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Abstract

We present a new concept of silhouette coherence applied to a set of silhouettes gener-
ated by a 3D object. The proposed silhouette coherence concept is used in the problem
of camera calibration for image-based 3D object modeling under circular motion. We
first discuss the silhouette coherence notion and define a practical criterion to estimate
it. This criterion depends both on the silhouettes and on the parameters of the cameras
that generated them. These parameters can be optimized for the 3D modeling problem
by maximizing the overall silhouette coherence. We present various experimental results
illustrating the efficiency of the proposed silhouette coherence criterion.

Résumé

Nous développons le concept de cohérence d’un ensemble de silhouettes générées par
un objet 3D pour l’appliquer aux problèmes de recalage 3D et d’estimation de mou-
vement. Nous discutons d’abord la notion de cohérence de silhouettes et proposons un
critère de cohérence ainsi qu’une manière efficace de le calculer. Ce critère dépend si-
multanément des silhouettes et des paramètres des caméras. Les paramètres des caméras
peuvent ainsi être optimisés en maximisant la cohérence des silhouettes. Nous présentons
plusieurs résultats expérimentaux qui illustrent l’efficacité du critère de cohérence de
silhouettes proposé.
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Fig. 1. Silhouette acquisition and its corresponding reconstructed visual hull (case of a rotation
sequence). Left: original object and its corresponding silhouettes. Right: reconstructed visual hull
using the same set of silhouettes.

1 Introduction

3D image-based modeling is becoming more popular as recent techniques provide high
quality models. Shape from silhouette techniques are specially interesting since they
provide good initial models for further processing in 3D reconstruction algorithms and
are efficient enough for real time applications.

Camera calibration is a very important initial step for 3D reconstruction. The tech-
nique presented in this paper makes use of the silhouettes in a novel way in order to
recover the camera parameters under circular motion, which is commonly used for 3D
image-based modeling. Assuming that the silhouettes are well extracted, we propose
the silhouette coherence as a global quality measure for the calibration of a subset of
the camera parameters by maximizing the overall silhouette coherence. This allows us
to obtain high quality 3D reconstructions without the use of any calibration pattern.

This papers is organized as follows: in section 2 we present the related work. In sec-
tion 3 we define and discuss the silhouette coherence measure. In section 4 we propose
a fast implementation of the coherence criterion. In section 5 we present an application
to visual hull registration and in section 6 an application to motion and focal estimation.

2 Related Work

The approach presented in this paper is related to three different kinds of techniques:
i) camera calibration, ii) texture registration between images and a 3D reconstructed
model, and iii) visual hull computation.

A large collection of methods for camera calibration exists [10]. They rely on corre-
spondences between the same primitives detected in different images. In the particular
case of circular motion, the methods in [11, 12] work well when the images contain
enough texture to make a robust detection of the primitives. Otherwise silhouettes can
be used instead. Calibration based on silhouettes is used for two main applications: vi-
sual hull 3D registration [27, 23, 6] and motion estimation [21, 13]. Although [27] does
not explicitly propose the registration of two different sequences of silhouettes, they
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Fig. 2. Computation of the 3D optic ray intersection by back projection of the silhouette intervals.

propose a way of estimating the pose of a 3D model relative to a set of silhouettes, so
silhouette registration can in fact be achieved by first reconstructing a 3D model using
one of the sequences followed by a pose estimation relative to the second sequence
of silhouettes. In [23] two different reconstructions are obtained from every silhouette
sequence. Then, the two 3D reconstructed models are matched using tangent planes
and stability constraints. [6] also start with different reconstructions. They use them to
speed up stereo matching to locate 3D points, and with the 3D points they are able to
register/refine both visual hulls. In [21, 13] motion recovery is achieved using the no-
tion of epipolar tangencies [26, 24], i.e., points on the silhouette contours that belong
to an epipolar line tangent to the silhouette. Although this method gives good results,
its main drawback is that there is a limited number of epipolar tangencies per pair of
images, generally only two, and their detection is very sensitive to noise.

Concerning texture registration, there exists a number of algorithms that try to reg-
ister a set of textured views with a 3D representation of the object using silhouettes [16,
19, 22]. Calibration is accomplished by minimizing the error between the contours of
the silhouettes and the contours of the projected object. In [19, 22] the error is defined
as the sum of the distances between a number of sample points on one contour and their
nearest points on the other. In [16] a hardware-accelerated method is used to compute
the similarity between two silhouettes as the area of their intersection.

