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Abstract—In urban areas, the efficiency of traffic flows largely 

depends on signal operation and expansion of the existing 

signal infrastructure is not feasible due to spatial, economic 

and environmental constraints. In this paper, we address the 

problem of congestion around the road intersections. We 

developed our traffic simulator to optimally simulate various 

traffic scenarios, closely related to real-world traffic situations. 

We contend that adaptive real-time traffic optimization is the 

key to improving existing infrastructure's effectiveness by 

enabling the traffic control system to learn, adapt and evolve 

according to the environment it is exposed to. We put forward 

a vision-based, deep reinforcement learning approach based on 

a policy gradient algorithm to configure traffic light control 

policies. The algorithm is fed real-time traffic information and 

aims to optimize the flows of vehicles travelling through road 

intersections. Our preliminary test results demonstrate that, as 

compared to the traffic light control methodologies based on 

previously proposed models, configuration of traffic light 

policies through this novel method is extremely beneficial. 

Keywords-component; Autonomous Traffic Control; 

Machine Learning; Deep Reinforcement Learning; 3d Virtual 

Reality Simulator. 

I. INTRODUCTION 

Traffic management is a major problem with significant 
economic and environmental repercussions. Urbanization 
and motorization have caused an imbalance between 
demand and supply of transportation and traffic 
infrastructure, leading to problems such as travel delays, 
increase of road accidents, environmental degradation and 
so on. 

A road intersection is a shared physical space; access to 
this common resource must be granted intelligently to 
optimize the traffic throughput while ensuring safe passage 
of vehicles. Ever since their advent at the end of 19th 
century, traffic lights have been effectively used as the 
prime mode to grant vehicles access to the intersections, 
however their benefits tail off when they fail to adapt to 
changes in traffic flows [1]. 

For efficient utilization of already existing traffic-based 
resources, it is critically important to carry out optimization 
in an automated and adaptive manner, embodying 
characteristics such as self-configuring, self-optimizing, 
self-protecting and self-healing.  

Leveraging to the recent advancements in the field of 
deep reinforcement learning, we show that following such 
an approach can increase the efficiency of signal-controlled 

traffic resources (intersections, smart lanes etc.). We 
propose an end-to-end traffic light control system which 
makes use of the raw pixels to detect the inconsistent traffic 
flow effectively, to determine the best set of traffic light 
policies to increase the traffic throughput and safety across 
the junction. Our system learns (without being explicitly 
taught), the significant visual features to accurately monitor 
and effectively control the traffic light signals in real-time, 
to optimize their performance across a range of metrics 
(traffic throughput, travel time, delay). Our results indicate 
the transition from low to high traffic throughput, as our 
system gradually learns to predict the best set of traffic light 
policies based on the current traffic conditions.  

The remainder of this paper is structured as follows; 
Section II includes the related work in this domain. Section 
III covers the basic ideas of Reinforcement Learning, Deep 
Learning and their combination to underpin our proposed 
algorithm. Section IV introduces our traffic simulator. 
Section V specifies our model architecture specifications. 
Section VI covers details of our experiment and section VII 
discusses results and their analysis. Finally, section VIII 
summarizes our conclusions and discusses future work. 

II. RELATED WORK 

Several research works attempt to optimize traffic light 
performance. In [2], Dresner et al. proposed a centralized 
road intersection control system by making use of vehicle-
to-infrastructure (V2I) communication for providing each 
vehicle a slot in space-time to pass through the intersection. 
In [3], Tachet et al. developed a comprehensive analytical 
framework for comparing slot-based system intersection 
control with traditional traffic lights. Theoretically, their 
results showed that transitioning from the traffic light 
system to a slot-based system can double the intersection 
throughput while significantly reducing the delay. However, 
their research approach requires the bulk of communication 
between the central controller (intersection manager) and 
the vehicles, which can potentially lead to significant 
amount of overhead in the communication network and 
delays due to loss or corruption of messages. Moreover, due 
to its centralized nature, this system is prone to single-point-
of-failure bottlenecks; if the intersection manager fails, 
passing through the intersection would be chaotic and risky, 
especially in a busier junction. 

Arguing about slot-based systems’ susceptibility to 
single point of failure shortcomings, in [4] Azimi et al. 
proposed a distributed intersection management system, by 
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creating vehicle-to-vehicle communication (V2V) for 
managing the movement of vehicles through the 
intersections. Their results showed that V2V 
communication can significantly reduce delays introduced 
by traffic lights and stop signs.  However, their approach did 
not consider information/data packets loss within the 
wireless communication network, which is one of the most 
critical issues of wireless communication. Dropped 
messages between the vehicles can lead to fatal crashes as 
the vehicles would not be able to sense the other vehicles 
around them. Also, they ignore vehicle position 
inaccuracies, which is one of the main considerations of 
their protocol as every vehicle within the network depends 
on its position and the position of the other vehicles to gain 
access to the intersection. 

