
Deep Reinforcement Learning for Autonomous Traffic Light Control

Deepeka Garg, Maria Chli, George Vogiatzis

School of Engineering and Applied Science

Aston University

Birmingham, UK.

e-mail: gargd@aston.ac.uk, m.chli@aston.ac.uk, g.vogiatzis@aston.ac.uk

Abstract—In urban areas, the efficiency of traffic flows largely

depends on signal operation and expansion of the existing

signal infrastructure is not feasible due to spatial, economic

and environmental constraints. In this paper, we address the

problem of congestion around the road intersections. We

developed our traffic simulator to optimally simulate various

traffic scenarios, closely related to real-world traffic situations.

We contend that adaptive real-time traffic optimization is the

key to improving existing infrastructure's effectiveness by

enabling the traffic control system to learn, adapt and evolve

according to the environment it is exposed to. We put forward

a vision-based, deep reinforcement learning approach based on

a policy gradient algorithm to configure traffic light control

policies. The algorithm is fed real-time traffic information and

aims to optimize the flows of vehicles travelling through road

intersections. Our preliminary test results demonstrate that, as

compared to the traffic light control methodologies based on

previously proposed models, configuration of traffic light

policies through this novel method is extremely beneficial.

Keywords-component; Autonomous Traffic Control;

Machine Learning; Deep Reinforcement Learning; 3d Virtual

Reality Simulator.

I. INTRODUCTION

Traffic management is a major problem with significant
economic and environmental repercussions. Urbanization
and motorization have caused an imbalance between
demand and supply of transportation and traffic
infrastructure, leading to problems such as travel delays,
increase of road accidents, environmental degradation and
so on.

A road intersection is a shared physical space; access to
this common resource must be granted intelligently to
optimize the traffic throughput while ensuring safe passage
of vehicles. Ever since their advent at the end of 19th
century, traffic lights have been effectively used as the
prime mode to grant vehicles access to the intersections,
however their benefits tail off when they fail to adapt to
changes in traffic flows [1].

For efficient utilization of already existing traffic-based
resources, it is critically important to carry out optimization
in an automated and adaptive manner, embodying
characteristics such as self-configuring, self-optimizing,
self-protecting and self-healing.

Leveraging to the recent advancements in the field of
deep reinforcement learning, we show that following such
an approach can increase the efficiency of signal-controlled

traffic resources (intersections, smart lanes etc.). We
propose an end-to-end traffic light control system which
makes use of the raw pixels to detect the inconsistent traffic
flow effectively, to determine the best set of traffic light
policies to increase the traffic throughput and safety across
the junction. Our system learns (without being explicitly
taught), the significant visual features to accurately monitor
and effectively control the traffic light signals in real-time,
to optimize their performance across a range of metrics
(traffic throughput, travel time, delay). Our results indicate
the transition from low to high traffic throughput, as our
system gradually learns to predict the best set of traffic light
policies based on the current traffic conditions.

The remainder of this paper is structured as follows;
Section II includes the related work in this domain. Section
III covers the basic ideas of Reinforcement Learning, Deep
Learning and their combination to underpin our proposed
algorithm. Section IV introduces our traffic simulator.
Section V specifies our model architecture specifications.
Section VI covers details of our experiment and section VII
discusses results and their analysis. Finally, section VIII
summarizes our conclusions and discusses future work.

II. RELATED WORK

Several research works attempt to optimize traffic light
performance. In [2], Dresner et al. proposed a centralized
road intersection control system by making use of vehicle-
to-infrastructure (V2I) communication for providing each
vehicle a slot in space-time to pass through the intersection.
In [3], Tachet et al. developed a comprehensive analytical
framework for comparing slot-based system intersection
control with traditional traffic lights. Theoretically, their
results showed that transitioning from the traffic light
system to a slot-based system can double the intersection
throughput while significantly reducing the delay. However,
their research approach requires the bulk of communication
between the central controller (intersection manager) and
the vehicles, which can potentially lead to significant
amount of overhead in the communication network and
delays due to loss or corruption of messages. Moreover, due
to its centralized nature, this system is prone to single-point-
of-failure bottlenecks; if the intersection manager fails,
passing through the intersection would be chaotic and risky,
especially in a busier junction.

