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DRAFT 2

I. ERROR ANALYSIS OF THE SILHOUETTE COHERENCE AS A FUNCTION OF SILHOUETTE

NOISE

In this experiment we have added noise to the exact silhouette contours in order to statistically

measure the accuracy of the epipolar tangency criterion and the silhouette coherence criterion.

The noise has been simply added along the normal of the contours. The amplitude of the noise is

computed as a uniform noise smoothed by a Gaussian filter, which avoids unrealistic jaggedness

along the silhouette contour. The noise variance is computed after the Gaussian filtering. For

each noise standard deviation σ, we have computed 200 samples in order to obtain reliable

results. We have estimated the rotation axis, the translation direction and the focal length. We

have not recovered the camera angles in order to avoid too many outliers due to local minima.

The implemented epipolar tangency criterion has the following form:

Cet =
1

∑n

i=1

∑

j∈N (i) Kij

n
∑

i=1

∑

j∈N (i)

KijCet(Si, Sj), (1)

Kij =







0 if eij ∈ Si or eji ∈ Sj

1 else
,

where n is the number of available silhouettes, N (i) is the set of peer silhouettes for the

silhouette i, Cet(Si, Sj) is the epipolar tangency coherence between two silhouettes, and Kij

takes into account if we can compute Cet(Si, Sj) or not. In the particular case where the epipole

is inside a silhouette, Cet(Si, Sj) cannot be computed so Cet is weighted accordingly. It remains

to precise the meaning of N in Eqn. (1). If we only want to compare each silhouette against the

n−1 others, then Nall(i) = {i+1, · · · , n}. However, this is not the original definition given used

in [3], where N3(i) = {i + 1, · · · , min(i + 3, n)} is used. Although this choice is not justified,

it is probably due to the resulting computation time saving (N3 is faster than Nall) and to the

convergence properties of Cet: using a small number of silhouettes around the current silhouette

should help to smooth the energy shape. But this leads to a worse accuracy than when using all

the silhouettes.

We show the rotation axis estimation, the translation angle recovery and the focal length

estimation results inFig. 2. We have tested the epipolar tangency criterion with 4 different sets

of peer silhouettes N (see Eqn. 1): 1 silhouette N1(i) = {min(i + 1, n)}, 3 silhouettes N3(i) =

{i+1, · · · , min(i+3, n)}, 6 silhouettes N6(i) = {i+1, · · · , min(i+6, n)} and all the silhouettes
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Nall(i) = {i + 1, · · · , n}. Note that, although the total number of silhouettes is 12, N6 and Nall

are not the same because silhouette 1 and silhouette 12 will never be compared using N6 but

they will using Nall. Concerning the silhouette coherence criterion, we have tested two different

values of the sampling offset δ: δ = 0.5 pixels and δ = 1 pixels.

The criterion used to measure the error between the recovered rotation axis arecovered and the

real axis a in Fig. 2 is the angle between both axes: acos(arecovered · a).

The estimation results of the camera motion (rotation axis and translation direction) are shown

in figures 2 left and middle. For large noise standard deviation (σ > 0.3 pixels), the silhouette

coherence criteria (δ = 0.5 pixels and δ = 1 pixels) perform better than any of the epipolar

tangency criteria.

This is justified by the fact that the silhouette coherence criterion uses the entire contours for

the computation while the epipolar tangency criterion is actually using only the epipolar tangent

points. However, the behavior of the silhouette coherence changes with low noise, where the

epipolar tangency criterion performs better, and what is even more surprising, the silhouette

coherence curves are not monotone with the noise standard deviation: e.g., for δ = 1, we obtain

better accuracy with σ = 0.3 than with σ = 0.1. This “strange” behavior is caused by the rapid

saturation of the silhouette coherence criterion. For small noise, the silhouette coherence is very

easily maximized if δ is not small enough. As a result, around the optimum there is a constant

platform whose size depends on the values of δ and σ.

