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Abstract

This paper addresses the problem of obtaining 3d de-

tailed reconstructions of human faces in real-time and with

inexpensive hardware. We present an algorithm based on

a monocular multi-spectral photometric-stereo setup. This

system is known to capture high-detailed deforming 3d sur-

faces at high frame rates and without having to use any

expensive hardware or synchronized light stage. However,

the main challenge of such a setup is the calibration stage,

which depends on the lights setup and how they interact

with the specific material being captured, in this case, hu-

man faces. For this purpose we develop a self-calibration

technique where the person being captured is asked to per-

form a rigid motion in front of the camera, maintaining a

neutral expression. Rigidity constrains are then used to

compute the head’s motion with a structure-from-motion al-

gorithm. Once the motion is obtained, a multi-view stereo

algorithm reconstructs a coarse 3d model of the face. This

coarse model is then used to estimate the lighting parame-

ters with a robust estimator which allows for detailed real-

time 3d capture of faces. The calibration procedure is vali-

dated with two real sequences.

1. Introduction

The 3d capture of human faces is an important task in

the fields of computer vision and computer graphics. Re-

cent progress in hardware capabilities make the demand

of such technology even greater than before, with applica-

tions ranging from medical care to human behavior or com-

puter games. Even though much progress has been made

in the recent years in deformable surface capture, faces are

specially difficult to capture because humans are very well

trained in face recognition and are thus very sensitive to re-

construction errors. Recent progress in facial capture has

produced very high quality reconstructions to the point of

being able to leap the “uncanny valley” and produce photo-

realistic animations that may fool a person into thinking

that the avatar is real [13]. However, these types of re-

sults can only be achieved with very expensive hardware

and thousands of man-hours of interactive editing. In this

paper we propose an inexpensive system based on a spe-

cial case of photometric-stereo [20] that uses multi-spectral

lighting [10, 21] and that is able to capture high-detailed

3d faces in real-time. Even though the results show a low

frequency shape deformation that is intrinsic to photometric

stereo techniques, the algorithm is able to reconstruct very

fine details such as skin porosity and wrinkles. Since the

method is based on multi-spectral photometric-stereo, the

system does not require any time-multiplexing hardware.

However it does require a calibration for the material being

captured. This means that, in practice, the system has to

be calibrated for every different face to be captured. In this

work we present a self-calibration algorithm that allows for

automatic calibration of the setup and greatly simplifies the

whole acquisition pipeline.

2. Related work

This paper addresses the problem of deforming shape re-

construction from images and is therefore related to a vast

body of computer vision and computer graphics research.

However, since faces are quite a specific type of deformable

surface, we focus on facial capture systems.

For static faces, range scanner [1] or light stage setups

[14] are the state-of-the-art methods to capture both accu-

rate geometry and detailed texture. As for capturing dy-

namic faces, several facial performance capture systems

exist using markers [3], structured light [22, 23], stereo

[2, 8], photometric stereo [10, 21] or a combination of

several techniques [15]. In terms of accuracy and detail,

only the methods with photometric stereo capabilities are

able to capture the fine details of the face. Structured light

methods such as [22, 23] produce very good low frequency

shape, but the need of time-multiplexing the patterns creates

characteristic artifacts in the shape that need a strong post-

processing stage, loosing much of the detail [19]. Stereo

methods only work well whenever the face has sufficient

texture [8]. In this case, the low frequency of the shape

is also very accurate, but due to the nature of the cue be-

ing used, fine detail is very difficult to recover. This is in

contrast to pure photometric stereo techniques, where the



Figure 1. Acquisition of 3d facial expressions using [10] together with the shadow processing of [12]. The system was calibrated using the

self-calibration technique described in this paper.

high frequency of the shape is easily recovered, but the

low frequency is very noisy, leading to large scale defor-

mations in the shape. Photometric stereo methods come in

two variants: multi-spectral and time-multiplexing. Time-

multiplexing techniques such as [15] need to cope with mis-

alignment artifacts due to the fact that frames taken under

different illuminations are also taken at different times. This

creates wrinkling artifacts due to the scene motion between

frames. Also, since the effective framerate is divided by

the number of lights, more expensive hardware is needed in

order to obtain real-time capture frame-rates. On the other

hand, multi-spectral techniques such as [10, 21] do not need

any time-multiplexing mechanism and only requires a video

camera and three light projectors. These methods however

cannot cope with different materials in the scene and need

to specifically calibrate every time the material changes. In

the case of human skin, the variation in skin color among

several people requires individual calibration per person.

In [10] the authors propose a simple scheme for cali-

brating objects that can be flattened and placed on a pla-

nar board. The system detects a pattern on the board, from

which it can estimate its orientation relative to the cam-

era. By measuring the RGB response corresponding to each

orientation of the material they directly estimate the linear

mapping. Naturally this method cannot be applied on hu-

man faces.