Arguing about slot-based systems’ susceptibility to
single point of failure shortcomings, in [4] Azimi et al.
proposed a distributed intersection management system, by

214

2018 3rd International Conference on Intelligent Transportation Engineering

978-1-5386-7831-2/18/$31.00 ©2018 IEEE

creating vehicle-to-vehicle communication (V2V) for
managing the movement of vehicles through the
intersections. Their results showed that V2V
communication can significantly reduce delays introduced
by traffic lights and stop signs. However, their approach did
not consider information/data packets loss within the
wireless communication network, which is one of the most
critical issues of wireless communication. Dropped
messages between the vehicles can lead to fatal crashes as
the vehicles would not be able to sense the other vehicles
around them. Also, they ignore vehicle position
inaccuracies, which is one of the main considerations of
their protocol as every vehicle within the network depends
on its position and the position of the other vehicles to gain
access to the intersection.

In [5] and [6], Genders et al. proposed an adaptive traffic
signal control system based on deep RL. They represented
the current state of their traffic environment using a matrix
indicating the presence and absence of vehicles at a certain
position, which we believe is not the best state
representation and does not completely exploit the potential
of deep learning. In [7], Mousavi et al. followed a similar
approach as ours to predict the best possible traffic signal
policies. As their traffic state representation, they used raw
image pixels. All these deep RL-based approaches were
experimented on a commonly used traffic simulator, SUMO
which is not able to optimally reflect a real-world traffic

scenario. SUMO does not allow variability, most of the
SUMO models only concentrate on describing a specific
traffic behavior such as spontaneous traffic jams, making it
inappropriate to be used for simulating complex scenes
consisting of a variety of traffic situations such as peak and
quiet traffic hours. Random collisions in SUMO are handled
by using teleporting, which seems highly unrealistic when it
comes to penalizing collisions in order to avoid the
situations in the future which caused collisions in the past.
Our traffic simulator is free from these limitations and is
capable of effectively simulating a variety of realistic 3D
traffic scenes.

Figure 1.Basic Reinforcement Learning Mechanism Example.

Figure 2. Policy Gradient Reinforcement Learning Pipeline

III. BACKGROUND

A. Reinforcement Learning (RL)

RL enables an agent to learn how to achieve a certain
goal by dynamically interacting with its environment. An
agent learns how to map situations to actions in order to
maximize a numerical reward signal. The agent has a
repertoire of possible actions and it discovers those that
yield the greatest
reward at each setting by trying them out. RL is particularly
useful in situations where data arrives in a continuous
manner and the agent needs to adapt its behavior in real
time. Figure 1 outlines the basic reinforcement learning
mechanism, depicting the interactions between the agent
and the environment.

A standard RL framework can be mathematically
modelled as a Markov Decision Process (MDP). An MDP is
defined by a five-tuple: <S, A, T, R, γ>, where S is a set of

environment states, A is a set of agent actions, T is the
transition function, which defines the probability of moving
between the different environment states, R is the reward
function and γ, (0 ≤ γ ≤ 1) is known as the discount factor,
which models the relevance of immediate and future
rewards. The goal of the RL agent is to learn a policy π: S
→ A that maximizes the expected cumulative discounted
reward. The discounted expected reward, 𝑅𝑡 , at time t is
illustrated in equation (1), where E denotes the expectation
of the discounted reward and k denotes the number of
actions.

𝑅𝑡 = 𝐸[∑
𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘] (1)

B. Deep Learning (DL)

Deep learning is the state-of-the-art paradigm that has
revolutionized representation learning, allowing a
computational model to be fed with raw data in the form of

215

images, texts etc. and automatically discovering the data
representations needed for various tasks, such as visual
object recognition. A computational model composed of
multiple processing layers can efficiently extract
discriminative information from high-dimensional data with
multiple layers of abstraction. It works through using a
back-propagation algorithm to specify how a computational
model should alter its internal parameters which are used to
obtain a representation in each layer from the representation
in the previous layer. Neural Networks are used as the
above-mentioned computational models. They are
initialized by a set of parameters 𝜃, and map an input vector
to an output vector through a series of hidden layers.
Connections between the neural network units (neurons) of
consecutive layers are known as weights (model
parameters). A neural network composed of more than one
hidden layer is known as a Deep Neural Network (DNN). In
this research work, we implement a Convolutional Neural
Network (CNN). CNNs have proven to be exceptionally
powerful at visual object recognition and classification
tasks. CNNs derive their name from the ‘convolution
operator’, which captures the 2D nature of images
preserving the spatial relationship between the pixels.

C. Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning combines RL with Deep
Learning. Previously-made attempts to combine RL with
neural networks failed due to unstable learning in high-
dimensional state and action spaces. To address these
instability issues, Deep Learning in conjunction with RL
was introduced. Deep Neural Networks (DNNs) are used as
function approximators in a deep RL framework. Deep
learning enables an RL agent to scale to decision-making
problems which were previously considered intractable.

Development of algorithms that were able to learn to
play a range of Atari 2600 video games directly from the
raw image pixels at a superhuman level, revolutionized the
field of DRL [8]. DRL worked extremely well on a variety
of video games, which motivated us to apply these
algorithms in creating an autonomous traffic light system
that is capable of learning how to adapt to the different
traffic conditions, such as rush hours, different times of the
day and sudden unexpected changes to traffic conditions,
giving priority to emergency vehicles etc.

D. Policy Gradient (PG) Reinforcement Learning

The standard RL approach is approximating a value
function and discovering a policy from it, known as Q-
learning. But in non-deterministic environments, this
approach has proven to be theoretically intractable. Policy
gradient is preferred when dealing with stochastic
environments, because it is an end-to-end approach
including an explicit policy which directly optimizes the
expected reward.

The policy is defined as the mapping from the state to
the action probabilities, where 𝜋(𝑠, 𝑎) is the probability of
taking an action a in state s under the policy 𝜋. The policy is
a function represented by a neural network, whose input is
some representation of the state, outputs are action selection

probabilities and weights are the policy parameters. Let 𝜃
represent the vector of policy parameters and 𝜌 represent the
performance of the corresponding policy (discounted
expected reward per step). Then, as per the policy gradient
approach, the policy parameters are updated approximately
proportionally to the gradient, as per equation (2).

 Δ𝜃 ≈ 𝛼
∂𝜌

∂𝜃
, (2)

where 𝛼 is a step size. Usually, 𝜃 can be assured to
converge to a locally optimal policy in the performance
measure 𝜌. Basically, our goal is to maximise the reward
under the probability distribution 𝜋(𝑎𝑡|𝑠𝑡; 𝜃).

Figure 2 illustrates the PG mechanism pipeline. At every
time-step, some representation of the current state of the
environment is fed into to the neural network as input. In
our work, state representation is in the form of images. In
the forward pass, the neural network calculates the
probabilities of the predefined actions, an action is sampled
from the action probability distribution. Based on the
received rewards, gradients are computed in the backward
pass as per equation (3), 𝐽(𝜃) denotes the loss function.

𝛻𝜃𝐽(𝜃) ≈ ∑𝑖(∑𝑡𝛻𝜃𝑙𝑜𝑔𝜋𝜃(a𝑡
𝑖 |s𝑡

𝑖))(∑𝑡𝑟(s𝑡
𝑖 , a𝑡

𝑖)) (3)

Lastly, the policy is updated in the direction of the
gradient, as shown in equation (4) to encourage the actions
leading to good outcomes and discourage the ones leading
to the bad outcomes.

𝜃 ← 𝜃 + 𝛼𝛻𝜃𝐽(𝜃) (4)

This section gave a brief introduction to the key

elements that constitute our research approach. The
following section introduces our simulation environment.

Figure 3: Our Simulator

216

IV. OUR SIMULATOR AND IT’S SETUP

In the transportation and traffic area of research,
simulations are typically used as the first step in the protocol
development. To simulate traffic scenarios, the
transportation research community uses a variety of traffic
simulators like SUMO [9], VISSIM [10], CORSIM [11] etc.
Most of the existing traffic simulators are not realistic to
emulate real world traffic. These simulation tools often
suffer from various shortcomings, such as no collision
count, having the speed of vehicles constant across the

intersections, no dynamic generation of vehicles within the
simulation environment etc. We believe that these
shortcomings are significant and cannot be ignored,
especially if the potential application of developed traffic
protocols is to be deployed in a real-life setting.