Finally, visual hull computation is a very active area since it is one of the fastest
and most robust ways of obtaining an initial estimation of a 3D object. It can be precise
enough for real time rendering applications such as [17] or used as an initial estimation
for further processing in 3D reconstruction algorithms [9].

In this paper we define a silhouette coherence criterion inspired from [16] but the
main difference is that we do not need a known 3D model corresponding to the real
object. The 3D model is implicitly reconstructed from the silhouettes at the same time
as the camera calibration by a visual hull method [1, 4, 7, 8, 14, 18, 20]. In particular,
the use of the technique described in [20] allows all the computations to be done in the
image domain, which overcomes the need for a 3D representation as in [27, 23, 6].
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3 A Measure of Silhouette Coherence

It seems that the notion of silhouette coherence has not already been developed in the
literature. However, [3] study the same problem but with a different point of view. They
provide the notion of silhouette compatibility to state if a given set of silhouettes of a
same object are possible or not. They give some rules to detect if a set of silhouettes
is compatible or not, but only for the special case of orthographic cameras and with-
out providing a means to compute their amount of incompatibility. In the following we
describe a criterion of silhouette coherence that allows us to measure a degree of coher-
ence and thus offers us the possibility of using optimization methods to recover some
of the camera parameters.

Given a set of silhouettes of a same 3D object taken from different points of view,
and the corresponding set of camera projection matrices, we would like to measure
the coherence of both the silhouette segmentation and the camera projection matrices.
The only information contained in a silhouette is a classification into two categories
of all the optic rays that go through the optic center of the associated view: those that
intersect the object and those that do not, depending on if the pixel that defines the optic
ray belongs to the silhouette or not. Let us consider an optic ray intersecting the object.
Its projection into any other view must intersect the corresponding silhouette. The back
projection of this intersection onto the 3D optic ray defines one or several 3D intervals
where we know that the optic ray intersects the real object surface (see Fig.2). In the
case of only two views, the corresponding silhouettes will not be coherent if there exists
at least one optic ray classified as intersecting the object by one of the silhouettes and
whose projection does not intersect the other silhouette. In the case of N views, the
lack of coherence is defined by the existence of at least one optic ray where the depth
intervals defined by the N −1 other silhouettes have an empty intersection. This lack of
coherence can be measured simply by counting how many optic rays in each silhouette
are not coherent with the other silhouettes. Two examples of coherent and non-coherent
silhouettes in the 2D case are shown in Fig.3. The optic ray pencils that are not coherent
with the other silhouettes are shown by an arrow in Fig.3.b.

A first way of computing a coherence measure is the following: i) compute the re-
constructed visual hull defined by the silhouettes, ii) project the reconstructed visual
hull back into the cameras, and iii) compare the reconstructed visual hull silhouettes to
the original ones. In the situation of ideal data, i.e., perfect segmentation and perfect
projection matrices, the reconstructed visual hull silhouettes and the original silhou-
ettes will be exactly the same (see Fig. 3.a). With real data, both the silhouettes and
the projection matrices will not be perfect. As a consequence, the original silhouettes
and the reconstructed visual hull silhouettes will not be the same, the reconstructed vi-
sual hull silhouettes being always contained in the original ones. This can be explained
mathematically in the following way:

Let Si be the ith image silhouette, Pi the corresponding camera projection matrix
and p a 2D point. We can define the cone Ci generated by the silhouette Si as the set of
lines liv which verifies

Ci ≡ {liv = P−1

i p, p ∈ Si}.
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a) b)

Fig. 3. 2D examples of different silhouette coherences. The reconstructed visual hulls are the
black polygons. a) Perfectly coherent silhouette set. b) Set of 3 silhouettes with low silhouette
coherence. Incoherent optic ray pencils are indicated by the arrows.

The reconstructed visual hull V defined by the silhouette set Si, i = 1, . . . , n can be
written as the following cone intersection:

V =
⋂

i=1,...,n

Ci.

The projected silhouette SV
i is defined as the set of the 2D points p in the ith image,

whose optic ray intersects the reconstructed visual hull:

SV
i = {p, P−1

i p ∩ V 6= ∅}.

By construction
SV

i ⊂ Si,∀i.

If the silhouettes and the projection matrices are perfect, then SV
i = Si ∀i.