In [12] a two-step process is proposed. Firstly a mirror

is used to independently estimate the three light directions.

The next step involves capturing three sequences of the ob-

ject moving in front of the camera. In each sequence, only

one of the three lights is switched on at a time and from

the pixel intensities measured on the face, the light direc-

tion and RGB response of that light can be estimated. Even

though this process can be applied on human faces and is

very fast, it assumes that the face is fully monochromatic.

In this paper we propose a very accurate self-calibration

method, where, before capturing a face, a short calibra-

tion sequence is obtained in order to re-calibrate the system

specifically for that person’s facial skin. The method auto-

matically discovers points on the face with the same albedo,

and hence removes the assumption of [12]. Figure 1 shows

some 3d reconstructions of a video sequence successfully

calibrated using the proposed technique.

3. Color photometric stereo

In classic three-source photometric stereo we are given

three images of a Lambertian scene, taken from the same

viewpoint, and illuminated by three distant light sources.

The light sources emit the same light frequency spectrum

from three different non-coplanar directions.

Let ci(x, y) with i = 1 . . . 3 denote the pixel intensity of

pixel (x, y) in the i-th image. We assume that in the i-th im-

age the surface point is illuminated by a distant light source

whose direction is denoted by the vector li and whose spec-

tral distribution is Ei (λ). We also assume that the sur-

face point absorbs incoming light of various wavelengths

according to the reflectance function R (x, y, λ). Finally,

let the response of the camera sensor at each wavelength be

given by S (λ) and n(x, y) the surface local normal. Then
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the pixel intensity ci(x, y) is given by

ci(x, y) = l
⊤

i n(x, y)

∫

E (λ) R (x, y, λ) S (λ) dλ. (1)

The value of this integral is known as the surface albedo ρ

so that (1) becomes a simple dot product

ci = l
⊤

i ρn. (2)

If we write L =
[

l1 l2 l3

]⊤
and c =

[

c1 c2 c3

]⊤
then the system has exactly one solution

which is given by

n =
L
−1

c

||L−1c||
. (3)

Once we compute the normals, the surface can be recovered

by integrating the normal field.

The core of the facial capture algorithm is based on the

technique of color photometric stereo [17]. The key ob-

servation is that in an environment where red, green, and

blue light is simultaneously emitted from different direc-

tions, a Lambertian surface will reflect each of those colors

simultaneously without any mixing of the frequencies. The

quantities of red, green and blue light reflected are a linear

function of the surface normal direction. A color camera

can measure these quantities from a single RGB image. In

[10] it was shown how this idea can be used to obtain a

reconstruction of a deforming object. Because color pho-

tometric stereo is applied on a single image, one can use it

on a video sequence without having to multiplex the illu-

mination between frames. In color photometric stereo each

of the three camera sensors can be seen as one of the three

images of classic photometric stereo. The pixel intensity of

pixel (x, y) for the i-th sensor is given by

ci(x, y) =
∑

j

l
⊤

j n(x, y)

∫

Ej (λ) R (x, y, λ) Si (λ) dλ.

(4)

Note that now the sensor sensitivity Si and spectral dis-

tribution Ej are different per sensor and per light source

respectively. To be able to determine a unique mapping

between RGB values and normal orientation we need to

assume a monochromatic surface. We therefore require

that R (x, y, λ) = ρ (x, y) α (λ). Where ρ (x, y) is the

monochromatic albedo of the surface point and α (λ) is the
characteristic chromaticity of the material. Let

vij =

∫

Ej (λ) α (λ) Si (λ) dλ

be the ith-row and jth-column element of matrix V. Then

the vector of the three sensor responses at a pixel is given

by

c = V · Lρn. (5)

The jth column vector vj of matrix V provides the re-

sponse measured by the three sensors when a unit of light

from source j is received by the camera.

In order to completely calibrate the system, only the

knowledge of the product matrix V · L is required.

4. Calibration

When reconstructing 3d faces, the calibration method

proposed in [12] could be used. However, although the es-

timation of the light directions li can be very accurate, the

estimation of the color vectors vi is much noisier. This is

particularly true when computing the relative lengths of the

vectors, i.e. the relative strengths of each light when in-

teracting with the skin. The main reason for this is that

[12] uses all points on the face for calibration, assuming

monochromatic reflectance. Since this assumption is not

true in general, the accuracy of the calibration suffers. In or-

der to avoid these problems, we propose to use a completely

automatic self-calibration process where, starting from a

calibration video sequence, a coarse 3d shape of the face

is computed, and the lights are estimated in a robust way so

that the shape and the calibration matrix explain the video

sequence as well as possible.

In the following we describe the three steps involved in

the calibration process: camera calibration, shape recon-

struction and light matrix estimation.