To realistically validate our research idea, we built a
traffic simulator on a 3d virtual reality software, Unity3d to
create a simulation environment closely based on the real-
world traffic specifications, such as vehicle arrival rate
conforms to the random distribution to mimic the real-world
traffic scenarios. For an efficient vehicle trajectory control,
the parameters; such as maximum speed, maximum
acceleration and deceleration rate are most important, our
simulator has these parameters configured based on real
world vehicle specifications. Our simulator is able to
seamlessly switch between a variety of different traffic
environments, such as rush/quiet hours etc., which is not
feasible while using conventional traffic simulators. Figure
3 shows a screenshot of our simulator’s graphical display.

Most importantly, our simulator enables us to capture
still pictures and video footage, in much the same way as is
possible in a real-world traffic scenario, to be used to
analyze and determine traffic policies.

We created a real-time interface between Unity3d and
Python using socket programming for bilateral data
exchange between them. Our policy network, outlined in
figure 2, is implemented in python. The section on
architecture, below, describes the data exchange mechanism
between the two softwares in detail.

V. OUR ARCHITECTURE

Our architecture is composed of two components;
Unity3d and Python. As stated in the previous section, we
get our road intersection environment’s graphical display
from unity3d, while our policy network is implemented on
python. These two components of our architecture interact
with each other using socket programming, creating a fixed
and a logical connection between server and client. In our
work, python acts as a server and unity3d acts as a client. At
every time-step, unity3d transmits the representation of the
current state (s) of the environment to the policy network
(implemented on pytorch, a python platform) via socket
interface and in return, receives an action (a) to decide the
configuration of traffic light policies and sends back a
numerical reward (r), based on the quality of action taken.

Figure 4 illustrates our architecture. Our policy network
which implements our traffic light controller agent, is a 4-
layer DNN composed of 3 convolutional layers (C1 with 16
output channels, C2 with 32 output channels and C3 with 32
output channels) and 1 fully-connected layer (F4 with 2952
neurons). The current state (𝑠𝑡) of traffic light junction, is
fed into the policy network. 𝜃 denotes our policy network
parameters, which are randomly initialized in the beginning.
From the action probabilities distribution computed from
the underlying policy 𝜋 , an action (𝑎𝑡) is sampled and
implemented. Our action space includes two discrete actions
{0, 1}, indicating what lane go give green to. Every action
produces a reward, based on which, the gradient is
computed and policy parameters (𝜃) are updated to
continuously improve the policy (𝜋), until an optimal policy
is found. Algorithm 1 outlines our policy gradient
algorithm.

Algorithm 1:

1. Initialize model parameters, 𝜃 with random values
2. Initialize time-step counter t = 0
3. For each time-step starting from t = 𝑡𝑠𝑡𝑎𝑟𝑡, repeat:
 3.1 initialize s with current visual of the intersection
 3.2 select an action a according to policy, 𝜋𝜃(a𝑡|s𝑡)
 3.3 observe reward r and next state 𝑠′
 3.4 compute gradients, according to equation (3),

Figure 4. Our Architecture

217

 3.5 update gradients, according to equation (4).
4. Until t - 𝑡𝑠𝑡𝑎𝑟𝑡 == M (max time-step)
5. End.

VI. EXPERIMENT

As a first set of experiments, shown in figure 4, we
implemented an intersection of two-lane traffic scenario
with conflicting vehicular traffic such that vehicles from any
one lane are granted access to the intersection at a time,
while vehicles from the other lane have to wait. We applied
two signal phases (red and green) with no turning
movements. To optimize the traffic throughput and make
our policy network learn appropriately, every vehicle
passing through the junction is given a reward of +1.

We update policy network parameters (𝜃), after every 10
simulations (batch_size). One episode of our simulation is
made of 100 time-steps. We compute the gradients for every
episode and keep accumulating them and update the
network parameters after batch of 10 simulations.