A first possible measure of similarity between the two silhouettes Si and SV
i of

the ith image can be the ratio of areas between the two silhouettes. But because the
silhouettes area can be very large for big images (we use images of up to 4Kx4K pixels),
for small differences between silhouettes, the dynamic range of this measure will be
very small and not accurate enough for the applications we are considering. A better
measure uses the ratio of the silhouette contour lengths rather than the ratio of the
silhouette areas. As we will see in the implementation of the algorithm, there is also a
performance reason for this choice.

Let ∂i denote the contour of the original silhouette Si, and ∂V
i the contour of the

reconstructed visual hull silhouette SV
i . A measure C of coherence between these two

silhouettes can be defined as the ratio between the length of their common contours
∂V

i ∩ ∂i and the total length of ∂i:

C(Si, S
V
i ) =

∫
(∂V

i ∩ ∂i)∫
∂i

∈ [0, 1].
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Fig. 4. Reconstructed visual hull of the teapot sequence with bad extrinsic parameters: total co-
herence of 39.11%. Left: reconstructed visual hull by cone intersection. Right: the 6 original
silhouettes superposed with the projections of the reconstructed visual hull.

This measure evaluates the coherence between the silhouette Si and all the other sil-
houettes Sj,j 6=i that contributed to the reconstructed visual hull. To compute the total
coherence between all the silhouettes, we simply compute the mean coherence of each
silhouette with the n − 1 other silhouettes:

C(S1, . . . , Sn) =
1

n

n∑

i=1

C(Si, S
V
i )

To be able to efficiently exploit this coherence measure we need first to know its
application limits. As we stated above, if we have perfect silhouettes and perfect camera
matrices, then C(S1, . . . , Sn) = 1. This never happens in practice. Let us assume that
the silhouettes are perfectly segmented. We can maximize the silhouette coherence by
adjusting the camera parameters in order to reduce mismatches between silhouettes.
This can be seen as a kind of bundle adjustment of the silhouettes. But maximizing
coherence between silhouettes does not mean finding the right camera parameters [5].
This depends on:

– The object shape. The worst case corresponds to the sphere for which there is no
unique solution to the problem of silhouette coherence maximization because of
the sphere symmetry. Thus, in general, we can not guarantee the uniqueness of the
solution.

– The number of silhouettes. If we use only a small number of silhouettes, then the
coherence criterion is less accurate and may be maximized for a large set of solu-
tions. However, if we take a sufficient number of pictures, real objects are asym-
metric enough to guarantee a unique solution as will be shown in the practical
examples.

– The interdependence between parameters of the camera. Some parameters can
affect the coherence criterion in a similar way and thus we are not able to distin-
guish between them during the coherence maximization.

So the coherence criterion is not the ultimate criterion for recovering all the parame-
ters in a global optimization, but it can work quite well for some particular scenarios
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Fig. 5. Epipolar tangency and silhouette coherence criteria for a pair of silhouettes.

where the number of parameters to recover is not very high and silhouettes provide
enough information to optimize them. In the case of a sequence of cameras with cir-
cular motion and constant intrinsic parameters, [21, 13] demonstrate the feasibility of
recovering the motion using epipolar tangencies. We show below that the proposed sil-
houette coherence criterion is a more general approach that includes the criterion of
epipolar tangencies. For a given pair of views, as shown in Fig.5, the epipolar tangency
approach minimizes the distance between epipolar tangents of one view (la and lb in
view 1, lc and ld in view 2) and the transformed epipolar tangents of the other view (l′c
and l′d in view 1, l′a and l′b in view 2). That is, it minimizes Cet = dac′+dbd′+dca′+ddb′ .
For the same pair of silhouettes, the coherence criterion will minimize the length of the
contours cca′ and dbd′ . So we can see that, except for pathological configurations, both
criteria try to minimize the sectors defined by the epipolar tangents in one view and
their corresponding epipolar tangents on the other view. This implies that if we maxi-
mize our coherence criterion on a set of silhouettes by pairs, we get the same behavior
as [13], and thus we are able to recover the camera motion using silhouette coherence.
When using the proposed silhouette coherence, silhouettes are not just taken by pairs
but all at the same time. This makes that the information we exploit is not only on the
epipolar tangencies but all over the silhouette. Although we have the theoretical pos-
sibility of recovering some parameters, it is well known that the circular motion is a
critical motion for self-calibration [10]. The question is which parameters can be the-
oretically recovered and if in practice they affect the coherence criterion enough to be
retrieved by maximization. Recovering the camera principal point (u0, v0) and transla-
tion vector (tx, ty, tz) under circular motion is a very difficult task. In the projection of
a 3D point the translation introduces in the projection equation a pixel offset propor-
tional to the focal length f and inversely proportional to the distance of the 3D point:
∆x(z) = ftx/(z + tz), ∆y(z) = fty/(z + tz). If, as it is in practice, the depth varia-
tions of the 3D object along the apparent contours are small compared to their distance
to the camera, (∆x(z),∆y(z)) are almost constant and behave in the same way as
(u0, v0). The focal length is a different case. Its main problem is that very large varia-
tions of the focal length may produce only small variations of the silhouette coherence.
Even with an infinite focal length (orthographic projection) high values of coherence
may still be obtained. However, focal length can still be recovered together with the
motion by always initializing it with a lower bound of its expected value. We present
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in sections 5 and 6 two useful applications of the silhouette coherence: the registration
of two different sets of silhouettes of a same object under circular motion (7 parame-
ters: rotation+translation+scale) and a partial calibration of a circular motion sequence
(4 parameters: motion + focal length) that allows in practice the auto-calibration of
the sequence in order to use 3D object reconstruction techniques without the use of a
calibration pattern.