4.1. Sequence capture and camera calibration

The calibration step is based on the fact that, even if faces

are difficult to reconstruct using a passive method such as

multi-view stereo [18], some algorithms can provide a suf-

ficiently accurate reconstruction so that a robust light esti-

mation algorithm such as [11] obtains a good estimate of

the light configuration. For this purpose, a calibration se-

quence is recorded were the person being captured performs

a rigid head motion, such as the one shown in Fig. 2. Since

the expression of the face does not change during the se-

quence, rigidity can be used to perform standard structure-

from-motion [24] in order to obtain both the camera motion

and a sparse-set of 3d points (see Fig. 3).

4.2. Coarse shape estimation

Once camera calibration is available, we can compute a

dense model with a multi-view stereo algorithm. It is worth

noting that the camera calibration may be inaccurate with a

reprojection error of several pixels. This is due to the fact

that faces have relatively few interesting points that can be

well localized and tracked throughout long sequences with

a small reprojection error (mainly the corner of the eyes and

the mouth). Nevertheless, the calibration does not have to

be very accurate as we only need a coarse shape estimate.
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Figure 2. Face calibration sequence under a three-source color photometric setup.

Figure 3. Sparse set of 3d points after using a structure-from-

motion algorithm on the sequence of Fig. 2. From left to right,

the 3d points are shown from three different viewpoints roughly at

-45 degrees, 0 degrees, and 45 degrees.

Figure 4 top shows the 3d reconstruction obtained with

[9]. Note that the shape does not contain much de tail and

only the low frequencies of the shape are correct. However,

as shown in the following section, this coarse shape is suffi-

cient to estimate the lighting using [11] as only 8 dof of the

matrix V · L have to be computed.

4.3. Robust estimation of light sources froma coarse
shape

The estimation of the calibration matrix V · L is based

on the algorithm described in [11]. In that work the initial

coarse shape is a obtained from silhouettes, while in our

case the initial shape is obtained from a multi-view stereo

algorithm. We now describe the light estimation algorithm

in our particular framework.

Similar to the photometric stereo algorithm, the core of

the calibration step is based on equation (5). In order to use

this equation to perform photometric stereo, the given in-

puts are the collected intensities c and the light matrix V ·L
while the unknowns are the surface normals n. For calibra-

tion purposes, the inputs are pairs of image RGB intensities

and surface normals while the unknowns are the light matrix

Figure 4. Top: Coarse shape obtained with the multi-view stereo

algorithm [9] on the sequence of Fig. 2. Bottom: refined shape

after successful light estimation and photometric stereo evolution

using the scheme of [11].

V · L.
If we are given three points xa,xb,xc with an un-

known but equal albedo ρ, their (non co-planar) normals

na,nb,nc, and the corresponding collected RGB intensi-

ties ca, cb, cc, we can uniquely determine ρV · L as

ρV · L = [na nb nc]
−1

[ca cb cc] . (6)

For multiple images, these same three points can provide

the light matrix in each image up to a global unknown scale

factor. The problem is then how to obtain three such points.

The answer is that, if the coarse shape contains enough

correct points or inliers, then repeatedly sampling a triplet

of random points on the shape will give a high probability

that at least one of those triplets contains three inliers. At

the same time, one can expect that the outliers do not gener-

ate a consensus in favor of any particular illumination model
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Figure 5. Estimated light on the sequence of Fig. 2 using the coarse

shape of Fig. 4 top and τ = 4. The image intensities are quantized

in the range from 0 to 255.

while the inliers do so in favor of the correct model. This

observation motivated [11] to use a robust RANSAC scheme

[6] to separate inliers from outliers and estimate the light

matrix. The scheme can be summarized as follows:

1. Pick three random points on the surface and, from their

RGB intensities and normals, estimate an illumination

hypothesis for ρVL.

2. Every point on the surface xm will now vote for this

hypothesis if its predicted image intensities are within

a given threshold τ of the observed image intensities

cm, i.e.

|ρV · L · nm − cm| < τ, (7)

where τ allows for quantization errors, image noise,

etc.

3. Repeat 1 and 2 a set number of times always keeping

the illumination hypothesis with the largest number of

votes.

In practice, since we have a calibrated video sequence

and not just a single frame, the algorithm uses all the frames

in order to vote for a light hypothesis. This heavily increases

Figure 6. Distribution of inliers (in white) as a function of the

threshold τ . From left to right, τ = 2, τ = 4, τ = 6, τ = 8,

τ = 10. The image intensities are quantized in the range from 0

to 255.

the amount of data available, making the scheme extremely

robust.

It is worth noting that, even though we are estimating

the simplest illumination model, i.e. the 3× 3 matrix V ·L,
the algorithm could easily be extended to estimate a first

order spherical harmonic illumination [4], i.e. a 3 × 4 ma-

trix modeling three distant light sources plus ambient light.