If we compare the results for the translation estimation, i.e., the αt parameter, we observe a

strong dependence of the epipolar tangency criterion on the number of silhouettes used (see Fig.

2 middle). The epipolar tangency criterion needs a large baseline to estimate αt accurately. This

is justified by the fact that, when the baseline is small, the epipolar tangencies change very little

with large variations of αt. Even when using all the possible silhouette pairs for the epipolar

tangency criterion (N = Nall), the silhouette coherence criterion performs much better than the

epipolar tangency one (see Fig. 2 middle).

Finally, we show the focal length estimation results in Fig. 2 right. Both the epipolar tangency

criterion (with Nall) and the silhouette coherence criterion perform very well, with less than 3%

of error for a noise standard deviation of 1 pixel. An interesting remark is the fact that, with

δ = 1 pixel, the focal length error is almost the same as with σ = 0.1 and σ = 1.0 pixels. As

explained before, it shows the saturation effect of the silhouette coherence criterion when the
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Fig. 1. Teapot sequence with 12 views, their corresponding exact silhouettes and their camera angles in degrees.
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Fig. 2. Rotation axis, translation direction and focal length estimation error as a function of the noise standard deviation σ.

Top: mean error. Bottom: standard deviation.

values of δ are large compared to the noise of the silhouettes.

II. ERROR ANALYSIS OF THE SILHOUETTE COHERENCE AS A FUNCTION OF OBJECT SHAPE

In order to show why the silhouette coherence criterion exploits more information than just

epipolar tangents alone, we have created a synthetic object with a parameterized shape. The

object is composed of two items: a deformed tube and an ellipsoid. Since the tube length is

larger than the image height, the tube silhouettes do not provide any epipolar tangency. The only

possible epipolar tangencies may come from the ellipsoid. We note that, in order to exploit the

epipolar tangencies of this configuration, we would need to handle the visibility of the epipolar
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tangencies and match them between different views as proposed in [1], [2].

We have parameterized the shape of the ellipsoid with a shape factor s, and we have computed

6 different synthetic objects for s = {0, 0.2, 0.4, 0.6, 0.8, 1.0} (see Fig. 3). For each synthetic

object, we have generated a sequence of 18 silhouettes, using a constant camera angle step of

20 degrees. Then, for each silhouette sequence, we have studied the accuracy of the silhouette

coherence to recover the rotation axis, the translation and the focal length with a noise standard

deviation of 0.5 pixels.

To obtain reliable results, we have done 200 trials per shape factor. We show the estimation

results in Fig. 4. For the shape factors s = 0 and s = 0.2 there are no epipolar tangency points at

all, i.e., algorithms based on the notion of epipolar tangency will not work. However, we show

in Fig. 4 that the silhouette coherence is still able to recover the translation and the focal length

with very good accuracy. The recovery of the rotation axis shows an interesting behavior: the

accuracy of φa is very good (see dashed curve in Fig. 4 top) while the accuracy of θa strongly

depends on the shape factor (see solid curve in Fig. 4 top). This behavior is expected since the

silhouettes of the tube almost do not change for strong differences of θa, which corresponds

to the angle between the rotation axis a and the camera viewing axis z. As we increase s, we

introduce cues in the silhouettes about the rotation axis, since the silhouettes of the ellipsoid

do depend on θa. This experiment shows how the silhouette coherence is able to automatically

extract the maximum information of the silhouettes, without the need of matching or handling

the visibility of any epipolar tangency point, and even when no epipolar tangency point is

available at all. It also shows that epipolar tangency points do encode a substantial amount of

the silhouette information, but not all the information a silhouette can provide.
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s = 0 s = 0.2 s = 0.4 s = 0.6 s = 0.8 s = 1.0

Fig. 3. Different synthetic objects created with one deformed tube and one ellipsoide as a function of the ellipsoid shape factor

s. Top: front view. Bottom: bottom view.
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Fig. 4. Rotation axis, translation direction and focal length estimation error as a function of the ellipsoid shape factor s. Top:

mean error. Bottom: standard deviation.
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