.

5.2 Spatial Encoder Results
We first evaluate the performance of the RMAC representation as our spatial encoder. We
compare results obtained with different image representation methods when frames are pro-
cessed as independent images (i.e. image-to-image retrieval). For a fair comparison, none
of the networks are retrained or fine-tunned. Results are summarized in Table 1. RMAC
obtains comparable performance to the best reported results (FV in [3]) by using 8 times less
memory. When compared against other deep learning features (AlexNet FC6, AlexNet FC7,
VGG16 FC6 and VGG FC7) RMAC is, by far, superior.

5.3 Temporal Encoder Results
Next, we evaluate our proposed temporal encoder. RMAC image representation is used
to obtain frame embeddings. We compare our temporal encoder model based on RNN,
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Table 2: Temporal Encoder Results. Comparison between different techniques to aggregate
image embeddings (RMAC) from multiple frames (i.e. image-to-video retrieval).

SI2V-600k VB-600k MoviesDB
Method mAP R@1 mAP R@1 R@1
Max-Pooling 0.038 0.066 0.033 0.011 -
Sum-Pooling 0.152 0.275 0.316 0.262 -
Temporal Encoder (LSTM) 0.602 0.773 0.580 0.525 0.833
Temporal Encoder (GRU) 0.606 0.777 0.572 0.514 0.833

against simple aggregation baselines, such as Max-Pooling and Sum-Pooling. We evaluate
two versions of the temporal encoder, one based on LSTM [18] and another one based on
GRU [11]. Results are shown in Table 2. Max-Pooling and Sum-Pooling are not evaluated on
MoviesDB as there is only one video in that dataset. Our temporal encoder is considerably
superior to both baselines. In SI2V-600k, the temporal encoder based on GRU obtains the
best performance. In VB-600k, LSTM is superior. With respect to MoviesDB, both LSTM
and GRU perform equally well.

Shot Boundary Detection: We evaluate the contribution of the shot boundary detection
algorithm to the system by considering three different scenarios: no shot boundary detection
(No SBD), shot boundaries are selected randomly (Rand. SBD), and our proposed shot
boundary detection algorithm based on RMAC distances (Our SBD). For a more extended
comparison, we use both Sum-Pooling and LSTM as temporal aggregation methods. Results
are reported in Table 3. Detecting shots is always beneficial, even if the shots are detected
randomly, as the number of visual embeddings per video is increased. When we use our
SBD, the performance of the overall system is improved considerably.

5.4 Comparison with State-of-the-art

Finally, we compare our asymmetric spatio-temporal embeddings with state-of-the-art com-
pact methods in image-to-video retrieval. For a fair comparison, we only report results of
compact aggregation methods, that is, methods that encode multiple frames into a single
compact vector rather than using multiple local vectors per query or super high-dimensional
vectors. This is because local aggregation methods use several local vectors per query image,
performing multiple searches at test time for a single query. This increases performance with
respect to global aggregation methods, but also increases the search time and the memory
requirements. Also, as previous work is mostly based on non-trainable architectures, for a
fair comparison we keep our spatial encoder with the original pre-trained weights (i.e. no
additional training).

Accuracy: Results are detailed in Table 4. Our techniques based on LSTM and GRU
outperform reported methods in terms of both memory and accuracy. When compared with
previous state-of-the-art (Scene FV*), our embeddings are superior on the SI2V-600k dataset
and obtain comparable results in VB-600k. This performance is remarkable considering that
our methods are using embeddings 128 times smaller than Scene FV* (512 versus 65,536
dimensions).
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Table 3: Shot Boundary Detector. Analysis of the SBD algorithm in the SI2V-600k dataset.

Method mAP R@1 Method mAP R@1
Sum-Pool, No SBD 0.152 0.275 LSTM, No SBD 0.121 0.319
Sum-Pool, Rand. SBD 0.322 0.589 LSTM, Rand. SBD 0.390 0.616
Sum-Pool, Our SBD 0.596 0.764 LSTM, Our SBD 0.602 0.773

Table 4: Comparison with State-of-the-art. Results provided as mAP.

Method dim SI2V-600k VB-600k
Scene FV* (DoG) [4] 65,536 0.473 -
Scene FV* [3] 65,536 0.500 0.622
Sum-Pool AlexNet FC6 [3] 4096 0.071 0.012
Sum-Pool AlexNet FC7 [3] 4096 0.065 0.013
Sum-Pool VGG16 FC6 [3] 4096 0.067 0.013
Sum-Pool VGG16 FC7 [3] 4096 0.069 0.011
Spatio-Temporal-LSTM (Ours) 512 0.602 0.580
Spatio-Temporal-GRU (Ours) 512 0.606 0.572

Computational Cost: In [3], memory requirements are reported in SI2V-4M and VB-
4M datasets, which are larger versions of SI2V-600k and VB-600k with 1080 hours of video.
Their simplest baseline with FV* and no temporal aggregation needed 20.59 GB of memory
to encode the whole dataset, whereas their Scene FV* required 3.01 GB. Their best perform-
ing method based on super high-dimensional Bloom Filters (33.5 million binary dimensional
vectors) needed 10.76 GB of memory. With our approach, we are able to encode 160 hours
of video in SI2V-600k and VB-600k datasets in only 0.15GB. With a simple conversion, for
the larger versions (1080 hours of video), we would need just about 1GB of memory, which
is a compression of 20 times with respect to the baseline, 10 times with respect to the Bloom
Filters approach and 3 times with respect to Scene FV*.

6 Conclusions

In this paper, we proposed a model to obtain asymmetric spatio-temporal embeddings for
large-scale image-to-video retrieval. The aim was to find a video clip within a collection
of videos that best matches a given input image. We proposed an asymmetric architecture
to project images and videos into a common embedding space, so that they can be easily
matched with a cosine similarity. We computed image embeddings with a spatial encoder
based on convolutional neural netwroks. Video embeddings were obtained by using a tem-
poral encoder based on recurrent neural networks. We trained our model with relevant pairs
of images and videos. Experiments in different image-to-video retrieval datasets showed
that our spatial-temporal encoder is superior to the state-of-the-art methods both in terms of
accuracy and computational cost.
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