4 Coherence Criterion Implementation

The silhouette coherence criterion C being defined, a first implementation, and probably
the simplest, would be: 1) for a given set of cameras and silhouettes, compute the recon-
structed 3D visual hull by using any of the multiple existing techniques, 2) project the
reconstructed visual hull into the cameras, 3) compute the coherence criterion. This ap-
proach has two drawbacks: computation time and volume sampling. The former may be
a problem since it may take several minutes to compute a 3D visual hull, and the latter
because constructing a 3D visual hull usually needs a discrete 3D representation, such
as a volume grid or an octree. If we want a highly accurate visual hull, we need a high
resolution 3D model of the visual hull, which is computationally very expensive. In ad-
dition, we are not interested in a 3D representation in itself but in comparing 2D views
of it with the original silhouettes. Therefore, it seems a waste of time to completely
reconstruct the visual hull when only some views of it are required. The imaged-based
visual hull (IBVH) technique [20] does not compute a 3D representation of the recon-
structed visual hull but only 2D views of it. The key idea is as follows: for any given
camera, a depth map of the visual hull is obtained by a ray-casting approach. For each
pixel we compute the intersection between its optic ray and the visual hull. According
to the definition of the visual hull, this is equivalent to (see Fig.2): 1) projecting the
optic ray into each silhouette, 2) computing the 2D intersection intervals between the
projected ray and each silhouette, 3) back projecting all the 2D intervals onto the orig-
inal 3D optic ray, 4) computing the intersection on the 3D optic ray of all the intervals
of all the silhouettes. For each pixel of the depth map, we have a set of remaining depth
intervals, possibly empty, which represent the intersection between its optic ray and the
implicit visual hull.

To compute the 2D intersection between the projected ray and a silhouette, two
approaches can be used: a Bresenham-like intersection test or an interval intersection
algorithm. Even if the Bresenham intersection is a full integer algorithm, the images are
too big and the precision of the intersecting point is too low for it to be a valid choice.
With the approach of interval intersection, the silhouette contours are coded as a closed
sequence of segments, defined by two consecutive pixels along the silhouette contour.
For a given projected ray, we compute the intersection of the half line with the sequence
of segments, which gives us the 2D intervals directly. This procedure can be done in a
very efficient way as described in [20].

Concerning the coherence algorithm, we can approximate the contours of the sil-
houette by the discrete list of the pixels that define them, the contour length simply
becoming the cardinal of this list. So we are interested in computing the image-based
visual hull only on the contour pixels of the silhouette. Furthermore, we do not need all
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a) b) c) d)

Fig. 6. Synthetic teapot of 10 cm bounding size. (a) First reconstructed visual hull; self coherence
of 100%. (b) Unregistered second reconstructed visual hull; self coherence of 100%; mutual
coherence of 51.71%. (c) Reconstructed visual hulls after registration; mutual coherence of 100%.
(d) Resulting reconstructed visual hull after registration.

the intervals for every pixel, we only want to know if the intersection of all the intervals
is empty or not, i.e., if the ray intersects the reconstructed visual hull or not. The pseudo
code of the coherence algorithm C(Si, S