In [5] and [6], Genders et al. proposed an adaptive traffic 
signal control system based on deep RL. They represented 
the current state of their traffic environment using a matrix 
indicating the presence and absence of vehicles at a certain 
position, which we believe is not the best state 
representation and does not completely exploit the potential 
of deep learning. In [7], Mousavi et al. followed a similar 
approach as ours to predict the best possible traffic signal 
policies. As their traffic state representation, they used raw 
image pixels. All these deep RL-based approaches were 
experimented on a commonly used traffic simulator, SUMO 
which is not able to optimally reflect a real-world traffic 

scenario. SUMO does not allow variability, most of the 
SUMO models only concentrate on describing a specific 
traffic behavior such as spontaneous traffic jams, making it 
inappropriate to be used for simulating complex scenes 
consisting of a variety of traffic situations such as peak and 
quiet traffic hours. Random collisions in SUMO are handled 
by using teleporting, which seems highly unrealistic when it 
comes to penalizing collisions in order to avoid the 
situations in the future which caused collisions in the past. 
Our traffic simulator is free from these limitations and is 
capable of effectively simulating a variety of realistic 3D 
traffic scenes. 

 

 
Figure 1.Basic Reinforcement Learning Mechanism Example. 

 
Figure 2. Policy Gradient Reinforcement Learning Pipeline 

 

III. BACKGROUND 

A. Reinforcement Learning (RL) 

RL enables an agent to learn how to achieve a certain 
goal by dynamically interacting with its environment.  An 
agent learns how to map situations to actions in order to 
maximize a numerical reward signal. The agent has a 
repertoire of possible actions and it discovers those that 
yield the greatest  
reward at each setting by trying them out. RL is particularly 
useful in situations where data arrives in a continuous 
manner and the agent needs to adapt its behavior in real 
time. Figure 1 outlines the basic reinforcement learning 
mechanism, depicting the interactions between the agent 
and the environment. 

A standard RL framework can be mathematically 
modelled as a Markov Decision Process (MDP). An MDP is 
defined by a five-tuple: <S, A, T, R, γ>, where S is a set of  

environment states, A is a set of agent actions, T is the 
transition function, which defines the probability of moving 
between the different environment states, R is the reward 
function and γ, (0 ≤ γ ≤ 1) is known as the discount factor, 
which models the relevance of immediate and future 
rewards. The goal of the RL agent is to learn a policy π: S 
→ A that maximizes the expected cumulative discounted 
reward. The discounted expected reward, 𝑅𝑡 , at time t is 
illustrated in equation (1), where E denotes the expectation 
of the discounted reward and k denotes the number of 
actions. 

𝑅𝑡 = 𝐸[ ∑
𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘]                                    (1) 

B. Deep Learning (DL) 

Deep learning is the state-of-the-art paradigm that has 
revolutionized representation learning, allowing a 
computational model to be fed with raw data in the form of 
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images, texts etc. and automatically discovering the data 
representations needed for various tasks, such as visual 
object recognition. A computational model composed of 
multiple processing layers can efficiently extract 
discriminative information from high-dimensional data with 
multiple layers of abstraction. It works through using a 
back-propagation algorithm to specify how a computational 
model should alter its internal parameters which are used to 
obtain a representation in each layer from the representation 
in the previous layer. Neural Networks are used as the 
above-mentioned computational models. They are 
initialized by a set of parameters 𝜃, and map an input vector 
to an output vector through a series of hidden layers. 
Connections between the neural network units (neurons) of 
consecutive layers are known as weights (model 
parameters). A neural network composed of more than one 
hidden layer is known as a Deep Neural Network (DNN). In 
this research work, we implement a Convolutional Neural 
Network (CNN). CNNs have proven to be exceptionally 
powerful at visual object recognition and classification 
tasks. CNNs derive their name from the ‘convolution 
operator’, which captures the 2D nature of images 
preserving the spatial relationship between the pixels. 

C. Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning combines RL with Deep 
Learning. Previously-made attempts to combine RL with 
neural networks failed due to unstable learning in high-
dimensional state and action spaces. To address these 
instability issues, Deep Learning in conjunction with RL 
was introduced. Deep Neural Networks (DNNs) are used as 
function approximators in a deep RL framework. Deep 
learning enables an RL agent to scale to decision-making 
problems which were previously considered intractable.  

Development of algorithms that were able to learn to 
play a range of Atari 2600 video games directly from the 
raw image pixels at a superhuman level, revolutionized the 
field of DRL [8]. DRL worked extremely well on a variety 
of video games, which motivated us to apply these 
algorithms in creating an autonomous traffic light system 
that is capable of learning how to adapt to the different 
traffic conditions, such as rush hours, different times of the 
day and sudden unexpected changes to traffic conditions, 
giving priority to emergency vehicles etc. 