The RANSAC algorithm would be exactly the same, except

that now it would need to pick a minimum of four points in-

stead of three to build an illumination hypothesis. However,

in all the experiments ambient light was negligible, so this

extension was not necessary.

We show in Fig. 5 the number of inliers per light direc-

tion, i.e. per row of V · L optimized for the best scale. We

can appreciate how the space that RANSAC explores is very

well behaved, with a clearly defined global optimum. We

show in Fig. 6 the impact of the threshold τ on the number

of inliers (in white). We can distinguish how the mouth and

the eyes are never selected as inliers for two different rea-

sons. While the mouth is an outlier because of its different

albedo (more red than rest of the face), the eyes are outliers

because they moved during the rigid motion capture, so the

reconstruction in that region is not correct.

After estimating the light matrix, we can optionally re-

fine the initial coarse geometry with the photometric cue by

evolving the surface using a scheme such as [16] or [11].

We show in Fig. 4 bottom how, by merging the multi-

view stereo cue and the photometric stereo cue, the low

frequency shape of the multi-view stereo solution is kept,

while the high frequency shape of the photometric stereo

cue is “added” creating a very detailed and realistic static

reconstruction of the face.

5. Experimental results

We have run the same algorithm on a second sequence

shown in Fig. 7. After structure-from-motion, the camera

motion and the video sequence are fed into the multi-view

stereo algorithm in order to produce a coarse shape of the

face shown in Fig. 9 top. The sparse set of 3d points (shown

in Fig. 8) is only used to define a rough bounding box in

order to speed-up the multi-view stereo algorithm. Once

the coarse shape is computed, we can run the light calibra-

tion step described in Section 4.3, giving the light estimates

shown in Fig. 10. Again, in order to have an idea of how

good the estimate is, we can visualize the distribution of

inliers w.r.t the RANSAC threshold τ (see Fig. 11) and we

can also refine the coarse shape in order to obtain a high

resolution static face capture (see Fig. 9 bottom).

Once the calibration step is completed, we can recon-

struct video footage of that same person under the same

setup using [10](see Fig. 12). Note that, wherever the con-

stant chromaticity assumption is not verified, e.g. on the

lips of the face, the normal estimation suffers from a bas
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Figure 7. Face calibration sequence under a three-source color photometric setup.

Figure 8. Sparse set of 3d points after using a structure-from-

motion algorithm on the sequence of Fig. 7. From left to right,

the 3d points are shown from three different viewpoints roughly at

-45 degrees, 0 degrees, and 45 degrees.

relieve ambiguity deformation [5]. However the impact of

such ambiguity in the final shape depends on the size of the

region. If the region is small compared to the rest of the im-

age, as it is the case with the lips, the low frequency of the

shape will be not be very distorted since it is computed as

an integration process of the entire image. As for the high

frequency, it will bump the surface in a realistic way even

if, over all, the normals are distorted.

As an improvement to [10], we use a real-time imple-

mentation of the algorithm. Since the reconstruction algo-

rithm itself is just a per-pixel 3 × 3 matrix-vector multipli-

cation followed by a Poisson integration step[7], this can be

achieved real-time at 60 Hz by using an FFT-based integra-

tion implemented on a gpu (with the CUDA libraries).

6. Conclusion

We have presented a self-calibration method for monoc-

ular 3d face capture using a color photometric stereo frame-

work. The method is based on a preliminary video capture

of the person where a rigid motion is performed with a neu-

tral facial expression. This enables us to use a structure-

from-motion algorithm followed by a multi-view stereo al-

Figure 9. Top: Coarse shape obtained with the multi-view stereo

algorithm [9] on the sequence of Fig. 7. Bottom: refined shape

after successful light estimation and photometric stereo evolution

using the scheme of [11].

Figure 10. Estimated light on the sequence of Fig. 2 using the

coarse shape of Fig. 4 top and τ = 4. The image intensities are

quantized in the range from 0 to 255.

gorithm in order to reconstruct a coarse 3d shape of the

static face. The same calibration video can then be used to-

gether with the shape in order to robustly estimate the color

response of the face under the photometric stereo setup.

Once the system is calibrated, reconstruction of 3d faces

6



Figure 11. Distribution of inliers (in white) as a function of the

threshold τ . From left to right, τ = 2, τ = 4, τ = 6, τ = 8,

τ = 10. The image intensities are quantized in the range from 0

to 255.

can be achieved in a live real-time manner.

The main weakness of the proposed reconstruction

framework is the low frequency noise in the 3d shape,

which is characteristic of photometric stereo algorithms. A

promising research direction is to combine this technique

with other cues such as MVS [8] that can constrain the low-

frequency of the shape.
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