To make the policy network learn and evolve
continuously and efficiently, it is required to face a variety
of different state situations. To make things more
challenging for our policy network, we kept the vehicle
density same for both the lanes thus creating less variation
in our environment. We compare our policy gradient-based
traffic light approach with two baselines; traditional fixed-
traffic lights and uncontrolled junction (with no traffic
lights, first-come-first-served basis).

VII. RESULTS AND DISCUSSION

Our test results revealed that after running our simulator
for about 600,000 vehicles, our policy gradient algorithm
converged. Even with minimum variability in the simulation
environment, we obtained an encouraging set of results. Our
policy network performed as well as the fixed-traffic lights.
Since as a preliminary test, we implemented our approach
on a simple, uncomplicated traffic junction, we expected our
policy network to reach the performance of the fixed-traffic
lights, as shown in figure 5. Our traffic light controller agent
could successfully sense the current state of the intersection
and learn to take appropriate actions to increase the traffic
throughput through the intersection. This is a positive result
and we expect our system to crucially outperform fixed-
traffic lights in situations when there is a sudden change in
traffic conditions, flows and densities, or an accident
causing the bottleneck.

VIII. CONCLUSION AND FUTURE WORK

We introduced an autonomous traffic light control
system, based on deep RL. We experimented our research
idea on a novel traffic simulator to realistically frame our
research problem. We showed our approach performed well
for a simple traffic light intersection scenario.

To verify the robustness of our research approach and its
applicability to dynamically varying and diverse traffic
conditions, we plan to extend our approach to more
complicated road intersections with multiple lanes, like the

one shown in figure 3. To collectively optimize traffic
through multiple road intersections, we will create real time
coordination between multiple road intersections for
information sharing and traffic light operation negotiation.
We will ensure that our system can withstand various
traffic-related stresses like degradation of camera output,
single point of failure of policy gradient-based traffic light
control system and unreliable communication between
communicating junctions in a multiple-junction traffic light
scenario.

REFERENCES

1. C. Priemer, B. Friedrich, “A decentralized adaptive traffic signal
control using V2I communication data, Intelligent Transportation

Systems,” ITSC ’09. 12th International IEEE Conference on, vol., no.,

pp. 1-6, 4-7 Oct. 2009.

2. K. Dresner and P. Stone, “A multiagent approach to autonomous

intersection management,” J. Artif. Intell. Res., vol. 31, no. 1, pp. 591–

656, Jan. 2008.

3. R. Tachet P Santi, S Sobolevsky, L. Reyes-Castro, E. Frazzoli, D.

Helbing and C. Ratti, “Revisiting street intersections using slot-based
systems,” PLOS ONE, vol. 11, no. 3, p. e0149607, 2016.

4. R. Azimi, G. Bhatia, R. Rajkumar, and P. Mudalige, “Intersection

management using vehicular networks.,” in SAE World Congress,
2012.

5. E. van der Pol, F.A. Oliehoek, ‘Coordinated deep reinforcement
learners for traffic light control’, master’s thesis, University of

Amsterdam, August 2016.

6. W. Genders and S. Razavi, “Using a deep reinforcement learning agent

for traffic signal control,” CoRR abs/1611.01142, 2016.

7. S. Mousavi, M. Schukat, and E. Howley, “Traffic light control using
deep policygradient and value-function-based reinforcement learning,”

IET Intelligent Transport Systems, vol. 11, pp.417-423, 2017.

8. V. Mnih, K. Koray, D. Silver, et al., "Human-level control through

deep reinforcement learning", Nature, vol. 518, no. 7540, pp. 529-533,

2015.

9. M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz,

“SUMOsimulation of urban mobility—An overview,” in Proc. 3rd Int.

Conf. SIMUL, Barcelona, Spain, Oct. 2011, pp. 55–60.

10. L. Bloomberg, J. Dale, “A comparison of the VISSIM and CORSIM

traffic simulation models”, Institute of Transportation Engineers, 2000.

11. S. Boxill, and L. Yu, “An evaluation of traffic simulation models for

supporting ITS development,” (Technical Report 167602-1). Texas

Southern University, October 2000.

Figure 5. Learning curve showing vehicles’ journey finish time for PG-

based approach versus fixed-traffic lights and no-traffic lights.

218

		2018-10-14T23:43:58-0400
	Certified PDF 2 Signature