V
i ) between a silhouette and its corresponding

reconstructed visual hull silhouette is as follows:

FLOAT Coherence (SILHOUETTE silRef,SILLIST silList)
INTEGER emptyPixels = 0
INTEGER totalPixels = 0
For each PIXEL p in Contours(silRef)

INTERVALS intervals = [0,inf]
VEC3D ray = InverseProjection(silRef,p)
For each SILHOUETTE sil in silList

VEC2D epipole = Projection(sil,CameraOrigin(silRef))
VEC2D direction = Projection(sil,ray)
INTERVALS int2D = Intersect(sil,epipole,direction)
INTERVALS int3D = InverseProjection(sil,int2D)
intervals = Intersect(intervals,int3D)
If intervals = void, then emptyPixels++; break

end
totalPixels++

end
return (totalPixels-emptyPixels)/totalPixels

5 Registration of two Calibrated Sequences

We consider the silhouettes of two different rotation sequences S1 and S2 of the same
object, each sequence being calibrated independently by a pattern-based calibration
method [15]. We would like to register both sequences in order to reconstruct the object
using all the views available. The two sequences are related by: a rotation (Euler angles
[α, β, γ]), a translation ([tx, ty, tz]), and a scaling factor s. This makes 7 parameters to
optimize v = [α, β, γ, tx, ty, tz, s]. The mutual coherence function can be defined as:

C(S1,S2, v) =
1

2
(
1

n

n∑

i=1

C(S1

i ,S2, v) +
1

m

m∑

j=1

C(S2

j ,S1, v)).

A non-linear optimization algorithm has been used to maximize the coherence func-
tion. Gradient, simplex and Powell’s methods have been tested [25]. Powell’s method
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a) b) c) d)

Fig. 7. Pitcher of 30 cm bounding size. (a) First reconstructed visual hull; self coherence of
98.19%. (b) Unregistered second reconstructed visual hull; self coherence of 90.99%; mutual co-
herence of 54.46%. (c) Reconstructed visual hulls after registration; mutual coherence of 95.66%.
(d) Resulting reconstructed visual hull after registration.

leads to better convergence results. Concerning the initialization, the translation is sim-
ply initialized by matching the bounding box centers defined by the two silhouette se-
quences. In practice the initial rotation does not need to be very accurate and an exhaus-
tive sampling of the Euler angles with a grid step of 20 degrees suffices.

We present here the results for three different objects: the digital teapot, which we
use to evaluate the algorithm (Fig.6), and two real objects (Fig.7 and Fig.8). For all the
objects we dispose of two sequences of 36 views.

The teapot object allows us to measure the theoretical precision of the coherence
criterion. The coherence of each independent sequence is 100% (Fig.6.a and Fig.6.b):
segmentation and camera parameters being perfect, the original silhouettes and the re-
constructed visual hull ones are identical. However, mutual coherence at the initial
position is much lower: 51.71% (Fig. 6.b). After convergence, the mutual coherence
is completely maximized. The algorithm precision for the 3 translation parameters is
about 1/1000 of the bounding box size (images of 1024x768), for the rotation about
6/100 degree and for the scale factor better than 10−4 (see table 1).

For the real objects (Fig. 7 and Fig. 8), we have used images of 2008x3040 pixels
and the silhouettes have been binarized by an automatic color-segmentation technique.
In the pitcher sequence we dispose of a complete calibration of the system, obtained us-
ing the calibration technique described in [15]. Since the object did not move between
the acquisition of both sequences, we can recover the transformation between the se-
quences and compare it with the one obtained by maximizing the coherence criterion.
We observe the difference between the self coherences obtained for the two sequences:
98.19% and 90.99% respectively (see Fig. 7.a and Fig. 7.b). The lower score of the
second sequence is due to the worse quality of its extracted silhouettes. Despite these
segmentation errors, the precision obtained after optimization is rather good (see table
1). As we can appreciate in figure 7.b, the disparity of the reconstructed visual hulls
makes the use of other registration methods such as the ICP [2] very difficult.
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a) b) c) d)

Fig. 8. Statuette (a) First sequence visual hull; self coherence of 82.63%. (b) Unregistered sec-
ond sequence visual hull; self coherence of 84.47%; mutual coherence of 41.27%. (c) Visual
hulls after registration; mutual coherence of 93.67%. (d) Resulting reconstructed visual hull after
registration.