D. Policy Gradient (PG) Reinforcement Learning 

The standard RL approach is approximating a value 
function and discovering a policy from it, known as Q-
learning. But in non-deterministic environments, this 
approach has proven to be theoretically intractable. Policy 
gradient is preferred when dealing with stochastic 
environments, because it is an end-to-end approach 
including an explicit policy which directly optimizes the 
expected reward.  

The policy is defined as the mapping from the state to 
the action probabilities, where 𝜋(𝑠, 𝑎) is the probability of 
taking an action a in state s under the policy 𝜋. The policy is 
a function represented by a neural network, whose input is 
some representation of the state, outputs are action selection 

probabilities and weights are the policy parameters. Let 𝜃 
represent the vector of policy parameters and 𝜌 represent the 
performance of the corresponding policy (discounted 
expected reward per step). Then, as per the policy gradient 
approach, the policy parameters are updated approximately 
proportionally to the gradient, as per equation (2). 

 

     Δ𝜃 ≈ 𝛼
∂𝜌

∂𝜃
,                                                             (2) 

 
where 𝛼  is a step size. Usually, 𝜃  can be assured to 
converge to a locally optimal policy in the performance 
measure 𝜌. Basically, our goal is to maximise the reward 
under the probability distribution 𝜋(𝑎𝑡|𝑠𝑡; 𝜃).  

Figure 2 illustrates the PG mechanism pipeline. At every 
time-step, some representation of the current state of the 
environment is fed into to the neural network as input. In 
our work, state representation is in the form of images. In 
the forward pass, the neural network calculates the 
probabilities of the predefined actions, an action is sampled 
from the action probability distribution. Based on the 
received rewards, gradients are computed in the backward 
pass as per equation (3), 𝐽(𝜃) denotes the loss function. 

 

𝛻𝜃𝐽(𝜃) ≈ ∑𝑖(∑𝑡𝛻𝜃𝑙𝑜𝑔𝜋𝜃(a𝑡
𝑖 |s𝑡

𝑖 ))(∑𝑡𝑟(s𝑡
𝑖 , a𝑡

𝑖 ))         (3) 
 
 

Lastly, the policy is updated in the direction of the 
gradient, as shown in equation (4) to encourage the actions 
leading to good outcomes and discourage the ones leading 
to the bad outcomes.  

 
𝜃 ← 𝜃 + 𝛼𝛻𝜃𝐽(𝜃)                             (4) 

 
 
This section gave a brief introduction to the key 

elements that constitute our research approach. The 
following section introduces our simulation environment. 
 

Figure 3: Our Simulator 
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IV. OUR SIMULATOR AND IT’S SETUP 

In the transportation and traffic area of research, 
simulations are typically used as the first step in the protocol 
development. To simulate traffic scenarios, the 
transportation research community uses a variety of traffic 
simulators like SUMO [9], VISSIM [10], CORSIM [11] etc. 
Most of the existing traffic simulators are not realistic to 
emulate real world traffic. These simulation tools often 
suffer from various shortcomings, such as no collision 
count, having the speed of vehicles constant across the 

intersections, no dynamic generation of vehicles within the 
simulation environment etc. We believe that these 
shortcomings are significant and cannot be ignored, 
especially if the potential application of developed traffic 
protocols is to be deployed in a real-life setting.  

To realistically validate our research idea, we built a 
traffic simulator on a 3d virtual reality software, Unity3d to 
create a simulation environment closely based on the real-
world traffic specifications, such as vehicle arrival rate 
conforms to the random distribution to mimic the real-world 
traffic scenarios. For an efficient vehicle trajectory control, 
the parameters; such as maximum speed, maximum 
acceleration and deceleration rate are most important, our 
simulator has these parameters configured based on real 
world vehicle specifications. Our simulator is able to 
seamlessly switch between a variety of different traffic 
environments, such as rush/quiet hours etc., which is not 
feasible while using conventional traffic simulators. Figure 
3 shows a screenshot of our simulator’s graphical display.  

Most importantly, our simulator enables us to capture 
still pictures and video footage, in much the same way as is 
possible in a real-world traffic scenario, to be used to 
analyze and determine traffic policies. 

We created a real-time interface between Unity3d and 
Python using socket programming for bilateral data 
exchange between them. Our policy network, outlined in 
figure 2, is implemented in python. The section on 
architecture, below, describes the data exchange mechanism 
between the two softwares in detail.  
 

V. OUR ARCHITECTURE 

Our architecture is composed of two components; 
Unity3d and Python. As stated in the previous section, we 
get our road intersection environment’s graphical display 
from unity3d, while our policy network is implemented on 
python. These two components of our architecture interact 
with each other using socket programming, creating a fixed 
and a logical connection between server and client. In our 
work, python acts as a server and unity3d acts as a client. At 
every time-step, unity3d transmits the representation of the 
current state (s) of the environment to the policy network 
(implemented on pytorch, a python platform) via socket 
interface and in return, receives an action (a) to decide the 
configuration of traffic light policies and sends back a 
numerical reward (r), based on the quality of action taken.  