In the second experimental sequence, the statuette has been manually moved be-
tween both acquisitions, so there is no way of finding out the transformation with
a classical calibration technique. Due to automatic segmentation, silhouettes are not
perfect. This is reflected by the low self coherence values of 82.63% and 84.47%
respectively(Fig.8.a, Fig.8.b).

It may seem strange that, after convergence, the mutual coherence is higher than
the self coherences in the two real examples. This is simply due to the fact that the two
measures do not compare the same silhouettes.

Once we have registered the two sequences, we can compute the visual hull with the
silhouettes of both sequences, which improves the quality of the reconstructed models
(see Fig. 6.d, Fig. 7.d and Fig. 8.d).

rotation (degrees) translation (mm) scale
Teapot α β γ tx ty tz s

initial 180.000 90.000 180.000 8.0000 0.0000 12.0000 1.20000
real 150.000 0.000 180.000 10.0000 -10.0000 10.0000 1.00000
recovered 150.063 0.010 179.998 9.9986 -10.0010 10.0012 0.99993
error 0.063 0.010 0.002 0.0014 0.0010 0.0012 0.00007
Pitcher
initial 103.000 6.000 8.000 -10.000 460.000 650.000 1.20000
calibrated 63.776 -4.605 -2.497 -36.680 478.329 656.895 1.00000
recovered 63.813 -4.560 -2.487 -36.492 478.125 656.915 1.00014
error 0.037 0.045 0.009 0.188 0.204 0.020 0.00014

Table 1. Registration results for the teapot and pitcher sequences.
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6 Motion and Focal Recovery from a Single Rotation Sequence

In this scenario, we seek to recover the circular motion parameters and the focal length
of a single rotation sequence. For a single axis rotation sequence (see [11] for a detailed
explanation), the motion parameters are reduced only to the rotation axis direction, the
angles of rotation between two consecutive views and the camera translation direction
from the axis origin. If we suppose the angle steps known, we only have 2 parameters
to code the rotation axis. The camera translation direction can be coded only with one
parameter (see [11]).

The algorithm has been tested with the synthetic teapot sequence and the real pitcher
sequence. In the teapot sequence the rotation axis direction has been modified by 30
degrees, the camera translation direction by 1.4 degrees and the focal length by 33%.
The camera translation angle is a very sensitive parameter in the image formation. A
modification of 1.4 degrees gives, already, a very low coherence of 22.82%, worse than
the example shown in Fig. 4. After optimization, we get a residual error of 4.8 10−4

degrees on the translation, 0.03 degrees on the rotation axis, and 71 pixels (< 1%) on
the focal length (see table 2), but the coherence is already perfect.

The real sequence corresponds to the first sequence of the pitcher with bad parame-
ters. The coherence before optimization is of 62.95%. After optimization, the coherence
is of 98.43%. We can see in table 2 the results of the motion and focal estimation.

Teapot rotation translation focal
(degrees) (degrees) (pixels)
θ φ α f

initial 106.000 110.000 1.4 6000
real 86.626 90.576 0.0 9000
recovered 86.611 90.554 4.8 10

−4 8929
error 0.015 0.022 4.8 10

−4 71

Pitcher rotation translation focal
(degrees) (degrees) (pixels)
θ φ α f

initial 90.000 90.000 0.000 2000
calibrated 99.671 90.343 0.427 6606
recovered 99.774 90.338 0.429 6573
error 0.103 0.005 0.002 33

Table 2. Motion and focal results for the teapot and pitcher sequence.

Concerning the non-recovered principal point (u0, v0), its value is not critical and
choosing the image center as the principal point seems to be sufficient for 3D modeling.
This is due to the fact that the error in the principal point position is compensated by the
translation vector optimization. The resulting distortion on the 3D object reconstruction
due to this weak calibration is indeed very low when the width of the object remains
small compared to its distance from the camera.

7 Conclusions

We have presented a new approach to camera parameters estimation based on the simi-
larity between a set of silhouettes and the silhouettes of their visual hull. This approach
has been successfully tested for different estimation problems such as independent se-
quence registration or motion and focal recovery from a single rotation sequence. The
high precision of the calibration results are due to the use of thousands of pixels in the
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computation, whereas classic methods use a few hundred at most. Its main drawback
is the need for an accurate segmentation of the object, which sometimes is not an easy
task. We will further investigate the robustness of this technique for more complicated
scenarios.
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