Figure 4 illustrates our architecture. Our policy network 
which implements our traffic light controller agent, is a 4-
layer DNN composed of 3 convolutional layers (C1 with 16 
output channels, C2 with 32 output channels and C3 with 32 
output channels) and 1 fully-connected layer (F4 with 2952 
neurons). The current state (𝑠𝑡) of traffic light junction, is 
fed into the policy network. 𝜃 denotes our policy network 
parameters, which are randomly initialized in the beginning. 
From the action probabilities distribution computed from 
the underlying policy 𝜋 , an action (𝑎𝑡 ) is sampled and 
implemented. Our action space includes two discrete actions 
{0, 1}, indicating what lane go give green to. Every action 
produces a reward, based on which, the gradient is 
computed and policy parameters ( 𝜃 ) are updated to 
continuously improve the policy (𝜋), until an optimal policy 
is found. Algorithm 1 outlines our policy gradient 
algorithm. 
 
Algorithm 1: 

1. Initialize model parameters, 𝜃 with random values 
2. Initialize time-step counter t = 0 
3. For each time-step starting from t = 𝑡𝑠𝑡𝑎𝑟𝑡, repeat: 
        3.1 initialize s with current visual of the intersection  
        3.2 select an action a according to policy, 𝜋𝜃(a𝑡|s𝑡) 
        3.3 observe reward r and next state 𝑠′ 
        3.4 compute gradients, according to equation (3),  

Figure 4.  Our Architecture 
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        3.5 update gradients, according to equation (4). 
4. Until t - 𝑡𝑠𝑡𝑎𝑟𝑡 == M (max time-step) 
5. End. 

VI. EXPERIMENT 

As a first set of experiments, shown in figure 4, we 
implemented an intersection of two-lane traffic scenario 
with conflicting vehicular traffic such that vehicles from any 
one lane are granted access to the intersection at a time, 
while vehicles from the other lane have to wait. We applied 
two signal phases (red and green) with no turning 
movements. To optimize the traffic throughput and make 
our policy network learn appropriately, every vehicle 
passing through the junction is given a reward of +1. 

We update policy network parameters (𝜃), after every 10 
simulations (batch_size). One episode of our simulation is 
made of 100 time-steps. We compute the gradients for every 
episode and keep accumulating them and update the 
network parameters after batch of 10 simulations. 

To make the policy network learn and evolve 
continuously and efficiently, it is required to face a variety 
of different state situations. To make things more 
challenging for our policy network, we kept the vehicle 
density same for both the lanes thus creating less variation 
in our environment. We compare our policy gradient-based 
traffic light approach with two baselines; traditional fixed-
traffic lights and uncontrolled junction (with no traffic 
lights, first-come-first-served basis). 

 

VII. RESULTS AND DISCUSSION 

Our test results revealed that after running our simulator 
for about 600,000 vehicles, our policy gradient algorithm 
converged. Even with minimum variability in the simulation 
environment, we obtained an encouraging set of results. Our 
policy network performed as well as the fixed-traffic lights. 
Since as a preliminary test, we implemented our approach 
on a simple, uncomplicated traffic junction, we expected our 
policy network to reach the performance of the fixed-traffic 
lights, as shown in figure 5. Our traffic light controller agent 
could successfully sense the current state of the intersection 
and learn to take appropriate actions to increase the traffic 
throughput through the intersection. This is a positive result 
and we expect our system to crucially outperform fixed-
traffic lights in situations when there is a sudden change in 
traffic conditions, flows and densities, or an accident 
causing the bottleneck.  

VIII.   CONCLUSION AND FUTURE WORK 

We introduced an autonomous traffic light control 
system, based on deep RL. We experimented our research 
idea on a novel traffic simulator to realistically frame our 
research problem. We showed our approach performed well 
for a simple traffic light intersection scenario.  

To verify the robustness of our research approach and its 
applicability to dynamically varying and diverse traffic 
conditions, we plan to extend our approach to more 
complicated road intersections with multiple lanes, like the 

one shown in figure 3. To collectively optimize traffic 
through multiple road intersections, we will create real time 
coordination between multiple road intersections for 
information sharing and traffic light operation negotiation. 
We will ensure that our system can withstand various 
traffic-related stresses like degradation of camera output, 
single point of failure of policy gradient-based traffic light 
control system and unreliable communication between 
communicating junctions in a multiple-junction traffic light 
scenario.  
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Figure 5.  Learning curve showing vehicles’ journey finish time for PG-

based approach versus fixed-traffic lights and no-traffic lights. 
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